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DETERMINANTS OF INTERVAL MATRICES∗

JAROSLAV HORÁČEK† , MILAN HLADÍK ‡ , AND JOSEF MATĚJKA§

Abstract. In this paper we shed more light on determinants of real interval matrices. Computing the exact bounds on a

determinant of an interval matrix is an NP-hard problem. Therefore, attention is first paid to approximations. NP-hardness of

both relative and absolute approximation is proved. Next, methods computing verified enclosures of interval determinants and

their possible combination with preconditioning are discussed. A new method based on Cramer’s rule was designed. It returns

similar results to the state-of-the-art method, however, it is less consuming regarding computational time. Other methods

transferable from real matrices (e.g., the Gerschgorin circles, Hadamard’s inequality) are discussed. New results about classes

of interval matrices with polynomially computable tasks related to determinant are proved (symmetric positive definite matrices,

class of matrices with identity midpoint matrix, tridiagonal H-matrices). The mentioned methods were compared for random

general and symmetric matrices.
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1. Introduction. In this work we first address computational properties of determinants of general

interval matrices. We are going to prove two new results regarding absolute and relative approximation

of interval determinants. Next, we slightly mention known tools that can be used for computing interval

determinants – interval Gaussian elimination, Hadamard inequality and Gerschgorin circles. We introduce

our new method based both on Cramer’s rule and solving interval linear systems. Regarding symmetric

matrices, there are many results about enclosing their eigenvalues and they can be also used for computing

interval determinants. All the methods work much better when combined with some kind of preconditioning.

We briefly address that topic. We also prove that some classes of interval matrices have some tasks related

to interval determinant computable in polynomial time (symmetric positive definite matrices, some matrices

with identity midpoint matrix, tridiagonal H-matrices). At the end we provide numerical testing of the

mentioned methods on random general and symmetric real interval matrices.

Interval determinants were used e.g., in [25] for testing regularity of inverse Jacobian matrix, in [30] for

workspace analysis of planar flexure-jointed mechanism, in [33] for computer graphics applications or in [42]

as a testing tool for Chebyshev systems.

2. Basic notation and definitions. In our work it will be sufficient to deal only with square interval

matrices. A real interval matrix is defined by A = {A ∈ Rn×n | A ≤ A ≤ A} for A,A ∈ Rn×n such that

A ≤ A (understood component-wise). To compute with intervals we use the standard interval arithmetic,

for more details on the interval arithmetic see for example [27] or [29].
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We denote intervals and interval structures in boldface (a,A, b). Real point matrices and vectors will

be denoted in normal case (A, b). An interval coefficient of A lying at the position (i, j) is denoted by Aij .

An interval can be also defined by its midpoint ac ∈ R and radius a∆ ∈ R as a = [ac − a∆, ac + a∆].

Interval vectors and matrices are defined similarly. Notation mid(a), rad(a) can be sometimes used instead

of ac, a∆ respectively. The set of all real closed intervals is denoted by IR and the set of all square interval

matrices of order n is denoted by IRn×n. When we need (in a proof) open intervals we write them with

parentheses, i.e. (a, a).

The magnitude is defined by mag(a) = max(|a|, |a|) which is sometimes confused with the absolute value

|a| = {|a|, a ∈ a}. The width of an interval a is defined by w(a) = a−a. All these notions can be intuitively

defined for vectors, we just use them component-wise. We will also use the interval vector Euclidean norm

‖x‖ = max{‖x‖, x ∈ x} =
√∑

mag(xi)2. The relation a ≤ b holds when a ≤ b (similarly for <). When

we compare two interval structures, the relation is applied component-wise. In the following text, E will

denote a matrix consisting of ones of a corresponding size. The identity matrix of a corresponding size will

be denoted I with ei denoting its i-th column. By A+ we denote the Moore-Penrose pseudoinverse matrix

to A and by A−T we denote the inverse matrix to AT . Spectral radius of A is denoted %(A). Now, we define

the main notion of this work.

Definition 2.1 (Interval determinant). Let A be a square interval matrix, then its interval determinant

is defined by

det(A) = {det(A), A ∈ A}.

Any interval enclosing the interval determinant we call enclosure. Obtaining a tight enclosure will usually

be our goal, since computing the exact bounds of det(A) is generally an NP-hard problem [21, 39].

To the best knowledge of ours, there are only a few theoretical results regarding determinants of interval

matrices. Some of them can be found in e.g., [21, 34, 39]. For example, from linearity of a determinant with

respect to matrix coefficients we immediately get the fact that the exact bounds on an interval determinant

can be computed as minimum and maximum determinant of all 2n
2

possible ”edge” matrices of A.

det(A) = [min(S),max(S)], where S = {det(A), ∀i, j Aij = Aij or Aij = Aij}.

3. Approximations. In the end of the previous section we saw that the problem of computing the

exact bounds of an interval determinant is generally an NP-hard problem. One can at least hope for having

some approximation algorithms. Unfortunately, we prove that this is not the case, neither for relative nor

for absolute approximation.

Theorem 3.1 (Relative approximation). Let A be an interval matrix with Ac nonnegative positive defi-

nite matrix and A∆ = E. Let ε be arbitrary such that 0 < ε < 1. If there exists a polynomial time algorithm

returning [a, a] such that

det(A) ⊆ [a, a] ⊆ [1− ε, 1 + ε] · det(A),

then P = NP.

Proof. From [39] we use the fact that for a rational nonnegative symmetric positive definite matrix A,

checking whether the interval matrix A = [A− E,A+ E] is regular (every A ∈ A is regular) is a coNP-

complete problem.

We show that if such algorithm existed, it would decide whether a given interval matrix is regular. For

a regular interval matrix we must have det(A) > 0 or det(A) < 0. If det(A) > 0 then, from the second
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inclusion a ≥ (1− ε) · det(A) > 0. On the other hand, if a > 0 then from the first inclusion det(A) ≥ a > 0.

Therefore, we have det(A) > 0 if and only if a > 0. The corresponding equivalence for det(A) < 0 can be

derived in a similar way.

Theorem 3.2 (Absolute approximation). Let Ac be a rational positive definite n × n matrix. Let A =

[Ac − E,Ac + E] and let ε be arbitrary such that 0 < ε. If there exists a polynomial time algorithm returning

[a, a] such that

det(A) ⊆ [a, a] ⊆ det(A) + [−ε, ε],

then P = NP.

Proof. Let matrix Ac consist of rational numbers with nominator and denominator representable with

k bits (we can take k as the maximum number of bits needed for any nominator or denominator). Then

nominators and denominators of coefficients in Ac − E and Ac + E are also representable using O(k) bits.

For each row we can multiply these matrices with product of all denominators from both matrices in the

corresponding row. Now, each denominator uses still k bits and each nominator uses O(nk) bits. We

obtained a new matrix A′. The whole matrix now uses O(n3k) bits which is polynomial in n.

We only multiplied by nonzero constants therefore the following property is holds

0 /∈ det(A)⇐⇒ 0 /∈ det(A′).

After cancellation the new matrix A′ has integer bounds. Its determinant must also have integer bounds.

Therefore deciding whether A′ is regular means deciding whether |det(A′)| ≥ 1. We can multiply one

arbitrary row of A′ by 2ε and get a new matrix A′′ having det(A′′) = 2εdet(A′). Now, we can apply

the approximation algorithm and compute absolute approximation [a′′, a′′] of the determinant of A′′. Let

det(A′) ≥ 1. Then det(A′′) ≥ 2ε and the lower bound of absolute approximation is

a′′ ≥ det(A′′)− ε ≥ ε > 0,

On the other hand, if a′′ > 0 then

det(A′)/2ε = det(A′′) ≥ a′′ > 0.

Hence, even det(A′) > 0 and since it is an integer it must be greater or equal to 1. The case of det(A′) ≤ −1

is handled similarly. Therefore, 0 /∈ det(A)⇐⇒ 0 /∈ det(A′)⇐⇒ 0 /∈ [a′′, a′′].

4. Enclosures of determinants – general case.

4.1. Gaussian elimination. To compute a determinant of an interval matrix, we can use the well

known Gaussian elimination – after transforming a matrix to the row echelon form an enclosure of deter-

minant is computed as the product of intervals on the main diagonal. For more detailed description of the

interval Gaussian elimination see for example [1, 17, 29]. Gaussian elimination is suitable to be used together

with some form of preconditioning (more details will be explained in section 4.6). We would recommend the

midpoint inverse version as was done in [42].

4.2. Gerschgorin discs. An enclosure of an interval determinant can be computed as a product of

enclosures of interval matrix eigenvalues, e.g., [11, 15, 20, 24]. Gerschgorin circle theorem can also be used. A

set of real Gerschgorin circles corresponding to one diagonal element of A can be enclosed with a larger circle
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with center mid(Aii) and radius rad(Aii)+
∑

j 6=i mag(Aij). We call this circle an interval Gerschgorin circle.

A product of eigenvalues lying in a bunch of connected Gerschgorin circles (set of circles whose projection

on x-axis is a continuous line) can be enclosed separately. The enclosure depends on the number (odd/even)

of discs in a bunch and on whether the bunch contains 0. Some of the cases are depicted in Figure 1. The

simple other ones are done accordingly.

Figure 1. Enclosures of the product of a bunch of interval Gerschgorin circles that contains 0. a) k is even and |a| ≤ |b|,
b) k is odd, |a| ≤ |b|, c) k is even, |a| > |b|, d) k is odd |a| > |b|.

Related to Gerschgorin circles of interval matrices, a very recent result was presented by S.M. Rump at

the conference SCAN 2018 (18th International Symposium on Scientific Computing, Computer Arithmetic,

and Verified Numerical Computation) in Tokyo. He showed that the Minkowski product of the Gerschgorin

circles of a real interval matrix contains the set of determinants.

4.3. Hadamard’s inequality. A simple but rather crude enclosure of interval determinant can be

obtained by the well known Hadamard inequality. For an n×n real matrix A we have |det(A)| ≤
∏n

i=1 ‖A∗i‖,
where ‖A∗i‖ is the Euclidean norm of i-th column of A. This inequality is simply transformable for the

interval case. Since the inequality holds for every A ∈ A we have

det(A) ⊆ [−d,+d] , where d =

n∏
i=1

‖A∗i‖.

It is a fast and simple method. A drawback is that the obtained enclosure is often wide. A second problem

is that it is impossible to detect the sign of the determinant. Thus it is useless for all motivating examples

mentioned at the beginning of the introduction.

Despite the drawbacks, such an approach can be used for certification of the sign of a numerically

computed determinant of a real matrix as demonstrated in [32].
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4.4. Cramer’s rule. Our next method is based on Cramer’s rule. It exploits methods for computing

enclosure of a solution set of a square interval linear system. There are plenty of such algorithms, i.e.,

[12, 27, 29, 41]. Here we use the method ”\” built in Octave interval package. When solving a real system

Ax = e1 using Cramer’s rule we obtain

det(A) =
det(A2:n)

x1
,

where det(A2:n) emerges by omitting the first row and column from A and x1 is the first coefficient of the

solution of Ax = e1. We have reduced our problem of determinant computation to a problem with lower

dimension and we can repeat the same procedure iteratively until the determinant in the numerator is easily

computable. For an interval matrix A we actually get

det(A) ⊆ det(A2:n)/x1,(4.1)

where x1 is an interval enclosure of the first coefficient of the solution of Ax = e1, computed by some of the

cited methods. Notice that we can use arbitrary index i instead of 1. The method works when all enclosures

of x1 in the recursive calls do not contain 0.

4.5. Monotonicity checking. The partial derivatives of det(A) of a real nonsingular matrix A ∈ Rn×n

are ∂ det(A)
∂A = det(A)A−T . Provided the interval matrix A is regular and B is an interval enclosure for the

set {A−T | A ∈ A}, then 0 6∈ det(A) and the signs of det(Ac)Bij give information about monotonicity

of the determinant. As long as 0 is not in the interior of Bij , then we can do the following reasoning. If

det(Ac)Bij is a nonnegative interval, then det(A) is nondecreasing in Aij , and hence its minimal value is

attained at Aij = Aij . Similarly for det(Ac)Bij nonpositive.

In this way, we split the problem of computing det(A) into two sub-problems of computing the lower and

upper bounds separately. For each subproblem, we can fix those interval entries of A at the corresponding

lower or upper bounds depending on the signs of Bij . This makes the set A smaller in general. We can

repeat this process or call another method for the reduced interval matrix.

Notice that there are classes of interval matrices the determinant of which is automatically monotone.

They are called inverse stable [36]. Formally, A is inverse stable if |A−1| > 0 for each A ∈ A. This class

also includes interval M-matrices [3], inverse nonnegative [22] or totally positive matrices [6] as particular

subclasses that are efficiently recognizable; cf. [14].

4.6. Preconditioning. In the interval case by preconditioning we mean transforming an interval matrix

into a better form as an input for further processing. It is generally done by multiplying an interval matrix A

by a real matrix B from left and by a real matrix C from right and we get some new matrix BAC. Regarding

determinants, from properties of the interval arithmetics we easily obtain det(B)·det(A)·det(C) ⊆ det(BAC)

and we will further use the fact

det(A) ⊆ 1

det(B) det(C)
· det(BAC).

There are many possibilities how to choose the matrices B,C for a square interval matrix. As in

[8], we can take the midpoint matrix Ac and compute its LU decomposition PAc = LU . When setting

B ≈ L−1P,C = I, we get

det(A) ⊆ 1

det(P )
· det(L−1PA).
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Another option is using an LDLT decomposition. A symmetric matrix A can be decomposed as A =

LDLT , where L is upper triangular with ones on the main diagonal and D being diagonal matrix. By setting

B ≈ L−1, C ≈ BT and obtain

det(A) ⊆ det(L−1AL−T ).

In interval linear system solving, there are various preconditioners utilized depending on criteria used

[13, 18]. The most common choice is taking B ≈ A−1
c , C = I when Ac is regular. Such a choice of B,C is

also optimal in a certain sense [29, 28]. Then

det(A) ⊆ det(A−1
c A)/ det(A−1

c ).

Unlike the previous real matrices, the matrix A−1
c does not have to have its determinant equal to ±1. We

need to compute a verified determinant of a real matrix. In [31] there are many variants of algorithms for

computation of verified determinants of real matrices. We use the one by Rump [40].

5. Enclosures of determinants – special cases. Even though we are not going to compare all of

the mentioned methods in this section, for the sake of completeness we will mention some cases of matrices

that enable the use of other tools. For special classes of interval matrices we prove new results stating that

it is possible to compute exact bounds of their determinants in polynomial time.

5.1. Symmetric matrices. Many problems in practical applications are described using symmetric

matrices. We specify what we mean by an interval symmetric matrix by the following definition.

Definition 5.1 (Symmetric interval matrix). For a square interval matrix A we define

AS = {A ∈ A, A = AT }.

Next we define its eigenvalues.

Definition 5.2. For a real symmetric matrix A let λ1 ≥ λ2 ≥ . . . ≥ λn be its eigenvalues. For AS we

define its i-th set of eigenvalues as λi(A) = {λi(A), A ∈ A}.

For symmetric interval matrices there exist various methods to enclose each i-th set of eigenvalues. A simple

enclosure can be obtained as a consequence of the Wielandt-Hoffman theorem [7], e.g., by

λi(A
S) ⊆ [λi(Ac)− %(A∆), λi(Ac) + %(A∆)].

There exist various other approaches for computing enclosures of the eigenvalues, including [19, 23], there

are several iterative improvement methods [4, 16] and methods for computing verified eigenvalues of sym-

metric matrices [26, 43]. For the exact minimum and maximum extremal eigenvalues, there is a closed-form

expression [10], which is however exponential.

5.2. Symmetric positive definite matrices. Let AS be a symmetric positive definite matrix, that

is, every A ∈ AS is positive definite. Checking positive definiteness of a given symmetric interval matrix is

NP-hard [21, 37], but there are various sufficient conditions known [38].

The matrix with maximum determinant can be found by solving the optimization problem

max log det(A) subject to A ∈ AS
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since log is an increasing function and det(A) is positive on AS . This is a convex optimization problem that

is solvable in polynomial time using interior point methods; see Boyd & Vandenberghe [5]. Therefore, we

have:

Proposition 5.3. The maximum determinant of a symmetric positive definite matrix is computable in

polynomial time.

5.3. Matrices with Ac = I. Preconditioning A by A−1
c results in an interval matrix the center of

which is the identity matrix I. This motivates us to study such matrices more in detail. Suppose that A is

such that Ac = I. Such matrices have very useful properties. For example, solving interval linear systems

is a polynomial problem [35]. Also checking regularity of A can be performed effectively just by verifying

ρ(A∆) < 1; see [29].

Proposition 5.4. Suppose that ρ(A∆) < 1. Then the minimum determinant of A is attained for A.

Proof. We will proceed by mathematical induction. Case n = 1 is trivial.

We will proceed by mathematical induction. Case n = 1 is trivial. For the general case, we express the

determinant of A ∈ A as in (4.1)

det(A) = det(A2:n)/x1.

By induction, the smallest value of det(A2:n) is attained for A2:n = A2:n. Since Ac = I and A is regular

det(A) > 0,det(A2:n) > 0, therefore x1 > 0 and as it is the first coefficient of the solution of Ax = e1, its

largest value is attained for A = A; see [35]. Therefore A = A simultaneously minimizes the numerator and

maximizes the denominator.

Example 5.5. If the condition ρ(A∆) < 1 does not hold, then the claim is not true in general. Consider

the matrix A = [Ac −A∆, Ac +A∆] where

Ac =

 1 0 0

0 1 0

0 0 1

 , A∆ =

 1 1 1

1 1 1

1 1 1

 .

We have %(A∆) = 3 and det(A) = −2, however, det(A) = [−6, 14]. The minimum bound is attained e.g.,

for the matrix  0 −1 1

−1 2 1

1 1 2

 .

Computing the maximum determinant of A is a more challenging problem, and it is an open question

whether is can be done efficiently in polynomial time. Obviously, the maximum determinant of A is attained

for a matrix A ∈ A such that Aii = Aii for each i. Specifying the off-diagonal entries is, however, not so

easy.
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5.4. Tridiagonal H-matrices. Consider an interval tridiagonal matrix

A =



a1 b2 0 . . . 0

c2 a2 b3
. . .

...

0 c3 a3

. . . 0
...

. . .
. . .

. . . bn
0 . . . 0 cn an


.

Suppose that it is an interval H-matrix, which means that each matrix A ∈ A is an H-matrix. Interval

H-matrices are easily recognizable, see, e.g., Neumaier [28, 29].

Without loss of generality let us assume that the diagonal is positive, that is, ai > 0 for all i = 1, . . . , n.

Otherwise, we could multiply the corresponding rows by −1. Recall that the determinant Dn of a real

tridiagonal matrix can be computed by a recursive formula as follows

Dn = anDn−1 − bncnDn−2.

Since A is an H-matrix with positive diagonal, the values of D1, . . . , Dn are positive for each A ∈ A. Hence

the largest value of det(A) is attained at ai := a and bi, ci such that bici = bici. Analogously for the minimal

value of det(A). Therefore, we have:

Proposition 5.6. Determinants of interval tridiagonal H-matrices are computable in polynomial time.

Complexity of the determinant computation for general tridiagonal interval matrices remains an open prob-

lem, similarly as solving an interval system with a tridiagonal interval matrix [21]. Nevertheless, not all

problems regarding tridiagonal interval matrices are open or hard, e.g., checking whether a tridiagonal in-

terval matrix is regular can be done in polynomial time [2].

6. Comparison of methods. In this section the described methods are compared. All these methods

were implemented for Octave and its interval package by Oliver Heimlich [9]. This package also contains

function det, which computes an enclosure of the determinant of an interval matrix by LU decomposition,

which is basically the same as the already described Gaussian elimination method and that is why we do

not explicitly compare the methods against this function. All tests were run on an 8-CPU machine Intel(R)

Core(TM) i7-4790K, 4.00GHz. Let us start with general matrices first.

6.1. General case. For general matrices the following methods are compared:

• GE - interval Gaussian elimination

• HAD - interval Hadamard inequality

• GERSCH - interval Gerschgorin circles

• CRAM - our method based on Cramer’s rule

The suffix ”inv” is added when the preconditioning with midpoint inverse was applied and ”lu” is added

when the preconditioning based on LU decomposition was used. We use the string HULL to denote the exact

interval determinant.

Example 6.1. To obtain a general idea how the methods work, we can use the following example. Let

us take the midpoint matrix Ac and inflate it into an interval matrix using two fixed radii of intervals –
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0.1, 0.01 respectively.

Ac =

1 2 3

4 6 7

5 9 8

 .

The resulting enclosures of the interval determinant by all methods are shown in Table 1.

method r = 0.1 r = 0.01

HULL [4.060, 14.880] [8.465, 9.545]

GE [3.000, 21.857] [8.275, 9.789]

GEinv [3.600, 18.000] [8.460, 9.560]

GElu [1.440, 22.482] [8.244, 9.791]

CRAM [-∞, ∞] [8.326, 9.765]

CRAMinv [3.594, 78.230] [8.460, 9.588]

CRAMlu [-∞, ∞] [8.244, 9.863]

HAD [-526.712, 526.712] [-493.855, 493.855]

HADinv [-16.801, 16.801] [-9.563, 9.563]

HADlu [-35.052, 35.052] [-27.019, 27.019]

GERSCH [-3132.927, 11089.567] [-2926.485, 10691.619]

GERSCHinv [-0.000, 72.000] [6.561, 11.979]

GERSCHlu [-11089.567, 6116.667] [-10691.619, 5838.410]

Table 1

The exact interval determinant of the matrix from Example 6.1 and its enclosures computed by various methods. Enclo-

sures bounds are rounded to 3-digits. The fixed radius of intervals is denoted by r.

Based on this example it is not worth to test all methods, because some of them do not work well in

comparison to others or do not work well without preconditioning. That is why we later test only – GEinv,

CRAMinv, HADinv and GERSCHinv.

We can perceive the method GEinv used in [42] as the ”state-of-the-art” method. Therefore, every other

method will be compared to it. Primarily, for a given matrix A and a method() we compute the ratio of

widths of interval enclosures of det(A) computed by both methods as

rat(A) =
w(method(A))

w(GEinv(A))
.

We test all methods for sizes n = 5, 10, 15, 20, . . . , 50 and random interval square matrices with given fixed

radii of intervals (10−3 or 10−5). We test on 100 matrices for each size. For each size and method average

ratio of computed enclosures, average computation time and its variance is computed. It can happen that

an enclosure returned by a method is infinite. Such case is omitted from the computation of average or

variance. The occurrence of such a phenomenon is captured in Table 2. We can see that for smaller radii it

happens only rarely.

The remaining part to be described is generation of random matrices. First, a random midpoint matrix

with coefficients uniformly within bounds [−1, 1] is generated. Then, it is inflated into an interval matrix

with intervals having their radius equal to 10−3 or 10−5 respectively.

Let us begin with the average ratios of widths. They are presented Table 3. When the ratio is a number

less then 1000, it is displayed rounded to 2 digits. When it is greater, only the approximation 10x is displayed.
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size GERSCHinv HADinv CRAMinv GEinv GERSCHinv HADinv CRAMinv GEinv

5 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 6 6

15 0 0 1 1 0 0 1 1

20 0 0 0 0 0 0 17 14

25 0 0 2 1 0 0 19 13

30 0 0 0 0 0 0 19 13

35 0 0 0 0 0 0 27 21

40 0 0 0 0 0 0 39 33

45 0 0 1 1 0 0 47 35

50 0 0 0 0 0 0 50 39

Table 2

Number of infinite enclosures returned out of 100 – for radii 10−5 and 10−3.

size GERSCHinv HADinv CRAMinv GERSCHinv HADinv CRAMinv

5 8.01 104 1.00 8.88 41.91 1.03

10 19.90 103 1.00 144.46 16.65 1.03

15 34.96 103 1.00 106 9.04 1.04

20 48.18 103 1.00 1010 5.97 1.04

25 1010 103 1.00 1013 4.35 1.05

30 203.06 251.69 1.00 1016 3.71 1.07

35 106 188.74 1.00 1019 3.09 1.06

40 1014 171.65 1.00 1024 2.74 1.05

45 107 128.90 1.00 1025 2.28 1.06

50 1016 129.55 1.00 1028 2.20 1.07

Table 3

Ratios of widths of enclosures for matrices with fixed radii 10−5 and 10−3.

Computation times are displayed in Table 4. For each size of matrix the average computation time is

displayed; the numbers in brackets are standard deviations. To more clearly see the difference in computation

time between the two most efficient methods GEinv and CRAMinv see Figure 2.

6.2. Symmetric matrices. We repeat the same test procedure with the best methods for interval

symmetric matrices. Since these matrices have their eigenvalues real we can add the methods using real

bounds on real eigenvalues. Symmetric matrices are generated in a similar way as before, only they are

shaped to be symmetric. We compare the preconditioned methods with midpoint inverse GEinv, GERSCHinv,

HADinv and CRAMinv. We add one new method EIG based on computation of enclosures of eigenvalues using

the mentioned simple enclosure. The method GEinv stays the reference method, i.e, we compare all methods

with respect to this method.

The enclosures widths for symmetric matrices are displayed in Table 5. We can see that as in the general

case CRAMERinv does slightly worse than GEinv. Another thing we can see is that EIG is worse than both

CRAMERinv and GEinv.

The computation times are displayed in Table 6. We can see that EIG shows low computational demands

compared to the other methods. One can argue that we can use filtering methods to get even tighter

enclosures of eigenvalues. However, they work well in specific cases [16] and the filtering is much more time
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Figure 2. Comparison between average computation times (in seconds) of GEinv and CRAMinv.

consuming.

7. Conclusion. In the paper we showed that, unfortunately, even approximation of exact bounds

of an interval determinant is NP-hard problem (for both relative and absolute approximation). On the

other hand, we proved that there are some special types of matrices where interval determinant can be

computed in polynomial time – symmetric positive definite, certain matrices with Ac = I or tridiagonal H-

matrices. We discussed four methods GE – the ”state-of-the-art” Gaussian elimination, GERSCH – generalized

Gerschgorin circles for interval matrices, HAD – generalized Hadamard inequality for interval matrices and

CRAM – our designed method based on Cramer’s rule. We introduced a method that can possibly improve

an enclosure based on monotonicity checking. All methods combined with preconditioning were tested on

random matrices of various sizes. For interval matrices with radii less than 10−3 the methods GEinv and

CRAMinv return similar results. The larger the intervals the slightly worse CRAMinv becomes. However, its

computation time is much more convenient (it is possible to compute a determinant of an interval matrix

of order 50 by CRAMinv at the same cost as an interval matrix of order 20 by GEinv). Matrices of order

larger than 5 need some form of preconditioning otherwise GE and CRAM return infinite intervals. In our test

cases the lu preconditioning did not prove to be suitable. The methods HAD and GERSCH always return finite

intervals, but these intervals can be huge. Both methods work better with the inv preconditioning. The

HADinv returns much tighter intervals than GERSCH, however, it can not distinguish the sign of determinant

since the enclosure is symmetric around 0.

The analysed properties of the methods do not change dramatically when dealing with symmetric ma-

trices (one cannot expect that, since the methods are all direct). The newly added method EIG showed

constant and not so huge overestimation and much smaller computation times. The possible improvement

of EIG enclosures for symmetric matrices (by applying suitable forms of filtering and eigenvalue enclosures)

might be a matter of further research. There are many more options for future research – studying various

matrix decompositions and preconditioners or studying other special classes of matrices.
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size GEinv GERSCHinv HADinv CRAMinv GEinv GERSCHinv HADinv CRAMinv

5 0.13 0.06 0.04 0.12 0.13 0.06 0.04 0.13

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

10 0.41 0.07 0.06 0.24 10 0.40 0.07 0.06 0.25

(0.00) (0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.01)

15 0.90 0.09 0.08 0.36 15 0.91 0.09 0.08 0.39

(0.04) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.03)

20 1.59 0.11 0.12 0.48 20 1.51 0.11 0.12 0.54

(0.01) (0.00) (0.00) (0.01) (0.26) (0.00) (0.00) (0.08)

25 2.48 0.13 0.16 0.62 25 2.41 0.13 0.16 0.73

(0.07) (0.00) (0.00) (0.03) (0.29) (0.00) (0.00) (0.12)

30 3.58 0.15 0.21 0.76 30 3.47 0.15 0.21 0.92

(0.02) (0.00) (0.00) (0.01) (0.39) (0.00) (0.00) (0.14)

35 4.88 0.17 0.27 0.93 35 4.59 0.17 0.27 1.09

(0.03) (0.00) (0.00) (0.02) (0.80) (0.00) (0.00) (0.23)

40 6.39 0.19 0.34 1.10 40 5.77 0.19 0.34 1.25

(0.03) (0.00) (0.00) (0.04) (1.31) (0.00) (0.00) (0.33)

45 8.05 0.22 0.42 1.29 45 7.34 0.22 0.42 1.48

(0.59) (0.00) (0.00) (0.09) (1.54) (0.00) (0.00) (0.40)

50 10.03 0.25 0.50 1.54 50 8.77 0.25 0.50 1.68

(0.04) (0.00) (0.00) (0.06) (2.41) (0.00) (0.00) (0.55)

Table 4

Times of computation for radii 10−5 and 10−3. The plain number is average time (in seconds), the number inside brackets

is the standard deviation.

size GERSCHinv HADinv CRAMinv EIG GERSCHinv HADinv CRAMinv EIG

5 7.68 104 1.00 2.08 7.77 50.29 1.01 2.02

10 18.38 103 1.00 2.56 61.98 19.22 1.01 2.47

15 28.38 103 1.00 2.99 106 11.43 1.04 2.73

20 44.43 103 1.00 3.10 107 7.67 1.03 2.90

25 109 103 1.00 3.18 1011 5.70 1.03 3.02

30 80.43 103 1.00 3.33 1016 4.53 1.05 3.10

35 105 301.69 1.00 3.52 1018 3.96 1.04 3.46

40 105 219.13 1.00 3.38 1022 3.41 1.04 3.70

45 105 183.44 1.00 3.48 1025 2.73 1.05 3.65

50 103 162.34 1.00 3.62 1026 2.70 1.04 4.32

Table 5

Ratios of widths of enclosures for symmetric matrices with radii 10−5 and 10−3.
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editors, Advances in Robot Kinematics, pages 41–48. 2006.

[26] Shinya Miyajima, Takeshi Ogita, Siegfried M Rump, and Shin’ichi Oishi. Fast verification for all eigenpairs in symmetric

positive definite generalized eigenvalue problems. Reliable Computing, 14(1):24–25, 2010.

[27] Ramon E. Moore, R Baker Kearfott, and Michael J. Cloud. Introduction to Interval Analysis. SIAM, 2009.

[28] Arnold Neumaier. New techniques for the analysis of linear interval equations. Linear Algebra Appl., 58:273–325, 1984.

[29] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.

[30] D. Oetomo, D. Daney, B. Shirinzadeh, and J.-P. Merlet. An interval-based method for workspace analysis of planar

flexure-jointed mechanism. J Mech. Des., 131(1):0110141–01101411, 2009.

[31] Takeshi Ogita. Accurate and verified numerical computation of the matrix determinant. International Journal of Relia-

bility and Safety, 6(1-3):242–254, 2011.

[32] Victor Y Pan and Yanqiang Yu. Certification of numerical computation of the sign of the determinant of a matrix.

Algorithmica, 30(4):708–724, 2001.

[33] Helmut Ratschek and Jon Rokne. Geometric Computations with Interval and New Robust Methods. Applications in

Computer Graphics, GIS and Computational Geometry. Horwood Publishing, Chichester, 2003.
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[38] Jǐŕı Rohn. Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl., 15(1):175–184, 1994.
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