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ESTIMATORS COMPARISON OF SEPARABLE COVARIANCE STRUCTURE WITH

ONE COMPONENT AS COMPOUND SYMMETRY MATRIX∗
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Abstract. The maximum likelihood estimation (MLE) of separable covariance structure with one component as compound

symmetry matrix has been widely studied in the literature. Nevertheless, the proposed estimates are not given in explicit form

and can be determined only numerically. In this paper we give an alternative form of MLE and we show that this new algorithm

is much quicker than the algorithms given in the literature.

Another estimator of covariance structure can be found by minimizing the entropy loss function. In this paper we give three

methods of finding the best approximation of separable covariance structure with one component as compound symmetry

matrix and we compare the quickness of proposed algorithms.

We conduct simulation studies to compare statistical properties of MLEs and entropy loss estimators (ELEs), such us biasedness,

variability and loss.
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1. Preliminaries. Let us consider experiments in which q characteristics at p time points are observed

for each of n individuals. The data collected in this way are called doubly multivariate. Let Yi for i =

1, . . . , n be independent and identically distributed (q × p)−dimensional observation matrices. We assume

Yi ∼ Nq,p(M,Ω), i.e., vec Yi ∼ Npq (vec M,Ω), where vec M ∈ Rpq, vec(·) is the operator stacking the

columns of a q × p matrix into a pq−dimensional vector, and Ω is assumed to be an unstructured positive

definite matrix of order pq. The vector of unknown parameters consists of vec M and vech Ω, where vec-half

operator vech(·) is the operator stacking the columns of a (pq × pq)−dimensional symmetric matrix into a

pq(pq+ 1)/2−dimensional vector by eliminating all of the supradiagonal elements. The number of unknown

parameters to be estimated in Ω is pq(pq + 1)/2, which increases rapidly with an increase in either q or p.

Estimation of Ω is impossible when the sample size n ≤ pq. Thus, researchers usually rely on a separable

covariance matrix, expressed as the Kronecker product of two components:

Ω
pq×pq

= Ψ
p×p
⊗ Σ

q×q
.

Since usually matrices Ψ and Σ are unknown, the researcher is interested in their estimation and testing

the hypothesis about the covariance structure; cf. e.g. Lu and Zimmerman [11], Roy and Khattree [16, 17],

Mitchell et al. [14], Roy [15], Roy and Leiva [18], Srivastava et al. [21], Simpson [19], Manceur and Dutilleul

[13], Filipiak et al. [6].

Filipiak et al. [6] have shown that the maximum likelihood estimators (MLEs) of unknown covariance
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matrices can be obtained as a solution of the following systems of matrix equations:

(1.1)

{
q vec Ψ = (Ip2 ⊗ vec>Σ−1)(Ip ⊗Kp,q ⊗ Iq) vec S

p vec Σ = (vec>Ψ−1 ⊗ Iq2)(Ip ⊗Kp,q ⊗ Iq) vec S

with commutation matrix Kp,q (such that for an arbitrary p× q matrix X, Kp,q vec X = vec X>, cf. Kollo

and von Rosen [9], and with

(1.2) S = n−1YQnY>

being the MLE of Ω (cf. Filipiak et al. [6]), where Y = (vec Y1, vec Y2, . . . , vec Yn), and Qn = In−n−11n1>n
is the orthogonal projector onto the orthocomplement of the column span of an n−dimensional vector of

ones, 1n. Note, that (1.1) follows from differentiation of the log-likelihood function

(1.3) lnL(Ψ,Σ; S) = −npq
2

ln(2π)− n

2
ln |Ψ⊗Σ| − n

2
tr
[
(Ψ−1 ⊗Σ−1)S

]
with respect to Ψ and Σ.

To simplify (1.1) as well as to derive the main results of this paper we use the partial trace and block

trace operators of square matrices (given below) and their properties (given in Appendix A). The following

definition is a special case of partial trace and block trace operators defined by Filipiak et al. [7] for

rectangular block matrices.

Definition 1.1. For an arbitrary mp×mp matrix A = (Aij)

(i) the partial trace operator, PTrp : Rmp×mp → Rm×m, is the matrix of the traces of p× p blocks of A,

that is

PTrp A = (tr Aij), i = 1, . . . ,m, j = 1, . . . , n,

(ii) the block trace operator, BTrm : Rmp×mp → Rm×m, is the sum of all diagonal m ×m blocks of A,

that is

BTrm A =

p∑
i=1

Aii.

From Lemma A.1 it can be easily seen that system (1.1) can be rewritten as qΨ = PTrq

[
(Ip ⊗Σ−1/2)S(Ip ⊗Σ−1/2)

]
pΣ = BTrq

[
(Ψ−1/2 ⊗ Iq)S(Ψ−1/2 ⊗ Iq)

]
.

and it can be further reduced using Lemma A.2 to

(1.4)

{
qΨ = PTrq

[
(Ip ⊗Σ−1)S

]
pΣ = BTrq

[
(Ψ−1 ⊗ Iq)S

]
.

It is worth to mention that to solve (1.1) much more operations are required than to solve (1.4). Thus, the

use of the partial trace and block trace operators allows to express the estimators in shorter form as well as

it makes the algorithm faster.

The problems which arise here are the convergence of the proposed algorithm and the uniqueness of its

solution. These issues were studied e.g. by Lu and Zimmerman [11] or Soloveychik and Trushin [20]. In this
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last paper the authors proved that the sufficient condition for the convergence of the so called “flip-flop”

algorithm used to solve (1.4) and for the uniqueness almost surely of the solution of (1.4) is the sample size

n greater than p/q + q/p+ 1.

In a variety of applications there is no prior information about the possible structure of the covariance

matrix. In such a case the structure may be prespecified from the range of potential covariance structures

using some criteria based on e.g. Frobenius norm (Cui et al. [1], Filipiak and Klein [4]) or entropy loss

function (Lin et al. [10]). In the latter situation the problem is to find a minimum of the entropy loss

function defined in the case of separable structure as

(1.5) f(Ψ,Σ; Ω) = tr
[
Ω−1 (Ψ⊗Σ)

]
− ln

∣∣Ω−1 (Ψ⊗Σ)
∣∣− pq

(cf. Dey and Srinivasan [2], James and Stein [8], Lin et al. [10]) with respect to unknown covariance structure

parameters, Ψ and Σ. Since the true Ω is unknown, to find the best approximation of Ω by a separable

matrix Ψ ⊗ Σ in (1.5) we use S defined in (1.2) being the function of sufficient statistic for Ω, and hence

our goal is to minimize

(1.6) f(Ψ,Σ; S) = tr
[
S−1 (Ψ⊗Σ)

]
− ln

∣∣S−1 (Ψ⊗Σ)
∣∣− pq

with respect to Ψ and Σ. It can be easily seen that since the inverse of S is used in (1.6), the sample size

should exceed pq. Therefore we assume n > pq (p, q ≥ 2) throughout this article. It is worth noting that the

condition of Soloveychik and Trushin [20] is then satisfied.

Observe that the solution Ψ̃ and Σ̃ in which the minimum of (1.6) is attained can be treated as an

estimator of unknown structured covariance matrix in the doubly multivariate data. The estimators Ψ̃ and

Σ̃ will be called in this paper the entropy loss estimators (ELEs).

Note, that the entropy loss function of the inverses of S and Ψ ⊗ Σ can be expressed using the log-

likelihood function defined in (1.3), that is

ln f
(
Ψ−1,Σ−1; S−1

)
= tr

[
S
(
Ψ−1 ⊗Σ−1

)]
− ln

∣∣S (Ψ−1 ⊗Σ−1
)∣∣− pq

= tr
[(

Ψ−1 ⊗Σ−1
)
S
]

+ ln |Ψ⊗Σ|+ pq ln(2π)

−pq ln(2π)− ln |S| − pq

= − 2
n lnL(Ψ,Σ; S)− ln |S| − pq[1 + ln(2π)]

Therefore, the minimum of the entropy loss function can be found in the same way as the maximum of the

log-likelihood function, with S and Ψ ⊗Σ replaced by the inverses. Thus, using the same technique as in

Filipiak et al. [6] and Lemmas A.1 and A.2 from Appendix A, we obtain the following system of equations:

(1.7)

{
qΨ−1 = PTrq

[
(Ip ⊗Σ)S−1

]
pΣ−1 = BTrq

[
(Ψ⊗ Iq)S−1

]
.

More detailed procedure based on the differentiation of (1.6) with respect to Ψ and Σ can be found in

Appendix B.

Note that both functions, (1.3) and (1.6), are invariant with respect to the linear transformation of the

data matrix. Moreover, since there is a strong relation between the MLEs (1.4) and ELEs (1.7) of Ψ ⊗Σ,

one would expect that this relation still holds if one of the components of Kronecker product is additionally
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structured. One of the structure considered in the literature is compound symmetry (CS): see e.g. Cui et al.

[1], Filipiak and Klein [4] or Lin et al. [10] for specification of the structure, or Roy and Khatree [16], Roy

and Leiva [18], Filipiak et al. [5, 6] for estimation and testing hypotheses about the covariance structure.

Without loss of generality let us assume that

Ψ = ΨCS = (1− %)Ip + %1p1
>
p ,

with % ∈
(
− 1

p−1 , 1
)

and Σ is arbitrary unstructured positive definite matrix. Observe, that if the second

component of Kronecker product is assumed to be compound symmetric, i.e., Σ = ΣCS , and Ψ is arbitrary

unstructured positive definite matrix, it is enough to change the order of Kronecker product components

with respect to the rule

Ψ⊗Σ = Kq,p(Σ⊗Ψ)Kp,q;

cf. Magnus and Neudecker [12].

The main goal of this paper will be to verify whether similar relation as between the MLEs and ELEs of

separable structure with both components unstructured holds also in the case of Ψ = ΨCS and to compare

the properties of MLEs Ψ̂CS and Σ̂ with the properties of ELEs, Ψ̃CS and Ψ̃CS .

The MLEs of ΨCS and Σ has been widely studied in the literature (see e.g. Roy and Khatree [16],

Filipiak et al. [6]). Nevertheless, the proposed estimators are not given in explicit form and are determined

iteratively. In this paper we give an alternative technique of determination of the MLEs of ΨCS and Σ

directly, and we show that this new algorithm is much quicker than the algorithms given in the literature.

In the case of ELEs of ΨCS and Σ in this paper we give three methods of their determination: iterative,

direct, and the third one (also iterative), but with the use of spectral decomposition of CS structure. Similarly

as in the case of MLEs we compare the time necessary to obtain ELEs using these three different approaches.

It is worth noting that assuming CS structure in both cases (MLE and ELE) we can avoid iterative

procedure, which was necessary to determine the estimators under general separable structure.

To compare statistical properties of MLEs and ELEs, such us the biasedness or the mean square error

and expected loss, we conduct simulation studies.

2. MLEs of ΨCS ⊗Σ. Filipiak et al. [6] have shown that the MLEs of unknown separable covariance

matrix with one component structured as compound symmetry matrix can be obtained as a solution of the

following systems of matrix equations:

(2.8)

{
(p− 1)k0%

3 + {k0 − (p− 1)k0 + (p− 1)2a− (p− 1)b}%2 + {2(p− 1)a− k0}%+ (a− b) = 0

pΣ = BTrq
[
(Ψ−1

CS ⊗ Iq)S
]

with

a = tr
[(

Ip ⊗Σ−1
)
S
]
, b = tr

[(
1p1

>
p ⊗Σ−1

)
S
]
, and k0 = nq(p− 1)p.

Since the first equation in (2.8) depends on Σ through a and b, and since the second one depends on %

through ΨCS , one possibility of finding the solution could be the iterative flip-flop algorithm. It should be

mentioned that the MLEs given as numerical solution of (2.8) are equivalent to the MLEs given by Roy and
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Khattree [16, Equations (3) and (6)], who have pointed out that the MLE of % is always between −1/(p− 1)

and 1, and thus the resulting estimators give the positive definite matrices. Moreover, the MLE of Σ is

positive definite, as the block trace operator of positive definite matrix preserves positive definiteness (cf.

Filipiak et al. [7, Lemma 2.4]). Recall, that we assume n > pq to ensure positive definiteness of S.

Let us present now a different approach to determine the MLEs of Ψ and Σ.

For every matrix X of order pq,

(2.9) tr X = tr(BTrq X) = tr(BTrp X).

Thus, (1.3) with Ψ = ΨCS can be expressed as

lnL(ΨCS ,Σ; S) = −npq
2

ln(2π)− n

2
ln |ΨCS ⊗Σ| − n

2
tr
{

BTrq
[
(Ψ−1

CS ⊗Σ−1)S
]}
,

and further, using Lemma A.3,

(2.10) lnL(ΨCS ,Σ; S) = −npq
2

ln(2π)− n

2
ln |ΨCS ⊗Σ| − n

2
tr
{
Σ−1 BTrq

[
(Ψ−1

CS ⊗ Iq)S
]}
.

Using the spectral decomposition of ΨCS , that is

(2.11) ΨCS = c1Pp + c2Qp

with Pp = Ip −Qp being an orthogonal projector onto the vector of ones, and c1 = 1 + (p− 1)%, c2 = 1− %,

obviously Ψ−1
CS = 1

c1
Pp + 1

c2
Qp, and we can express the block trace term of (2.10) as

BTrq
[
(Ψ−1

CS ⊗ Iq)S
]

=
1

c1
BTrq [(Pp ⊗ Iq)S] +

1

c2
BTrq

[
(Qp ⊗ Iq)S

]
.

Let us denote

A = BTrq [(Pp ⊗ Iq)S] , B = BTrq
[
(Qp ⊗ Iq)S

]
.

Then, since |ΨCS | = c1c
(p−1)
2 ,

(2.12)
lnL(ΨCS ,Σ; S) = −npq

2
ln(2π)− nq

2
ln c1 −

nq(p− 1)

2
ln c2 −

np

2
ln |Σ|

− n

2c1
tr
(
Σ−1A

)
− n

2c2
tr
(
Σ−1B

)
.

Differentiating the above function with respect to Σ and equating the result to zero we get

(2.13) pΣ̂ =
1

c1
A +

1

c2
B

or

(2.14) Σ̂ =
1

p
BTrq

[(
Ψ−1

CS ⊗ Iq
)
S
]
.

Differentiating now (2.12) with respect to % and equating the result to zero we obtain

−nq(p− 1)

2c1
+
nq(p− 1)

2c2
+
n(p− 1)

2c21
tr
(
Σ−1A

)
− n

2c22
tr
(
Σ−1B

)
= 0.
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Plugging (2.14) into the above equality we get

(2.15) q(p− 1)%+ (p− 1)c22 tr
[
(c2A + c1B)−1A

]
− c21 tr

[
(c2A + c1B)−1B

]
= 0.

Since (2.15) does not depend on Σ, the solution %̂ of (2.15) gives us the MLE of % directly. It can be

observed, that %̂ ∈ (−1/(p − 1), 1). Indeed, if we denote the left hand side of (2.15) by g(%), we obtain

g(− 1
p−1 ) = q(p− 1) > 0 and g(1) = −q < 0, and thus at least one solution of g(%) = 0 belongs to the desired

interval. To get the MLE of Σ it is enough to plug %̂ into (2.14). It is worth noting that there might be

several roots of (2.15) in the desired interval. Then, the one which maximizes lnL(Ψ̂CS , Σ̂; S) is chosen.

It is easy to see that the second equation of (2.8) and (2.13) represent the same estimator of Σ (positive

definite). Moreover, using the property (2.9) and Lemma A.3 from Appendix A for a and b defined with

(2.8), and then simplifying the first equation of (2.8) we get (2.15).

It is worth to note, that there is no iterative procedure in this approach, and even if (2.15) is nonlinear,

this technique is much less time consuming. Indeed, if we compare by simulations the time necessary to

determine the MLEs of % and Σ using iterative procedure (2.8) and using direct procedure solving (2.15)

and (2.14), this observation is confirmed by Figure 1. We have generated 1000 samples of size n = 100 from

a pq multivariate normal distribution Npq(0,ΨCS ⊗Σ) for p = 3, 10, 15, 30 with q = 3 and p = 3, 10, 15 with

q = 5, assuming % = 0, 0.5, 0.9 and Σ = Iq and randomly generated

Σ =

 6.020 4.124 1.584

4.124 4.503 1.039

1.584 1.039 6.326

 and Σ =


6.467 0.438 1.877 −1.049 2.235

0.438 6.188 0.039 0.854 0.055

1.877 0.039 5.971 0.245 0.000

−1.049 0.854 0.245 4.129 −0.651

2.235 0.055 0.000 −0.651 7.885

 .

The averaged time (in seconds) of calculating MLEs on the medium class computer was computed and the

results are presented on Figure 1.

As expected, it can be seen from Figure 1 that the time of determining MLEs depends on the parameters

p and q for both procedures (for q = 5 the computing time is slightly longer than for q = 3), but only in the

case of iterative procedure it depends also on the values of % and Σ (red lines overlap with each other). An

interesting thing is that for % = 0 the iterative procedure can be faster than the direct one.

3. ELEs of ΨCS ⊗ Σ. In order to find ELE, first we apply the same approach as Filipiak et al. [6]

for MLE of unknown separable covariance matrix with one component structured as compound symmetry

matrix. Thus, we have to differentiate f(ΨCS ,Σ; S) defined in (1.6) with respect to % and Σ.

Using the differentiation rules described by Magnus and Neudecker [12] we obtain
∂f

∂%
= vec>

(
S−1 −Ψ−1

CS ⊗Σ−1
)

(Ip ⊗Kq,p ⊗ Iq)
(
Ip2 ⊗ vec Σ

)
vec
(
1p1

>
p − Ip

)
∂f

∂Σ
= vec>

(
S−1 −Ψ−1

CS ⊗Σ−1
)

(Ip ⊗Kq,p ⊗ Iq)
(
vec ΨCS ⊗ Iq2

)
·Dq,

where Dq is a q×q(q+1)/2 zero-one duplication matrix such that for arbitrary q×q matrix X, Dq vech X =

vec X. Since the duplication matrix does not have any effect on the solution of the above derivatives equated

to zero, it can be omitted, and hence{
vec>

(
1p1

>
p − Ip

) (
Ip2 ⊗ vec>Σ

)
(Ip ⊗Kp,q ⊗ Iq) vec

(
S−1 −Ψ−1

CS ⊗Σ−1
)

= 0(
vec>ΨCS ⊗ Iq2

)
(Ip ⊗Kp,q ⊗ Iq) vec

(
S−1 −Ψ−1

CS ⊗Σ−1
)

= 0.
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Figure 1. The averaged time of calculating MLEs using two approaches (black color for iterative procedure and red color

for direct) with respect to p, % and Σ: % = 0 – solid line, % = 0.5 – dashed line, % = 0.9 – dotted line; Σ = Iq – left column, Σ

randomly generated – right column.

q = 3

q = 5

Using the properties of partial trace and block trace operators described in Lemmas A.1 and A.3 given in

Appendix A and formulas (8) and (15) from Magnus and Neudecker [12] we obtain{
−(p− 1)α%2 + [(p− 2)α+ pq(p− 1)] %+ α = 0

pΣ−1 = BTrq
[
(ΨCS ⊗ Iq) S−1

]
with α = tr

{[(
1p1

>
p − Ip

)
⊗Σ

]
S−1

}
.

Let us denote −(p − 1)α%2 + [(p− 2)α+ pq(p− 1)] % + α by h(%). This function has two roots, as for

p ≥ 2 its discriminant is always positive. If α > 0 (α < 0) then the polynomial h(%) is concave (convex) and

the solution %̃ is determined by a smaller (bigger) root of h(%), since this root minimizes f(ΨCS ,Σ; S). In

both cases %̃ has the same form and the best approximation of S can be found by solving

(3.16)

 % =
−(p− 2)α− pq(p− 1) +

√
((p− 2)α+ pq(p− 1))2 + 4(p− 1)α2

−2(p− 1)α
pΣ−1 = BTrq

[
(ΨCS ⊗ Iq) S−1

]
.

Since the first equation in (3.16) depends on Σ through α, and since the second one depends on % through

ΨCS , one possibility of finding the solution could be the iterative flip-flop algorithm. In the next proposition

we show that %̃ ∈ (−1/(p− 1), 1), and thus the solution of (3.16) gives the ELEs of % and Σ for which Ψ̃CS

and Σ̃ are positive definite.

Proposition 3.1. If S and Σ are symmetric positive definite matrices, then Ψ̃CS is also positive defi-

nite. Similarly, if S and ΨCS are symmetric positive definite matrices, then Σ̃ is also positive definite.

Proof. The necessary condition for ΨCS being positive definite is that % ∈
(
− 1

p−1 ; 1
)

. Therefore it is

enough to show that the square polynomial h(%) has different signs at % = −1/(p− 1) and % = 1. We obtain
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h
(
− 1

p−1

)
= −pq < 0 and h(1) = pq(p − 1) > 0, which complete the proof of the first part of the theorem.

The second part follows from positive definiteness of the block trace operator of positive definite matrix; cf.

Filipiak et al. [7, Lemma 2.4].

We now use similar transformation of the entropy loss function (1.6) as the log-likelihood function (1.3)

by applying the property tr[BTrq X] = tr X, to obtain the direct solution of ELE, analogous to MLE. For

Ψ = ΨCS we have

f(ΨCS ,Σ; S) = tr
[
Σ · BTrq

[
S−1(ΨCS ⊗ Iq)

]]
− ln |S−1(ΨCS ⊗Σ)| − pq,

and using spectral decomposition of ΨCS given by (2.11) with notation

C = BTrq
[
(Pp ⊗ Iq)S−1

]
, D = BTrq

[
(Qp ⊗ Iq)S−1

]
we can write

(3.17)
f(ΨCS ,Σ; S)

= c1 tr (ΣC) + c2 tr (ΣD) + ln |S| − q ln(c1)− q(p− 1) ln(c2)− p ln |Σ| − pq.

Differentiating the above with respect to Σ and equating the result to zero gives

(3.18) pΣ̃
−1

= c1C + c2D

and finally

(3.19) Σ̃ = pBTr−1
q

[
(ΨCS ⊗ Iq) S−1

]
where BTr−1

q (•) denotes the inverse of BTrq(•), and it exists as the block trace operator of positive definite

matrix preserves positive definiteness (cf. Filipiak et al. [7, Lemma 2.4]).

Let us differentiate (3.17) with respect to %. Equating the result to zero gives

(p− 1) tr(ΣC)− tr(ΣD)− q(p− 1)

c1
+
q(p− 1)

c2
= 0.

Plugging (3.19) into the above equality we finally get

(3.20) q(p− 1)%+ c1c2(p− 1) tr
[
(c1C + c2D)−1C

]
− c1c2 tr

[
(c1C + c2D)−1D

]
= 0.

Since (3.20) does not depend on Σ, the solution %̃ of (3.20) gives us the ELE of % directly. It can be

observed, that %̃ ∈ (−1/(p − 1), 1). Indeed, if we denote the left hand side of (3.20) by `(%), we obtain

`(− 1
p−1 ) = −q < 0 and `(1) = q(p− 1) > 0, and thus at least one solution of `(%) = 0 belongs to the desired

interval. To get the ELE of Σ it is enough to plug %̃ into (3.19). It is worth noting that there might be

several roots of (3.20) in the desired interval. Then, the one which minimizes f(Ψ̃CS , Σ̃; S) is chosen.

It is easy to see that the second equation of (3.16) and (3.18) represent the same estimator of Σ (positive

definite). Moreover, using the property (2.9) and Lemma A.3 from Appendix A for α defined with (3.16),

and then simplifying the first equation of (3.16) we get (3.20).

It is worth to note, that similarly as in MLE case, there is no iterative procedure in this approach, and

even if (3.20) is nonlinear, this technique is much less time consuming. Indeed, if we compare by simulations
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the time necessary to determine the ELEs of % and Σ using iterative procedure (2.8) and using the direct

procedure solving (3.20) and (3.19), this observation is confirmed by Figure 2 (the black and red lines,

respectively, for iterative and direct approach).

Finally, we present another iterative procedure, which is surprisingly for small p better than the direct

approach described above.

Let the spectral decomposition of a matrix ΨCS be UGU>, where U is a p× p orthogonal matrix with

columns corresponding to the orthogonalized eigenvectors of ΨCS . It is known that U does not depend on

% and G = diag(1 + (p − 1)%, 1 − %, . . . , 1 − %). Denoting Λ = (U> ⊗ Iq)S−1(U ⊗ Iq) we can write Λ as a

block matrix (Λij)1≤i,j≤p. Then, the entropy loss function (1.6) can be rewritten as

f(ΨCS ,Σ; Λ) = tr[Λ(G⊗Σ)]− ln |G⊗Σ| − ln |Λ| − pq

= tr

[
(1 + (p− 1)%)Λ11Σ +

p∑
i=2

(1− %)ΛiiΣ

]
−q ln(1 + (p− 1)%)− (p− 1)q ln(1− %)− p ln |Σ| − ln |Λ| − pq

= tr [(p%Λ11 + (1− %) BTrq Λ)Σ]

−q ln(1 + (p− 1)%)− (p− 1)q ln(1− %)− p ln |Σ| − ln |Λ| − pq.

To get respective derivatives of the above function with respect to % and Σ we use again the matrix differ-

entiation formulas described in Magnus and Neudecker [12] or Fackler [3]. We obtain
∂f

∂%
= tr[(pΛ11 − BTrq Λ)Σ]− q(p− 1)

1 + (p− 1)%
+
q(p− 1)

1− %
∂f

∂Σ
= vec>(p%Λ11 + (1− %) BTrq Λ)− p · vec>Σ−1

and, denoting tr[(pΛ11 − BTrq Λ)Σ] by β,{
−(p− 1)β · %2 + [(p− 2)β − pq(p− 1)] · %+ β = 0

Σ−1 = 1
p [p%Λ11 + (1− %) BTrq Λ] .

Let us denote −(p−1)β ·%2 +[(p−2)β−pq(p−1)] ·%+β by u(%). This function has two roots, as for p ≥ 2 its

discriminant is always positive. If β < 0 then the polynomial u(%) is convex and the solution %̃ is determined

by a bigger root of u(%), while for β > 0, by a smaller root of u(%). Moreover, %̃ ∈ (−1/(p − 1), 1), since

u(− 1
p−1 ) = pq > 0 and u(1) = −pq(p−1) < 0. In both cases %̃ has the same form and the best approximation

of S can be found by solving

(3.21)

 % =
−(p− 2)β + pq(p− 1) +

√
((p− 2)β + pq(p− 1))2 + 4(p− 1)β2

−2(p− 1)β
Σ = p [p%Λ11 + (1− %) BTrq Λ]

−1
.

Observe, that (3.21) can be solved iteratively using flip-flop algorithm. This numerical solution gives us

ELEs of % and Σ.

To compare the time necessary to determine the ELEs of % and Σ using standard iterative (“iterative”)

procedure (3.16), direct (“direct”) procedure solving (3.20) and (3.19), and spectral decomposition (“spec-

tral”) procedure (3.21), simulation studies were carried out. We have generated 1000 samples of size n = 100
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from a pq multivariate normal distribution Npq(0,ΨCS ⊗Σ) for p = 3, 10, 15, 30 with q = 3 and p = 3, 10, 15

with q = 5, assuming % = 0, 0.5, 0.9 and Σ = Iq and Σ randomly generated as in previous section. The

averaged time (in seconds) of calculating ELEs on the medium class computer was computed and the results

are presented on Figure 2.

Figure 2. The averaged time of calculating ELEs using three approaches (black color for iterative procedure, red color for

direct, and blue for spectral) with respect to p, % and Σ: % = 0 – solid line, % = 0.5 – dashed line, % = 0.9 – dotted line; Σ = Iq
– left column, Σ randomly generated – right column.

q = 3

q = 5

As expected, it can be seen from Figure 2 that the time of determining ELEs depends on the parameters

p and q for all the procedures (for q = 5 the computing time is slightly longer than for q = 3), and in the

case of the direct approach it does not depend on % (red lines overlap with each other), whilst for spectral

procedure the time changes only slightly with the change of %. In all cases the time does not depend on Σ.

An interesting thing is that for % = 0 the iterative procedure can be faster than the others. Moreover, for

relatively small parameter p and q = 3, the spectral procedure can be shorter than the direct one, which

also holds for every p if q = 5.

4. MLE and ELE comparison. In the previous sections we showed, that the algorithms for deter-

mination of MLE and ELE are quite similar, which can be well seen especially in direct algorithms. In this

section we compare the properties of the solutions of the algorithms, that is the properties of MLEs and

ELEs of % and Σ. The first conclusion which can be seen from Figures 1 and 2 is that the time necessary to

obtain ELEs using direct approach is shorter than respective time necessary to obtain MLEs. To compare

statistical properties of the estimators, we perform simulation studies for the parameters (p, q) as (3, 3),

(10, 3), (15, 3), (30, 3) and (3, 5), (10, 5), (15, 5). Samples of size n = 100 are generated 1000 times from a

pq-variate normal population Npq(0; ΨCS ⊗ Iq). We assume various values of % in CS structure.

Table 1 contains the bias (B) of %̂ and %̃, as well as their mean square errors (MSEs). It can be seen
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that the MLEs are a little less biased than ELEs and similarly the MSE of %̂ is usually smaller than MSE

of %̃. The superiority of MLE over ELE can be seen especially for bigger values of p. From Table S.1 in

Supplementary Material it can be noticed, that the variability of both estimators is comparable.

Table 1

Bias and MSE of the estimators of % for different values of p, q

q = 3 q = 5

MLE ELE MLE ELE

p % B(%̂) MSE(%̂) B(%̃) MSE(%̃) B(%̂) MSE(%̂) B(%̃) MSE(%̃)

3 0 0.0010 0.0011 0.0022 0.0012 -0.0004 0.0007 0.0004 0.0008

3 0.5 -0.0001 0.0011 0.0010 0.0012 -0.0011 0.0007 -0.0004 0.0008

3 0.9 -0.0003 0.0001 0.0000 0.0001 -0.0005 0.0001 -0.0003 0.0001

10 0 -0.0001 0.0001 0.0006 0.0001 0.0004 0.0000 0.0009 0.0001

10 0.5 -0.0012 0.0006 0.0004 0.0008 0.0007 0.0003 0.0014 0.0007

10 0.9 -0.0006 0.0001 -0.0002 0.0001 0.0001 0.0000 0.0002 0.0001

15 0 -0.0002 0.0000 0.0004 0.0001 0.0003 0.0000 0.0014 0.0001

15 0.5 -0.0015 0.0005 0.0000 0.0010 0.0006 0.0003 0.0030 0.0013

15 0.9 -0.0008 0.0001 -0.0005 0.0001 0.0001 0.0000 0.0004 0.0002

30 0 0.0000 0.0000 0.0022 0.0001 — — — —

30 0.5 -0.0011 0.0004 0.0074 0.0048 — — — —

30 0.9 -0.0006 0.0001 -0.0001 0.0007 — — — —

In the case of estimation of Σ, the bias of Σ̂ and Σ̃ as well as their variances and MSEs, and the standard

deviations of the estimators (for every element of the estimator of Σ separately) were computed. The results

for expectation and standard deviation are presented in Tables S.2 – S.5 in Supplementary Material. Recall

that if we denote by Θ the estimator of the unknown parameter Σ (where Θ is the MLE or ELE of Σ), then

B(Θ) = E(Θ)−Σ, Var(Θ) = E{vec[Θ−E(Θ)] vecT [Θ−E(Θ)]}, and MSE(Θ) = E[vec(Θ−Σ) vecT (Θ−Σ)],

whilst SD(Θ) is calculated separately for every element of Θ. We do not present variance and MSE of

the estimators, as they are q2 × q2 matrices, however, these values are available from the authors on the

request. Observe, that there exists a lot of possible methods of comparison of two covariance matrices, e.g.

total variability measure or generalized variance, nevertheless, since we want to compare variance and MSE

matrices for two estimators instead of the estimators itself, we use Frobenius norm. On Figures 3, 4 and 5

the values of, respectively, Frobenius norm of B(Σ̂) and B(Σ̃), Var(Σ̂) and Var(Σ̃) as well as Frobenius

norm of MSE(Σ̂) and MSE(Σ̃), are presented.

From Figure 3 it can be noticed, that the solid, dashed and dotted lines overlap in both of the cases,

which means that the bias of the estimators does not depend on the true value of %. Moreover, the bias of Σ̃

is greater than the bias of Σ̂, and increases quickly with the increase of p and q, whilst in the case of MLE

it remains on the same level. It can be observed from Figure 4 that the variability of MLEs are greater than

ELEs, and this difference increases with the increase of p and q. From Figure 5 it can be noticed, that the

solid, dashed and dotted lines overlap in both of the cases, which means that the MSEs of the estimators do

not depend on the true value of %. Moreover, the MSE of Σ̃ is greater than MSE of Σ̂, and increases quickly

with the increase of p and q, whilst in the case of MLE it remains on the same level.
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Figure 3. Frobenius norm of bias of MLE (black line) and ELE (red line) with respect to p, q and %: q = 3 - left column,

q = 5 - right column; % = 0 - solid line, % = 0.5 - dashed line, % = 0.9 - dotted line.

Figure 4. Frobenius norm of Var(Σ̂) (black line) and of Var(Σ̃) (red line) with respect to p, q and %: q = 3 – left column,

q = 5 – right column; % = 0 – solid line, % = 0.5 – dashed line, % = 0.9 – dotted line.

Figure 5. Frobenius norm of MSE(Σ̂) (black line) and of MSE(Σ̃) (red line) with respect to p, q and %: q = 3 – left

column, q = 5 – right column; % = 0 – solid line, % = 0.5 – dashed line, % = 0.9 – dotted line.

Finally, we compare the MLE and ELE with respect to entropy loss as the alternative to MSE. Observe,

that the entropy loss function (1.5), which is a Kullback-Leibler divergence between two multivariate normal

distributions which differ in covariance matrices, requires the true Ω to be known. However, since this matrix

is unknown, we replaced it by its estimator, S, and then we determine the minimum of (1.6). Therefore, the

values of loss function given in (1.6) must be smaller for ELE than for MLE, which is confirmed in Table 2

(column denoted by fS) and on Figure 6 (second column). However, there is no such rule for the values of

(1.5). In the column denoted by fΩ in Table 2 and on Figure 6 (first column) the values of (1.5) for MLE
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and ELE are presented. Since the entropy loss function is invariant with respect to the linear transformation

of the data (cf. James and Stein [8]), in particular it has the same value for every % in ΨCS structure.

Table 2

Loss of MLE and ELE with respect to Ω = ΨCS ⊗ Σ (fΩ) or S (fS) for different values of p and q

q = 3 q = 5

MLE ELE MLE ELE

p fΩ fS fΩ fS fΩ fS fΩ fS
3 0.0697 0.4556 0.1194 0.4101 0.1646 1.3779 0.3731 1.1626

10 0.0707 8.2433 1.9932 5.8713 0.1605 36.7526 10.6878 19.9532

15 0.0714 26.2225 7.3970 15.3668 0.1648 204.5887 51.9409 66.8870

30 0.0728 954.1915 142.6975 154.6277 — — — —

Figure 6. Entropy loss function for MLEs (black line) and ELEs (red line) using either true Ω (left column) or S (right

column) for q = 3 (first row) and q = 5 (second row).

It can be seen from Table 2 and Figure 6 that the values of fΩ for MLEs are quite stable for a given

q, whilst for ELE they increase rapidly with the increase of either p or q. This difference can be explained

by the fact of replacing the true Ω in (1.5) by S, which does not need to be a good estimator of structured

covariance matrix, especially if n is not much greater than pq. The problem of using better estimators of

structured Ω will be considered in the future work.

5. Conclusions. If we are interested in the estimation of the separable covariance structures with one

component structured as CS matrix, there is no such simple relation as in the case of separable covariance

structure with both components unstructured (compare (1.4) and (1.7)). We can see only some connection

when we compare solutions of (2.14) and (2.15) for MLEs with (3.19) and (3.20) for ELEs.

From Figures 1 and 2 we can conclude that the algorithms obtained by preliminary transformation of
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likelihood function or entropy loss function are usually much faster than algorithms obtained by differenti-

ation of (1.3) or (1.6). The only exception can appear if true % is equal to 0. Moreover, in both cases the

time necessary to get the estimates using direct procedure does not depend on the true Σ, but only in the

case of ELE the iterative procedure does not depend on the true Σ too.

From Table 1, Figure 3 and Tables S.1, S.2 and S.4 of Supplementary Material it can be seen, that the

MLEs of % and Σ are less biased than respective ELEs. Moreover, from Tables 1 and 2 as well as from

Figures 5 and 6 it can be noticed, that the MLEs have much smaller MSE and loss than ELEs. It means,

that the MLE surpasses ELE with respect to the biasedness, mean square errors, as well as the value of loss.

Moreover, MLE is less demanding from the point of view of sample size: entropy loss function (1.6) requires

positive definiteness of S, i.e. the sample size bigger than pq, whilst in the case of MLE it is enough to have

n > p/q + q/p+ 1 (cf. Soloveychik and Trushin [20]). The only advantage of ELE is its stability, which can

be observed on Figure 4 and Tables S.1, S.3 and S.5 of Supplementary Material.

Summing up we can conclude, that the ELE of structured covariance matrix is not a good estimator,

however, its determination is necessary from the point of view of prespecification of the covariance structure.

In such a problem it is worth to use direct algorithm to determine ELE and the minimum of the entropy

loss function, instead of iterative procedures based on direct differentiation of (1.6) or on the spectral

decomposition of CS structure, especially for large p and q. Finally, it can be observed from Figures 1 and

2 that the time necessary to obtain ELEs using direct approach is shorter than respective time necessary to

obtain MLEs.

In this paper we assumed normality of the data and it can be easily seen that the MLE of covariance

structure is strongly connected with the distribution requirement. The superiority of the MLE over ELE,

however, can change if the normality assumption is not satisfied. The extended comparison of the estimators

for non-Gaussian observations will be considered in the future work.
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Appendix A: Properties of partial trace and block trace operators.

Lemma A.1. (Filipiak et al. [7, Corollary 2.10]) For arbitrary matrices A : mp×mp and B,C : p× p,

the following relations hold:

vec
{

PTrp

[
(Im ⊗B)A(Im ⊗C>)

]}
= [Im2 ⊗ vec>(B>C)](Im ⊗Km,p ⊗ Ip) vec A

vec
{

BTrm

[
(B⊗ Im)A(C> ⊗ Im)

]}
= [vec>(B>C)⊗ Im2 ](Ip ⊗Kp,m ⊗ Im) vec A.

Lemma A.2. (Filipiak et al. [7, Lemma 2.7]) For arbitrary matrices A : mp×mp and B : m×m, the

following relations hold:
PTrm [(Ip ⊗B)A] = PTrm [A(Ip ⊗B)]

BTrp [(B⊗ Ip)A] = BTrp [A(B⊗ Ip)]

Lemma A.3. (Filipiak et al. [7, Lemma 2.11]) For arbitrary matrices A : mp×mp and B,C : m× n,

the following relations hold:

PTrp[(B> ⊗ Ip)A(C⊗ Ip)] = B> · PTrp(A) ·C,
BTrn[(Ip ⊗B>)A(Ip ⊗C)] = B> · BTrm(A) ·C.

Appendix B: ELE of Ψ⊗Σ. For an arbitrary given positive definite S the entropy loss function has

the form

f(Ψ,Σ; S) = tr
[
S−1(Ψ⊗Σ)

]
− ln

∣∣S−1(Ψ⊗Σ)
∣∣− pq.

In order to find the best approximation, we differentiate f(Ψ,Σ; S) with respect to Ψ and Σ. Using

the differentiation rules for symmetric matrices presented by Magnus and Neudecker [12] or Fackler [3], we

obtain 
∂f

∂Ψ
= vec>

(
S−1 −Ψ−1 ⊗Σ−1

)
(Ip ⊗Kq,p ⊗ Iq)

(
Ip2 ⊗ vec Σ

)
·Dp

∂f

∂Σ
= vec>

(
S−1 −Ψ−1 ⊗Σ−1

)
(Ip ⊗Kq,p ⊗ Iq)

(
vec Ψ⊗ Iq2

)
·Dq.

Equating the above derivatives to zero, we get the following system of equations{ (
Ip2 ⊗ vec>Σ

)
(Ip ⊗Kp,q ⊗ Iq) vec

(
S−1 −Ψ−1 ⊗Σ−1

)
= 0(

vec>Ψ⊗ Iq2
)

(Ip ⊗Kp,q ⊗ Iq) vec
(
S−1 −Ψ−1 ⊗Σ−1

)
= 0.

Since the duplication matrix does not have any effect on the solution of the above system of equations, it is

just omitted. Using the properties of partial trace and block trace operators described in Lemma A.1 and A.3

from Appendix A and formula (8) from Magnus and Neudecker [12] we obtain (1.7).


