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ON PROJECTION OF A POSITIVE DEFINITE MATRIX ON A CONE OF

NONNEGATIVE DEFINITE TOEPLITZ MATRICES∗

KATARZYNA FILIPIAK† , AUGUSTYN MARKIEWICZ‡ , ADAM MIELDZIOC‡ , AND ANETA SAWIKOWSKA‡§

Abstract. We consider approximation of a given positive definite matrix by nonnegative definite banded Toeplitz matrices.

We show that the projection on linear space of Toeplitz matrices does not always preserve nonnegative definiteness. Therefore

we characterize a convex cone of nonnegative definite banded Toeplitz matrices which depends on the matrix dimensions, and we

show that the condition of positive definiteness given by Parter [Numer. Math. 4, 293–295, 1962] characterizes the asymptotic

cone. In this paper we give methodology and numerical algorithm of the projection basing on the properties of a cone of

nonnegative definite Toeplitz matrices.

This problem can be applied in statistics, for example in the estimation of unknown covariance structures under the

multi-level multivariate models, where positive definiteness is required. We conduct simulation studies to compare statistical

properties of the estimators obtained by projection on the cone with a given matrix dimension and on the asymptotic cone.
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1. Introduction. The estimation of covariance matrix of an m-variate data that has some special

structure has been considered in the literature. Some of the covariance structures that have received attention

are linear, e.g. the covariance matrix belongs to the linear subspaces of symmetric matrices; cf. Anderson

(1973). The standard estimation procedure starts with the estimation of unstructured covariance matrix

with the use of sufficient statistics, say S, and then it is approximated by particular structure. One of

the approximation criteria is the Frobenius norm, which leads to the orthogonal projection of preliminary

estimate of unstructured covariance matrix S onto the given linear subspace. This approach is used for

example by Ohlson and von Rosen (2010) in the context of estimation or by Cui et al. [2] in the context

of regularization. Nevertheless such projection does not need to preserve nonnegative definiteness that is

required for covariance matrices (see Example 1.1). Therefore, it is necessary to project not onto the linear

subspace but onto the convex cone of non-negative definite matrices from this subspace; cf. e.g. Ingram and

Marsh [5]. It is worth noting that the definiteness is preserved for example when it does exist the orthogonal

basis of the subspace consisting of non-negative definite matrices, such as uniform structure or orthogonal

block structure; cf. e.g. Vanleeuwen et al. [8].

In this paper we focus on the subspace of banded Toeplitz matrices for which we show that the projection

on them do not preserve definiteness (see Example 1.2).

Let us denote the space of symmetric matrices by S, and let the p+ 1-dimensional linear subspace of S
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of m×m banded Toeplitz matrices be denoted by Tm(p), that is

T m(p) = {



α0 α1 . . . αp 0 . . . 0

α1 α0 α1 . . . αp
. . .

...
... α1 α0 α1

. . . 0

αp
. . .

. . .
. . . αp

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . α1

0 . . . 0 αp . . . α1 α0


mxm

: α0, α1, . . . , αp ∈ R}.

In other words every matrix At from T m(p) can be expressed as a linear combination of identity matrix I

and symmetric orthogonal matrices Ti, i = 1, . . . , p, such that the ith superdiagonal and ith subdiagonal

entries are equal to 1 and all other elements are equal to 0. Note that {I,T1, . . . ,Tp} is an orthogonal basis

of the linear space T m(p).

In this paper the Frobenius norm ||X||2F = tr
(
X>X

)
is considered as an approximation criterion. The

projection At of A onto the linear subspace T m(p), can be given as

At = α0I +

p∑
i=1

αiTi

with α0 = trA/m and αi = tr(ATi)/(2(m− i)), i = 1, . . . , p; cf. e.g. Cui et al. [2]. It is worth to note that

every αi is obtained as the average of ith superdiagonal and subdiagonal.

The following example shows that even if A is positive definite, the projection At does not need to be

positive definite.

Example 1.1. Let m = 4 and A = I + 0.9T1 + 0.9T2 + 0.9T3. The projection of A onto T 4(1) gives

At = I + 0.9T1. It is easy to calculate that A is positive definite (with the eigenvalues belonging to the set

{3.7, 0.1}), whilst the projection At is not definite (with the eigenvalues {2.46, 1.56, 0.44,−0.46}).

The aim of this paper is to find the best approximation of A over the set of nonnegative definite banded

Toeplitz matrices, say T ≥m(p), that is

(1.1) min
At∈T ≥

m(p)

||A−At||F = ||A−A≥||F .

In other words, in the case when At is not nonnegative definite, it is necessary to project not onto the linear

subspace T m(p) but onto the convex cone of non-negative definite matrices from this subspace, T ≥m(p).

Thus, to solve (1.1) first we project A onto T m(p), then we check if At is nonnegative definite and finally,

if the definiteness is not preserved, we project At onto the convex cone T ≥m(p).

Observe that every matrix from the convex cone T ≥m(1) must satisfy the condition

(1.2) − 1

2 cos(π/(m+ 1))
≤ α1

α0
≤ 1

2 cos(π/(m+ 1))
;

cf. [4, Sec. 28.5, p. 522]. Nevertheless, for p > 1 analytic characterization of a cone is much more complicated

as a general characterization of nonnegative definiteness Toeplitz matrix expressed in terms of nonnegativity
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its m leading minors. Parter [7, Remark II] proposed the following characterization of positive definiteness

of banded Toeplitz matrix for arbitrary m: a given banded Toeplitz matrix is positive definite if and only if

(1.3) f(t) = α0 + 2

p∑
k=1

αk cos(kt) ≥ 0

for every t ∈ R. However, as follows from the proof of Remark II of Parter [7], the above condition is satisfied

if m→∞. The following example shows that Parter’s condition is not true in general.

Example 1.2. Let At = 10I + T1 − 5T2 ∈ T 5(2). Since At is positive definite, the function f(t) =

10 + 2 cos(t) − 10 cos(2t) must be nonnegative for every t ∈ R. Thus, let assume t = π. Then f(π) = −2.

Contradiction.

Observe however, that condition (1.3) is still wrongly used as characterization of positive definiteness of

Toeplitz banded matrix for a finite m; cf. e.g. Lin et al. [6, p. 133]. From the other hand, from sufficiency

in Parter’s characterization it follows that the asymptotic cone given by Parter [7] is included in the convex

cone T ≥m(p).

Since the general characterization of convex cone T ≥m(p) for p > 1 is not available, we determine it

numerically. The algorithm for finding the solution of (1.1) is given in Section 2.2.

In statistical applications it is allowed to consider singular A (in so-called high-dimensional problems).

Observe however, that the best approximation of A does not need to be singular. In such a case matrix At

should belong to the cone interior. This problem is considered in Section 3.

2. Projection onto T ≥m(p). In this section we will use the vector norm of x = (x0, x1, . . . , xp)
> ∈ Rp+1

defined for a given m as

(2.4) ||x||2 = mx20 + 2(m− 1)x21 + 2(m− 2)x22 + · · ·+ 2(m− p)x2p.

The above norm represents the Frobenius norm of Toeplitz matrix, with (x,0Tm−p−1)T being its first column.

Observe that if p = 1 condition (1.2) for nonnegative definiteness of At is imposed on the components

α0 and α1. Thus, instead of T m(1) we can consider the space R2 of the components of At with the norm

defined in (2.4). To characterize a cone T ≥m(1), we use a 2−dimensional cone Cm(1) ⊂ R2, which is a space

of components of At satisfying (1.2). Observe, that since (1.2) depends on the order m of a matrix, the

cone Cm2(1) ⊂ Cm1(1) for every m1 < m2. It can be also noted that the increase of m results in the increase

of the number of conditions for positive definiteness of a given matrix expressed for example by principal

minors.

Similarly, in Section 2.2 we give the characterization of a cone T ≥m(p) by imposing conditions on compo-

nents of a matrix from (p+1)−dimensional space T m(p). We denote by Cm(p) ⊂ Rp+1 a cone of components

of nonnegative definite Toeplitz matrices with p > 1. Since the condition for matrix definiteness depends on

the order m of this matrix, it is obvious that Cm2(p) ⊂ Cm1(p) for every m1 < m2. Additionally, if m→∞,

the cone Cm(p) (denoted by C∞(p)) can be described by (1.3); cf. Parter [7].

All the figures presented in the following sections are prepared with the use of Mathematica.
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2.1. Projection onto T ≥m(1). In this section we determine the solution of (1.1) for tridiagonal matrices.

Algorithm 1 – outline:

1. Project A onto the space generated by I and T1 and get At = α0I + α1T1. If At ∈ T ≥m(1), then

At = A≥.

2. If At /∈ T ≥m(1), then project At onto the cone T ≥m(1) and get A≥ in the following way:

2.1. define vector a = (α0, α1)> ∈ R2;

2.2. project a onto the cone Cm(1) with respect to the vector norm defined in (2.4) and get the

vector ` = (ν0, ν1)>;

2.3. the solution is A≥ = ν0I + ν1T1.

The above algorithm is illustrated on Figure 1. For better illustration (conformed with the cones C4(2)

on Figure 2) the vertical axis represents the values of α0 components and the horizontal one the values of

α1. It is worth noting that the projection of vector a onto the cone Cm(1) does not need to be orthogonal,

as it is the projection with respect to the norm defined in (2.4).

Figure 1. The cone Cm(1) and illustration of the algorithm

al

-
α0

2 cos  π
m+1



α0

2 cos  π
m+1


α1

α0

Example 2.1. Let A be the same as in Example 1.1. Since At ∈ T 4(1) is not nonnegative definite , we

have to project At onto T ≥4 (1). We obtain A≥ = 1.166I + 0.721T1 with the eigenvalues {2.33, 1.61, 0.721, 0}
and ||A−A≥||F = 2.272283097.

2.2. Projection onto T ≥m(p), p > 1. The aim of this section is to present general algorithm for

projection of a given nonnegative definite matrix onto the convex cone T ≥m(p).

One of the properties of Cm(p) is its symmetry with respect to the space generated by e2k−1, k =

1, . . . , bp+2
2 c, where ei is the ith column of Ip+1. It follows from the property of Toeplitz matrices given by
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Abdikalykov et al. [1]. He showed that for every At = α0I +
∑p
i=1 αiTi

FAtF = α0I +

p∑
i=1

(−1)pαiTi, F = diag(1,−1, 1,−1, ...,±1),

which implies that det(FAtF) = det(At) and thus, if At is nonnegative definite (nnd), then also FAtF is

nnd.

In the case of Cm(p) the symmetry means that if x ∈ Cm(p) than also Rx ∈ Cm(p), where R is the

reflector that maps x to its reflection about the hyperplane generated by e2k−1, k = 1, . . . , bp+2
2 c, i.e.,

R = diag(1,−1, 1,−1, ...,±1) ∈ Rp+1. Symmetry for p = 1, 2 can be seen on Figures 1 and 2. For p > 1,

the property of symmetry reduces the number of possible directions of decreasing norm in the Algorithm 2,

point 2.6.

We now illustrate the problem geometrically for Cm(2) ⊂ R3. Figure 2 represent the cone for m = 4 and

asymptotic cone described by (1.3). Note, that the asymptotic cone for p = 2 is the sum of a polyhedral cone

generated by points (1,±2/3, 1/6) and (1, 0,−0.5), and an oblique elliptical cone
α2

1

0.5 + (α2−0.25α0)
2

0.0625 = α2
0,

α0 > 0.

Figure 2. The cone C4(2) and the asymptotic cone C∞(2) and both cones together

Figure 3 represents the intersections of Cm(2) and the plane α0 = 1 for m ≥ 4 with respective intersection

of asymptotic cone inside.

In general, the best approximation A≥ of A over the cone T ≥m(p) can be found using the following

algorithm.

Algorithm 2 – outline:

1. Project A onto the space T m(p) and get At = α0I + α1T1 + α2T2 + · · · + αpTp. If At ∈ T ≥m(p)

then At = A≥.

2. If At 6∈ T ≥m(p) then:

2.1. define vector a0 = (α0, α1, . . . , αp)
> ∈ Rp+1;

2.2. take b0 = (α0, 0, . . . , 0)> ∈ Cm(p).

2.3. determine vector c0 which is a convex combination of a0 and b0, such that c0 lies on the edge

of Cm(p); that is c0 = (α0, c1, c2, . . . , cp)
>;

2.4. determine an extreme ray `0 defined by vector c0; it means that every vector ` that belongs to

`0 can be expressed as (α0t, c1t, c2t, . . . , cpt)
> with t ∈ R;
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Figure 3. The intersections of Cm(2), m ≥ 4, and C∞(2) with the plane α0 = 1 (blue color for m = 4, green for m = 5,

yellow for m = 6, etc.).

2.5. project vector a0 onto `0 with respect to the norm defined in (2.4), that is find the minimum

of ||`− a0|| with respect to parameter t and get `0 = (ν00 , ν
0
1 , . . . , ν

0
p)>; calculate ||`0 − a0||;

2.6. verify, if the norm ||`0 − a0|| decreases in the neighborhood of the point (ν00 , ν
0
1 , . . . , ν

0
p), con-

sidering bp2c possible directions; thus, for every combination of κj ∈ {−1, 0, 1}, j ∈ Z =

{3, 5, . . . , 2bp2c+1} construct vectors b
(κj)
j = b0 +ε

∑
j∈Z κjej , where ε > 0; determine vectors

c
(κj)
j which is a convex combination of a0 and b

(κj)
j lying on the edge of Cm(p), determine ex-

treme rays `
(κj)
j defined by c

(κj)
j , project a0 onto `

(κj)
j and get `

(κj)
j , and calculate ||`(κj)

j −a0||;
among the vectors b

(κj)
j indicate a vector b

(κj)
j such that ||`(κj)

j − a0|| is minimal and denote

this vector by b1 with respective `1;

2.7. repeat i times point 2.6 with b
(κj)
j = bi + ε

∑
j∈Z κjej , getting the vectors bi+1 and `i+1 =

(νi+1
0 , νi+1

1 , . . . , νi+1
p )> until ||`i+1 − a0|| > ||`i − a0||;

2.8. the solution is A≥ = νi0I + νi1T1 + · · ·+ νipTp.

It is worth noting that ε in point 2.6 of the above algorithm can be understood as the precision of the

numerical solution and thus its value should be rather small.

Example 2.2. Let A be as in Example 1.1. Projecting A onto T 4(2) we obtain At = I + 0.9T1 + 0.9T2

with the eigenvalues {3.305, 1.000, 0.100,−0.405}. Projecting At onto T ≥4 (2) we get A≥ = 1.187I+0.826T1+

0.72T2 with the eigenvalues {3.20, 1.20, 0.347, 0} and ||A−A≥||F = 1.38659684.

Observe, that to project At onto the asymptotic cone, denoted by T ∞(p), it is enough to replace in

Algorithm 2 vectors b0, c0 ∈ Cm(p) by respective vectors belonging to C∞(p).

Next example shows that for relatively small m, the matrix A≥ which follows from the projection of At

onto the cone T ≥m(2) and the matrix A∞, which follows from the projection of At onto the asymptotic cone

T ∞(2), are relatively close to each other. It means that the Frobenius norms ||A−A≥|F and ||A−A∞||F
normalized by ||A||F , do not differ much.
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Example 2.3. Let m = 20 and A = I + 0.9
∑19
i=1 Ti with the eigenvalues belonging to the set {3.7, 0.1}.

Projecting A onto T 20(2) we get

At = I + 0.9T1 + 0.9T2

which is not definite (one of the eigenvalues is equal to −1.02183856944 whilst the remaining are positive).

Projecting At onto T ≥20(2) we get A≥ = 1.382I + 0.763T1 + 0.587T2. It can be checked that all of the

eigenvalues of A≥ are nonnegative and ||A−A≥||F /||A||F = 0.882.

Projecting now At onto T ≥∞(2) we get A∞ = 1.406I + 0.765T1 + 0.577T2. It can be checked that all of the

eigenvalues of A≥ are positive and ||A−A≥||F /||A||F = 0.883.

Observe, that A≥ obtained as the result of the algorithm should be singular or ill-conditioned, as it lies

close to the border of the cone. Since very often, especially in statistics, more interesting is to get positive

definite banded Toeplitz matrix, the problem of avoiding singularity or ill-conditioning of the projection can

be solved by the projection onto the asymptotic cone T ∞(p).

The problem described in the paper raised from the statistical problem of estimation of structured

covariance matrix. Observe however, that the matrix obtained by the projection onto the space of Toeplitz

matrices, does not need to be even definite (see e.g. Example 1). Therefore, Algorithms 1 and 2 can be used

for arbitrary matrices, not necessarily positive definite.

3. Simulations. One of the possible applications of the proposed method is the estimation of the

covariance matrix structured as a banded Toeplitz matrix. In the literature usually the maximum likelihood

estimators are studied in the context of estimation of structured covariance matrices. However, for a Toeplitz

structure the maximum likelihood estimation is challenging and no general closed-form solution is known;

cf. e.g. Dembo et al. [3]. Therefore in this section we compare statistical properties of the projections onto

Cm(p) and C∞(p) using simulations. All numerical calculations are performed in R, using our own script.

Let the matrix of observations X is matrix-variate normally distributed, i.e., X ∼ Nn,m(µ>⊗1n,Σ, In)

with unknown Σ structured as banded Toeplitz matrix. For simulations we assume (n,m) as (10, 5), (10, 10)

or (20, 10), µ = 0 and Σ = Im + 0.5T1 + 0.4T2 or Σ = Im + 0.25T1 − 0.25T2. For every pair (n,m)

we simulate the matrix of observations and determine the sample covariance matrix S = 1
n−1XQ1nX>,

where Q1n = In − n−11n1>n , 1000 times. In Tables 1 and 2 we present the average, the standard deviation

(s.d.) and the quadratic risk of proposed estimators obtained as projections onto Cm(2) (matrix S≥ =

ν0Im + ν1T1 + ν2T2) and onto C∞(2) (matrix S∞ = θ0Im + θ1T1 + θ2T2). The risk R of the estimators S≥

and S∞, which can be expressed as the sum of the risks of respective components of S≥ and S∞, as well

as the averaged normalized distance d between the estimators and the sample covariance matrix S, that is

||S− S≥||F /||Σ||F and ||S− S∞||F /||Σ||F , respectively, are also given. We shall mention that in the above

simulations about 70% of projections St belong to the asymptotic cone T ≥m(2) and thus are positive definite.

Note, that for n = m = 10, the sample covariance matrix S is singular. The following simulations show

that Algorithm 2 can be also used for high-dimensional case. Observe however, that the resulting matrix,

S≥, can be still singular or ill-conditioned, and to avoid this problem projection of St onto the asymptotic

cone can be suggested.

From algebraic point of view, if we are looking for the estimator of banded Toeplitz matrix, we should

project S onto the cone T ≥m(p). As expected, the distance d for S≥ is always smaller than the distance d

for S∞. Moreover, the components of S≥ are usually less biased than the components of S∞, whilst the

variability are comparable. Observe however, that the risk R of the estimators S≥ and S∞ are close to each
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Table 1

Mean, standard deviation and risk of the components of S≥ and S∞ for 1000 simulation trials, as well as the risk of S≥

and S∞ and the normalized distance d for Σ = Im + 0.5T1 + 0.4T2

n m ν0 ν1 ν2 θ0 θ1 θ2
10 5 mean 1.0112 0.4946 0.3948 1.0518 0.4836 0.3604

s.d. 0.2776 0.2534 0.2346 0.3176 0.2420 0.1903

risk 0.0772 0.0643 0.0550 0.1035 0.0589 0.0378

R 0.1965 0.2002

d 0.5164 0.5245

10 10 mean 1.0149 0.4941 0.3937 1.0299 0.4902 0.3814

s.d. 0.2060 0.1749 0.1398 0.2183 0.1719 0.1262

risk 0.0426 0.0306 0.0196 0.0486 0.0297 0.0163

R 0.0928 0.0946

d 0.8025 0.8039

20 10 mean 1.0116 0.4955 0.3910 1.0265 0.4917 0.3790

s.d. 0.2110 0.1753 0.1396 0.2230 0.1721 0.1268

risk 0.0447 0.0307 0.0196 0.0504 0.0297 0.0165

R 0.0928 0.0966

d 0.8071 0.8085

Table 2

Mean, standard deviation and risk of the components of S≥ and S∞ for 1000 simulation trials, as well as the risk of S≥

and S∞ and the normalized distance d for Σ = Im + 0.25T1 − 0.25T2

n m ν0 ν1 ν2 θ0 θ1 θ2
10 5 mean 0.9897 0.2415 -0.2481 1.0132 0.2197 -0.2243

s.d. 0.2243 0.1450 0.1989 0.2393 0.1401 0.1759

risk 0.0504 0.0211 0.0396 0.0574 0.0206 0.0316

R 0.1111 0.1096

d 0.6449 0.6493

10 10 mean 1.0055 0.2463 -0.2416 1.0144 0.2378 -0.2330

s.d. 0.1693 0.0999 0.1250 0.1742 0.0996 0.1181

risk 0.0287 0.0100 0.0157 0.0306 0.0101 0.0142

R 0.0544 0.0549

d 0.9662 0.9672

20 10 mean 1.0099 0.2441 -0.2436 1.0189 0.2354 -0.2348

s.d. 0.1696 0.0997 0.1252 0.1740 0.0990 0.1187

risk 0.0289 0.0100 0.0157 0.0306 0.0100 0.0143

R 0.0546 0.0549

d 0.9670 0.9679

other in general, and in one case the risk of S∞ is even smaller than the risk of S≥. Moreover, since S≥

belongs to the edge of Cm(p), it is always nonnegative definite, whilst S∞ is always positive definite. Finally,

another advantage of S∞ is that the procedure of its determining is much simpler than for S≥. For example

for C∞(2) it is enough to check three conditions for definiteness, whilst for Cm(2) the number of conditions
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to check depends on the number of steps in the algorithm. For p > 2 the algorithm for determining S≥ is

much more time consuming than determination of S∞.

Summing up, in the problem of estimation of structured covariance matrix, the projection of S onto

the asymptotic cone T ≥∞(p) can be recommended instead of the projection onto the cone T ≥m(p). Thus, the

approach presented by Lin et al. [6, p. 133] is statistically permissible.

4. Acknowledgments. This research is partially supported by Statutory Activities No.
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