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RÉNYI’S QUANTUM THERMODYNAMICAL INEQUALITIES∗

N. BEBIANO† , J. DA PROVIDÊNCIA‡ , AND J.P. DA PROVIDÊNCIA§

Abstract. A theory of thermodynamics has been recently formulated and derived on the basis of Rényi entropy and

its relative versions. In this framework, the concepts of partition function, internal energy and free energy are defined, and

fundamental quantum thermodynamical inequalities are deduced. In the context of Rényi’s thermodynamics, the variational

Helmholtz principle is stated and the condition of equilibrium is analyzed. The results reduce to the von Neumann ones

when the Rényi entropic parameter α approaches 1. The main goal of the article is to give simple and self-contained proofs

of important known results in quantum thermodynamics and information theory, using only standard matrix analysis and

majorization theory.
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1. Introduction. Entropy is an important concept both in statistical mechanics and in information

theory [14, 15]. Statistical descriptions of physical systems requiring definitions of entropy different from the

von Neumann entropy motivated the consideration of alternative tools, such as the Tsallis or the Rényi’s

entropies. A complete theory of thermodynamics has been recently formulated and derived on the basis of the

Rényi entropy and its relative version [11], which are useful in the statement of the laws of thermodynamics

at microscopic level. This fact is one more relevant manifestation of the incidence of information theory

concepts in thermodynamics when extended to the quantum context [6, 17, 19].

Let Mn be the matrix algebra of n × n matrices with complex entries and Hn the real vector space of

Hermitian matrices, named in physics as observables. By Hn,+ we denote the cone of Hermitian positive

semi-definite matrices and Hn,+,1 consists of positive semi-definite Hermitian matrices with unit trace, called

the state space. This set coincides with the class of density matrices acting on an n × n quantum system,

and the terms state and density matrix are used synonymously. Matrices in Hn,+ with rank one describe

pure states and those with rank greater than one represent mixed states.

Throughout we use the conventions 0 log 0 = 0, log 0 = −∞ and log∞ = ∞. For a density matrix ρ

with eigenvalues ρ1 ≥ . . . ≥ ρn, the α-Rényi entropy [16] is defined as

(1.1) Sα(ρ) :=
log Trρα

1− α
=

log
∑n
i=1 ρ

α
i

1− α
, α ∈ (0, 1) ∪ (1,∞).

To avoid dividing by zero in (1.1), we consider α 6= 1. Using l’Hôpital rule we may conclude that the

α-Rényi entropy approaches the von Neumann entropy S1 [13, 17] as α approaches 1:

S1(ρ) = lim
α→1

Sα(ρ) = −Trρ log ρ.
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The special cases α = 0 and α = ∞ may be also defined by taking limits. In physics, many uses

of Rényi entropy involve the limiting cases S0(ρ) = limα→0 Sα(ρ) and S∞(ρ) = limα→∞ Sα(ρ), known as

“max-entropy” and “min-entropy”, as Sα(ρ) is a monotonically decreasing function of α :

Sα(ρ) ≤ Sα′(ρ) for α > α′.

Min-entropy is the smallest entropy measure in the class of Rényi entropies and it is the strongest measure

of information content of a discrete quantum variable. It is never larger than the von Neumann entropy S1.

The α-Rényi relative entropy (α-RRE) [16] between two quantum states ρ ∈ Hn,+,1 and σ ∈ Hn,+ is

defined by

Dα(ρ‖σ) :=
log Tr(ρασ1−α)

α− 1
, α ∈ (0, 1) ∪ (1,∞).

The special cases α = 1 and α =∞ are defined taking limits, as α→ 1 and α→∞.

The α-RRE satisfies

Dα(U∗ρU‖U∗σU) = Dα(ρ‖σ)

for all unitary matrices U . If ρ and σ commute, they are simultaneously unitarily diagonalizable and so

Dα(ρ‖σ) =

∑n
i=1 ρ

α
i σ

1−α
i

α− 1
,

where ρi and σi are, respectively, the eigenvalues (with simultaneous eigenvectors) of ρ and σ.

Computing Tr(ρασ1−α) for small values of 1− α, we find

Tr(ρασ1−α) = Treα log ρe(1−α) log σ

= Trelog ρe(α−1) log ρe(1−α) log σ

= Trρ(1 + (α− 1)(log ρ− log σ) +O((1− α)2))

= 1 + (α− 1)Trρ(log ρ− log σ) +O((1− α)2).

Thus, Dα(ρ‖σ) = Trρ(log ρ− log σ) +O((1−α)), and so when α→ 1, one obtains the von Neumann relative

entropy [13, 14]:

D1(ρ‖σ) = Trρ(log ρ− log σ).

For a mixed state, if α > 1, then Trρα < 1 and so log Trρα < 0. If α < 1, then Trρα > 1 and consequently

log Trρα > 0. If ρ is a pure state, then Trρα = 1, for α > 0. Hence, Sα(ρ) ≥ 0 for any ρ, and equality holds

if and only if ρ is a pure state. For ρ1 = . . . = ρn = 1/n, we obtain Sα(ρ) = log n, which is the maximum

possible value of Sα(ρ),

0 ≤ Sα(ρ) ≤ log n.

The concavity of both xα, and log x, for α < 1, yields the concavity of Rényi’s entropy map Sα :

Hn,+,1 → R for 0 < α < 1, in the sense that for A1, A2 ∈ Hn,+, 0 ≤ p ≤ 1, the following holds,

Sα(pA1 + (1− p)A2) ≥ pSα(A1) + (1− p)Sα(A2).

For α > 1, Sα(ρ) is neither purely convex nor concave [15, 20§11.3].
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A map g : Hn ×Hn → R, is jointly convex, if, for A1, A2, B1, B2 ∈ Hn, 0 ≤ λ ≤ 1, the following holds,

g(λA1 + (1− λ)A2, λB1 + (1− λ)B2) ≤ λg(A1, B1) + (1− λ)g(A2, B2),

and g is jointly concave if −g is jointly convex. The joint convexity of α-RRE for α ∈ (0, 1) is one of its most

important properties. It is a consequence of the joint concavity of (ρ, σ) → Tr(ρασ1−α), known as Lieb’s

Concavity Theorem [9]:

Lemma 1.1. For all matrices K ∈ Mn, A,B ∈ Hn,+ and all q, r such that 0 ≤ q ≤ 1, 0 ≤ r ≤ 1 with

q + r ≤ 1, the real valued function

TrK∗AqKBr

is jointly concave in A,B.

Theorem 1.1. The map Dα : Hn,+,1 × Hn,+ → R such that (ρ, σ) → Trρασ1−α, is jointly convex for

α ∈ (0, 1).

Proof. Consider in Lemma 1.1, r = 1 − α, q = α, α ∈ (0, 1) and K = In. For ρ1, ρ2 ∈ Hn,+,1,

σ1, σ2 ∈ Hn,+, 0 ≤ λ ≤ 1, and the real valued function

g(ρ, σ) = Trρασ1−α,

the lemma ensures that

g(λρ1 + (1− λ)ρ2, λσ1 + (1− λ)σ2) ≤ λg(ρ1, σ1) + (1− λ)g(ρ2, σ2).

Since log x/(α− 1) for α ∈ (0, 1) is a decreasing and convex function of x, we get

log(g(λρ1 + (1− λ)ρ2, λσ1 + (1− λ)σ2))

α− 1
≤ log(λg(ρ1, σ1) + (1− λ)g(ρ2, σ2))

α− 1

≤ λ log g(ρ1, σ1)

α− 1
+

(1− λ) log g(ρ2, σ2)

α− 1
,

and the result follows.

By taking the limit α → 1 and recalling that convexity is preserved in the limit, we conclude that the

von Neumann map D1(ρ‖σ) : Hn,+,1 ×Hn,+,1 → R is jointly convex.

This paper is organized as follows. In Section 1, the Rényi internal energy and the Rényi entropy of

a physical system are defined in terms of the density matrix ρ, and, in accordance with the principles of

thermodynamics, the state of equilibrium of the system is determined by minimizing, at constant tempera-

ture, the Helmholtz free energy. In Section 3, the close relation between the Rényi relative entropy and the

Helmholtz free energy is discussed and the Rényi maximum entropy principle is formulated. In Section 4, the

connection between the partition function and the internal energy, for arbitrary temperature is investigated.

In Section 5 the results are discussed.

2. A lower bound for α-RRE. Before stating the next theorem, some considerations are in order.

The characterization of the minimal α-REE is important because this is associated with the equilibrium

state of the system. The search of an upper bound is not of interest, because systems evolve physically in

the direction of the equilibrium. To our knowledge, a simple and direct proof of the next theorem cannot

be easily found in the literature. It extends the well known nonnegativity property of von Neumann relative

entropy: D1(ρ‖σ) ≥ 0 for ρ, σ such that Trρ = Trσ = 1.
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Theorem 2.1. Let σ ∈ Hn,+ be non zero and let α ∈ (0, 1) ∪ (1,∞). For all states ρ ∈ Hn,+,1, it holds

that

− log Trσ = min
ρ
Dα(ρ‖σ), α ∈ (0, 1) ∪ (1,∞),

with equality if and only if ρ = σ/Trσ.

Proof. Let ρ1 ≥ . . . ≥ ρn, σ1 ≥ . . . ≥ σn and let λ1 ≥ . . . ≥ λn, denote the eigenvalues of ρσ. It is known

that (see results in [5, § 5.4] )

(ρ1σn, . . . , ρnσ1) ≺ω (λ1, . . . , λn) ≺ω (ρ1σ1, . . . , ρnσn)

where

(ρ1, . . . , ρn) ≺ω (σ1, . . . , σn)

means that
k∑
i=1

ρi ≤
k∑
i=1

σi, k = 1, . . . , n.

The pre-order induced by ≺w is the so called weak majorization. For φ : R → R an increasing, continuous

and convex function [10],

x ≺w y ⇔ φ(x) ≤ φ(y).

Let λ1(ρασ1−α) ≥ . . . ≥ λn(ρασ1−α) be the eigenvalues of ρασ1−α. By a well known result in majoriza-

tion theory [10], if α > 1,

(λ1(ρασ1−α), . . . , λn(ρασ1−α)) �w (ρα1σ
1−α
1 , . . . , ραnσ

1−α
n ),

so that

Tr(ρασ1−α) ≥
n∑
j=1

ραj σ
1−α
j .

On the other hand, if α < 1,

(λ1(ρασ1−α), . . . , λn(ρασ1−α)) ≺w (ρα1σ
1−α
1 , . . . , ραnσ

1−α
n ),

which implies

Tr(ρασ1−α) ≤
n∑
j=1

ραj σ
1−α
j .

In both cases,

log(Trρασ1−α)

α− 1
≥

log(
∑n
j=1 ρ

α
j σ

1−α
j )

α− 1
.

For 0 ≤ α < 1, by Hölder’s inequality, we have

n∑
j=1

ραj σ
1−α
j ≤

 n∑
j=1

σj

1−α

and so
log(Trρασ1−α)

α− 1
≥ − log Trσ.
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Next, we show that this result also holds for α > 1. In fact, minimizing Dα(ρ‖σ) for a fixed σ is equivalent

to maximizing

T = Tr(ρασ1−α).

Using analogous arguments to the above we get

Dα(ρ‖σ) ≥
log
∑n
i=1 ρ

α
i σ

(1−α)
i

α− 1
≥ − log

n∑
j=1

σj .

For an arbitrary ρ with a prescribed spectrum the one which optimizes Trρασ1−α satisfies [ρα, σ1−α] = 0

implying that [ρ, σ] = 0, so that ρ and σ are simultaneously unitarily diagonalizable. Since the trace is

unitarily invariant, we may consider both matrices in diagonal form. Next, we optimize
∑n
i=1 ρ

α
i σ

(1−α)
i

under the constraint
∑n
i=1 ρi = 1, using Lagrange multipliers techniques. We consider the function

ψ =

n∑
i=1

ραi σ
(1−α)
i − λ

(
n∑
i=1

ρi − 1

)
, λ ∈ R.

The extremum condition leads to
∂ψ

∂ρi
= αρα−1i σ1−α

i − λ = 0,

which yields

ρi =

(
λ

α

)1/(α−1)

σi.

Thus

ρ =

(
λ

α

)1/(α−1)

σ.

The Lagrange multiplier λ is determined observing that
∑n
i=1 ρi = 1 and so

1 =

(
λ

α

)1/(α−1) n∑
i=1

σi =

(
λ

α

)1/(α−1) n∑
i=1

Trσ.

Thus,

ρ =
σ

Trσ
,

completing the proof.

3. Rényi’s minimum free energy principle. In physical sense, the maximum entropy principle

(MaxEnt) is, both in its formulation and in its consequences, equivalent to the minimum free energy principle.

In fact one may be deduced from the other and vive-versa. Before stating these principles, some preliminary

considerations are in order (see [4, p. 131]). By definition, an isolated system does not exchange either energy

or matter with the exterior, while a closed system may exchange energy but not matter with the exterior.

Maximum entropy principle: In an isolated system, the state of thermodynamical equilibrium is the one

with maximal entropy.

Minimum free energy principle: In a closed system, the state of thermodynamical equilibrium is the

one with minimal energy for fixed entropy.
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In statistical mechanics, the absolute temperature is usually denoted by T , and its inverse, 1/T , by β.

The Hamiltonian of the system is a Hermitian operator, denoted by H, acting on a finite dimensional Hilbert

space. The α-Rényi free energy (α-RFE) is defined as

Fα,β(ρ,H) :=
log Trραe(α−1)βH

β(α− 1)
, α ∈ (0, 1) ∪ (1,∞), β ∈ R.

For α→ 1, Fα,β(ρ,H) approaches the von Neumann free energy, defined as

Fβ(ρ,H) = TrρH + β−1Trρ log ρ.

For ρ ∈ Hn,+,1, the α-expectation value of βH, where H is a Hermitian operator, is defined and denoted

as

(3.2) 〈βH〉α :=
1

α− 1
log

Trραe(α−1)βH

Trρα
, α ∈ (0, 1) ∪ (1,∞).

The α-Rényi internal energy (α-RIE) is

(3.3) Eα,β(ρ,H) :=
1

β
〈βH〉α.

For α → 1, Eα,β(ρ,H) approaches the standard expectation value of the Hamiltonian and of the internal

energy arising in statistical thermodynamics,

lim
α→1

Eα,β(ρ,H) = TrρH = E1,β(ρ,H).

Some authors define the α-RIE, as the average of H in the state ρα,

TrραH

Trρα
,

The definition we are proposing, allows a considerable simplification of the formulas involved in the thermo-

dynamical framework.

The following relation holds

βFα,β(ρ,H) = βEα,β(ρ,H)− Sα(ρ).

The parameter β controls, or tunes, the internal energy.

Notice that βFα,β(ρ,H) is closely related to the α-RRE, as

βFα,β(ρ,H) = Dα(ρ‖e−βH).

According to the principles of thermodynamics, the state of equilibrium of a closed system is the one for

which the free energy is minimized. Here, one observation is in order. When the dimension is finite, the state

of equilibrium minimizes the free energy if T > 0, but maximizes the free energy if T < 0. In macroscopic

physics, T is always positive. The Helmholtz state is synonymous of equilibrium state. It is obtained by

minimizing the free energy (for fixed temperature).

The next theorem characterizes, from the knowledge of H, the state which minimizes the α-RFE. This

result is also known as the Rényi minimum free energy principle. It readily follows from Theorem 2.1,

replacing σ by e−βH .
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Theorem 3.1. Let H ∈ Hn be given and ρ ∈ Hn,+,1 be arbitrary. Then,

− log Tre−βH = min
ρ
βFα,β(ρ,H), α ∈ (0, 1) ∪ (1,∞), β ∈ R,

and equality occurs if and only if ρ = e−βH/Tre−βH .

An obvious consequence of the theorem is that

βFα,β(ρ,H) ≥ − log Tre−βH ,

and that the equilibrium state is ρ0 = e−βH/Tre−βH .

The statements in Theorems 2.1 and 3.1 are equivalent, because Theorem 2.1 implies Theorem 3.1, and

conversely. Further, this result coincides with the corresponding one in von Neumann’s statistical mechanics.

We observe that, in conventional thermodynamics, β ≥ 0. However, if n is finite, it is also meaningful to

consider β < 0 as may become clear in the next section.

Notice that the equilibrium state depends only on the value of the parameter β, which is determined by

the required value of the internal energy.

If the state of equilibrium ρ0 is known, then the Hamiltonian of the system is obtained as

H = −β−1(log ρ0 − log Tre−βHIn),

where In ∈Mn is the identity matrix.

If H is considered as a perturbation of the Hamiltonian H0, then H0 may be regarded as a convenient

approximation of H. The following result provides useful information on Tre−βH from Tre−βH0 . It is a

direct consequence of Theorem 3.1, taking ρ = e−βH0/Tre−βH0 , and can be seen as a Rényi’s version of the

Peierls-Bogoliubov inequality [2, 3]

Corollary 3.1. For H,H0 ∈ Hn, we have

1

α− 1
log

Tre−αβH0e(α−1)βH

Tre−βH0
≥ − log

Tre−βH

Tre−βH0
.

4. Partition function and the Rényi’s internal energy. The partition function is defined as

(4.4) Zβ := Tre−βH ,

where β denotes the inverse of the absolute temperature and H is the Hamiltonian of the physical system. In

the infinite dimension, Zβ is only defined for β ≥ 0, because H, in physics, is bounded from below. It plays

a fundamental role in standard statistical thermodynamics, since the equilibrium properties of the system

are encapsulated into the logarithm of the partition function. In particular, the internal energy

Eβ :=
Tr(He−βH)

Tre−βH

is related to the derivative of logZβ with respect to β as

Eβ = −d logZβ
dβ

.
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So, the following question naturally arises. What is the relation between the internal energy and the partition

function in the context of Rényi thermodynamics? Notice that in Rényi thermodynamics the partition

function is as meaningful as in standard statistical mechanics, because the expression of the equilibrium

state in the Rényi thermodynamics coincides with the corresponding expression in the von Neumann setting,

ρ = ρ0 := e−βH/Tre−βH .

Next we derive a relation between the internal energy and logZβ , in Rényi’s thermodynamics, following

similar arguments to those in [1]. For this purpose, we define the α-derivative with respect to β of a function

ψ : R→ R as the quotient
ψ(βα)− ψ(β)

β(α− 1)
.

In [1] it is shown that Sα(ρ) in (1.1) is the α−1 derivative of F with respect to the temperature T ,

∂1/αFα,β(ρ0, H)

∂T
= Sα(ρ).

Next we obtain an analogous result for − logZβ = βFα,β(ρ0, H).

Theorem 4.1. The Rényi’s equilibrium internal energy is the α derivative of − logZβ with respect to β.

Proof. Since

logZβ = log Tre−βH ,

the Rényi equilibrium internal energy reduces to

Eα,β(ρ0, H) =
log Tre−βH − log Tre−αβH

β(α− 1)
=

logZαβ − logZβ
β(α− 1)

,

and the result follows.

Theorem 4.2. The Rényi equilibrium internal energy is a monotonously decreasing function of β.

Proof. We have that − logZβ is a convex function of β as logZβ is concave, because

d2 logZβ
dβ2

=
TrH2e−βH

Tre−βH
−
(

TrHe−βH

Tre−βH

)2

≥ 0.

By the Schwartz inequality, this inequality is strictly positive, unless H is a scalar matrix, a trivial case

we are not considering. Now, observing that equality occurs only in the limit β → +∞, we conclude that

Eα,β(ρ0, H) decreases as β increases, because, according to Theorem 4.1, it is the slope of the secant line

through the points (β,− logZβ) and (αβ,− logZαβ).

Theorem 4.3. For ρ0 the β-dependent equilibrium state, and for λmin(H), λmax(H) the lowest and the

highest eigenvalue of H, respectively, we have

λmin(H) ≤ Eα,β(ρ0, H) ≤ λmax(H).

with

λmin(H) = lim
β→+∞

Eα,β(ρ0, H), λmax(H) = lim
β→−∞

Eα,β(ρ0, H).

Further, there is a unique β ∈]−∞,+∞[ such that

λmin(H) ≤ Eα,β(ρ0, H) ≤ λmax(H).
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Proof. The result follows keeping in mind the strict convexity of − logZβ and that λmin(H), λmax(H)

are the slopes of the asymptotes to − logZβ . These eigenvalues are reached for β = ±∞.

For ρ 6= ρ0, Eα,β(ρ,H) may not be in the interval [λmin(H), λmax(H)].

4.1. α-variance. In a statistical treatment it is essential to introduce the concept of variance in order

to quantify the uncertainty in the performed measurements. We have defined in Section 3 the α-expectation

value of the Hermitian operator A. Contrarily to the classical case, the α expectation value is strongly non

linear. For A,B ∈ Hn, γ ∈ R, we have, in general,

〈γA〉α 6= γ〈A〉α

and

〈A+B〉α 6= 〈A〉α + 〈B〉α.

However, for B = γIn, then 〈γIn〉α = γ = γ〈In〉α and

〈A+ γIn〉α = 〈A〉α + γ.

Notice that 〈(A−〈A〉αIn)〉α = 0 and that (A−〈A〉αIn)2 is positive definite. It might seem natural to define

the variance as 〈(A − 〈A〉αIn)2〉α. However, that definition is not physically interesting and not practical.

In the spirit of the Rényi’s statistical thermodynamics, we introduce the concept of the α-variance in the

measurement of A as

σ2
A,α :=

Trρα0 (A− 〈A〉αIn)2

Trρα0
.

This definition is consistent with the von Neumann one for α = 1, since limα→1 σ
2
A,α = σ2

A.

The next example illustrates that, in spite of the relatively small dimensions of the Hamiltonian matrix,

the α expectation-value is reliable for this α-variance.

Example 4.1. Consider, in H40, the Hamiltonian:

H = β−1diag(0.922381, 0.73706, 0.484782, 0.820627, 0.952007, 0.854884, 0.714918, 0.924384,

0.949796, 0.806276, 0.841821, 0.844594, 0.896461, 0.907911, 0.946686, 0.925224,

0.971335, 0.989989, 0.869694, 0.743026, 0.985554, 0.795115, 0.93036, 0.89001,

0.7651, 0.631296, 0.9231, 0.71455, 0.863538, 0.915656, 0.864729, 0.874465,

0.933066, 0.787534, 0.571073, 0.605766, 0.663161, 0.927403, 0.78619, 0.834031).

The eigenvalues of βH have been chosen as the power 1/5 of 40 randomly distributed numbers in the interval

(0, 1). We have computed, in the equilibrium state, the α-expectation value and the α-standard deviation of

βH for α ∈ {1/2, 1, 2} and we have found the values in Table 1. We remark that for α = 1 and 2 the

α-expectation value is almost the same, and for α = 1/2, the α-expectation value is also the same, within the

α-standard deviation. Although the dimension of the Hamiltonian matrix is not very high, the α-deviation

is already smaller than the α-expectation value, as it should. This behavior has been confirmed in other

numerical examples for randomly generated Hamiltonians.
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α 〈βH〉α σβH,α

1/2 0.823082 0.122291

1 0.810965 0.125898

2 0.810965 0.13323
Table 1

5. Discussion. We have presented self-contained proofs of fundamental inequalities in the setting of

Rényi’s statistical thermodynamics, which is formulated through the replacements, of 〈βH〉1 and of S1(ρ),

in the expression of the free energy, respectively, by 〈βH〉α and Sα(ρ), for a parameter α in (0, 1) ∪ (1,∞).

Definitions of thermodynamical quantities, such as free energy, entropy and partition function were given. We

adopted the paradigm in [11, 18] for dealing with thermodynamical processes in the framework of quantum

theory. By assuming the laws of thermodynamics, the equilibrium state of a given system is determined.

The Rényi MaxEnt principle has been stated and the equilibrium state has been determined.

In statistical physics, isolated systems are described by microcanonical ensembles and systems in equi-

librium with a heat bath are described by canonical ensembles (an ensemble is a set of physical systems

with the same structure, used for statistical purposes). The canonical ensemble is not adequate for the

statistical description of systems with a small number of particles compared with Avogadro’s number, such

as a DNA molecule, while the microcanonical ensemble is hard to handle. This led to the consideration of

alternative definitions of entropy, such as the α-Rényi entropies. These entropies provide a full understanding

of a quantum system [7, 11], they contain richer physical information and they are easier to implement in

experimental measurements and in numerical studies.
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73 Rényi’s quantum thermodynamical inequalities

[10] A. W. Marshall and I. Olkin. Inequalities: Theory of majorization and its applications, Academic Press, 2016

[11] A. Misra, U. Singh, M. N. Bera, and A. K. Rajagopal. Quantum Rényi relative entropies affirm universality of ther-
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