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Abstract. In this paper there is given a new approach for testing hypotheses on the structure of covariance matrices in

double multivariate data. It is proved that ratio of positive and negative parts of best unbiased estimators (BUE) provide an

F-test for independence of blocks variables in double multivariate models.
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1. Introduction. Blocked compound symmetric (BCS) covariance structure for doubly multivariate

observations (m dimensional observation vector repeatedly measured over u locations or time points), which

is a multivariate generalization of compound symmetry covariance structure for multivariate observations,

was introduced by [8, 9] while classifying genetically different groups, and then [7] studied BCS covariance

structure while developing general linear model with exchangeable and jointly normally distributed error

vectors.

We consider the following multivariate data:

(1.1) y
num×1

= vec
(
Y

um×n

)
∼ N

(
(1n ⊗ Ium)µ, In ⊗ Γum

)
,

where µ and Γ are unknown, µ is um× 1 vector and

Γ = Iu ⊗ Γ0 + (Ju − Iu)⊗ Γ1.

Here Iu is an identity matrix of size u and Ju = 1u1′u is the matrix with all elements equal to one, of size

u. Γ0 and Γ1 are m ×m unknown parameters. Equivalently the structure of covariance can be written as

the sum of strong orthogonal matrices i.e. product of matrices is equal zero:

(1.2) Γ =

(
Iu −

1

u
Ju

)
⊗ (Γ0 − Γ1) +

1

u
Ju ⊗ (Γ0 + (u− 1)Γ1) .

The paper is divided into five sections: the present introduction, sections dedicated to best unbiased

and maximum likelihood estimation for the considered model, and to the proposed hypothesis test, followed

by the simulation study and by final remarks.
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2. Best unbiased estimators and Maximum Likelihood Estimators of µ, Γ0 and Γ1. In [2]

the best unbiased estimators (BUE) for Γ0 and Γ1 are given. It follows that BUE for ∆0 = Γ0 − Γ1 and

∆1 = Γ0 + (u− 1)Γ1 are given by:

∆̃0 = Γ̃0 − Γ̃1,

∆̃1 = Γ̃0 + (u− 1)Γ̃1.

On the other hand the maximum likelihood (ML) estimators for ∆0 and ∆1 are (see [3]) given by

∆̂0 =
(n− 1)(u− 1)

n(u− 1)
∆̃0,

∆̂1 =
n− 1

n
∆̃1.

Moreover, from [4] ∆̃0 and ∆̃1 are independent and

n(u− 1)∆̂0 = (n− 1)(u− 1)∆̃0 ∼ Wm

(
∆0, (n− 1)(u− 1)

)
,

n∆̂1 = (n− 1)∆̃1 ∼ Wm

(
∆1, n− 1

)
,

whereWm

(
Σ, n

)
stands for Wishart distribution with m×m scale matrix Σ and degrees of freedom param-

eter n.

3. Testing hypotheses about structure of covariance. The maximum likelihood for the distribu-

tion of (1.1) is given by

`1 =
∣∣∆̂0

∣∣−n(u−1)
2
∣∣∆̂1

∣∣−n
2 e−

num
2 .

Considering

H0 : Γ1 = 0 vs H1 : Γ1 6= 0⇔ H0 : ∆1 = ∆0 vs H1 : ∆1 6= ∆0 :

From definitions of ∆0 and ∆1, it is clear that under H0 we must necessarily have ∆0 = ∆1. Moreover, the

maximum likelihood under H0 is given by

`0 =
∣∣∣(nu)−1

(
n(u− 1)∆̂0 + n∆̂1

)∣∣∣−nu
2

e−
num

2 .

Finally, the likelihood ratio test is given by

(3.3) Λ =

∣∣∆̂0

∣∣n(u−1)
2
∣∣∆̂1

∣∣n2∣∣∣(nu)−1
(
n(u− 1)∆̂0 + n∆̂1

)∣∣∣nu
2
.

Now we prove the following:

Lemma 3.1. If W 1 ∼ Wm(Σ, n1) and W 2 ∼ Wm(Σ, n2) (independent), then, for every fixed vector

x 6= 0 ∈ Rm:

T =
n2x

′W 1x

n1x′W 2x
∼ Fn1,n2

.
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Proof. According to the theorem in [1], if W ∼ Wm(Σ, n) then for every x 6= 0 ∈ Rm:

x′Wx

x′Σx
∼ χ2

n.

Now if we calculate ratio of x′W 1x
n1

and x′W 2x
n2

we get:

x′W 1x

n1
x′W 2x

n2

=

x′W 1x

n1x′Σx
x′W 2x

n2x′Σx

∼

χ2
n1

n1
χ2
n2

n2

∼ Fn1,n2
.

Under the framework of [6] and [10], the positive part of Γ̃1 is given by Γ̃1+ = ∆̃1

u and negative part is given

by Γ̃1− = ∆̃0

u .

To build a test for the nullity of Γ̃1 we can use Lemma 3.1. To do this, first we find the test statistic.

Theorem 3.2. Noting that the estimator of Γ1 is given by

Γ̃1 = Γ̃1+ − Γ̃1− =
∆̃1 − ∆̃0

u
.

The test statistic

(3.4) T =
v′Γ̃1+v

v′Γ̃1−v
,

with v 6= 0, is distributed as an F random variable with (n− 1) and (n− 1)(u− 1) degrees of freedom under

H0 : Γ1+ = Γ1−.

Proof. Unbiased estimator of Γ1 can be expressed as

Γ̃1 =
(n− 1)(u− 1)∆̃1 − (n− 1)(u− 1)∆̃0

(n− 1)u(u− 1)
=

∆̃1 − ∆̃0

u
.

Under null hypothesis Γ1 = 0:

(n− 1)uΓ̃1+ = (n− 1)∆̃1 ∼ Wm(Γ0, n− 1),

(n− 1)u(u− 1)Γ̃1− = (n− 1)(u− 1)∆̃0 ∼ Wm(Γ0, (n− 1)(u− 1)).

Now from Lemma 3.1 it follows that:

T =

(n− 1)uv′Γ̃1+v

(n− 1)

(n− 1)u(u− 1)v′Γ̃1−v

(u− 1)(n− 1)

=
v′Γ̃1+v

v′Γ̃1−v
.

Remark 3.3. Under the null hypothesis and using v = 1, the expectation of the numerator and the

denominator of the statistic in (3.4) are equal, while under the alternative hypothesis and assuming that

all elements of Γ1 are non-negative, the expectation of the numerator is greater than the expectation of the

denominator. If the elements in Γ1 are non-positive then we reject the null hypothesis when the value of the

test statistic is small enough.

The next section will show simulation results using v = 1, which is to take the sum of the elements of Γ1 as

null.
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4. Simulation Study. To test the hypothesis described earlier, a simulation study using the R statistics

software was performed and we compare the power function of F test ,one and two-sided, with the likelihood

ratio test (LRT). The chosen parameters were m = 3, u = 2 and

Γ0 =

0.01221 0.02172 0.00901

0.02172 0.07492 0.01682

0.00901 0.01682 0.01108

 , Γ1 =

0.01038 0.01931 0.00824

0.01931 0.06678 0.01529

0.00824 0.01529 0.00807

 ,
where λ is a multiplier such that Γ = Iu⊗Γ0+(Ju−Iu)⊗λΓ1 is positive definite. In this case, −0.280274 <

λ < 1.12096. For this instance, we take v = 1, which means that the sum of the elements of Γ1 is equal to 0

under the alternative hypothesis. Generating 10000 observation vectors using sample sizes of n = 5, 10, 15, 20

and taking the significance level as 5%, the power of the LRT and one and two sided versions of the F test

were compared. The results are shown in figures 1, 2, 3 and 4.

Consider another case, a very special one, presented in [5], where Γ0 and Γ1 are scalars, with m = 1.

Let Γ0 = 2 and Γ1 = 1. Additionally, it is assumed that u = 2, and parameter n will be one of the values

from the set {3, 5, 10, 25}.

Matrix Γ has the following form:

Γ =

[
2 1

1 2

]
.

From conditions of positive definiteness of matrix Γ it is easy to show that values of multiplier λ should be

from interval [−2, 2]. The results are shown in figures 5, 6, which are included after the bibliography.

5. Final Remarks. The test presented in this paper provides a valid alternative to the likelihood ratio

test for hypothesis tests on covariance components in multivariate models with BCS covariance structure,

given that some previous knowledge on the covariance components is provided in the form of a linear

restriction.

Given this condition, the presented test is more powerful than the LRT, as it is shown by the simulation

study. It also offers computational advantages over the computationally expensive LRT distribution.
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Figure 1. n = 5
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Figure 2. n = 10
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Figure 3. n = 15
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Figure 4. n = 20
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Figure 5. n = 3 and n = 5

Figure 6. n = 10 and n = 25


