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ROMAN ZMYŚLONY† , IVAN ŽEŽULA‡ , AND ARKADIUSZ KOZIO L†

Abstract. In this article authors derive test for structure of mean vector in model with block compound symmetric

covariance structure for two-level multivariate observations. One possible structure is so called structured mean vector when its

components remain constant over sites or over time points, so that mean vector is of the form 1u⊗µ with µ = (µ1, µ2, . . . , µm)′ ∈
Rm. This hypothesis is tested against alternative of unstructured mean vector, which can change over sites or over time points.
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1. Introduction. This article deals with testing the hypothesis of so called structured mean vector

based on the best unbiased estimator (BUE) for covariance parameters and mean vector ([13], [7] and

[19]). Arnold considered some testing problems in multivariate data with block compound symmetry (BCS)

covariance structure. He proposed using some orthogonal transformation for data to solve the problem of

testing the hypothesis, which led to test based on statistics distributed as a product of independent beta-

variates. Another contribution was made also by Arnold, who proposed a general method of testing of

certain class of models applicable also to BCS structure, see [2]. Overview of all previous results was given

by Szatrowski in [18]. Problem of testing hypotheses about mean vector in model with BCS covariance

structure was considered among others by Szatrowski [17] and Roy [11]. Some testing problems in models

with special block structures were considered by Fleiss [4] and Arnold [1]. Fleiss derived likelihood ratio

test (LRT) for testing the hypothesis about structured mean vector. In this paper we deal with testing the

above mentioned hypothesis using Jordan Algebra properties and we construct test based on best quadratic

unbiased estimators (BQUE). Changing linear function of mean vector in null hypothesis into equivalent

quadratic function of mean parameters, we show that both hypotheses are equivalent. Applying idea of

positive and negative part of quadratic estimators, given by [10], after an orthogonal transformation we get

the test statistic which has F distribution under the null hypothesis.
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2. Doubly exchangeable covariance structure. The (mu×mu)−dimensional BCS covariance struc-

ture is defined as

Γ =


Γ0 Γ1 . . . Γ1

...
. . .

...
...

. . .
...

Γ1 Γ1 . . . Γ0

 .
It means that formula for Γ can be represented as

Γ = Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1,(2.1)

where Iu is the u×u identity matrix, 1u is a u×1 vector of ones, Ju = 1u1
′
u and ⊗ represents the Kronecker

product. The above BCS structure Γ can equivalently be written as follows

Γ = Iu ⊗ Γ0 + (Ju − Iu)⊗ Γ1,(2.2)

or written as a sum of two strong orthogonal matrices (i.e. the product of such matrices is equal to the

matrix 0)

Γ =

(
Iu −

1

u
Ju

)
⊗ (Γ0 − Γ1) +

1

u
Ju ⊗ (Γ0 + (u− 1)Γ1) .(2.3)

Note that the previous representation of Γ (using rank argument and strong orthogonality) implies the

following Proposition:

Proposition 2.1. The matrix Γ is positive definite if and only if Γ0−Γ1 and Γ0+(u−1)Γ1 are positive

definite.

For another proof of above fact see Lemma 2.1 in [12].

3. Model with unstructured mean vector. The BCS model can be written in the following way:

(3.4) y
num×1

= vec( Y
um×n

) = vec [y1,y2, . . . ,yn] ∼ N
(
(1n ⊗ Ium)µ, In ⊗ Γum

)
.

It means that matrix Y contains n independent normally distributed random column vectors which are

identically distributed with mean vector µ and covariance matrix Γ.

We want to make use of coordinate-free approach. That is why we use operator � instead of Kronecker

product (⊗). It can be defined in the following way:

Definition 3.1. Let A,B,C be matrices with such dimensions that multiplication ACB is possible.

Then:

(A�B)C = ACB.

A � B is well-defined operator. If we consider space of all u × m matrices with inner product (U ,V ) =

tr(UV ′) then covariance operator A�B is self adjoint linear operator which transform u×m matrices into

matrices with the same size such that V ar((C,Y ), (D,Y )) = (C,ADB) ∀C,D (see [3] and [8]).

In the next part of the paper we deal with the following operator vec−1. For completeness we remind

definition of operator vec.
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Definition 3.2. Let X be a matrix of size k× l. The vectorization of X, denoted by vec(X), is trans-

formation which converts X into a kl× 1 column vector by stacking the column vectors of X = [x1, . . . ,xl]

on top of one another

vec(X) =

x1

...

xl

 .
Definition 3.3. Let x be a column vector of size m× 1, where m = k · l and k, l ∈ N. For x the inverse

transformation of the vectorization operator, denoted by vec−1k (x), is transformation which converts column

vector x into a matrix of dimensions k × l

vec−1k (x) =


x1 xk+1 . . . xk(l−1)+1

x2 xk+2 . . . xk(l−1)+2

...
...

...
...

xk x2k . . . xkl

 .
Remark 3.4. Let Y be a random matrix of size k × l. Operator � has a following properties:

• (A⊗B) vec(Y ) = vec
(
(B′ �A)Y

)
;

• vec−1k ((A⊗B) vec(Y )) = (B′ �A)Y ;

• (A�B)(C �D) = AC �DB.

Remark 3.5. From the first property in Remark 3.4 it follows that for model with unstructured mean

vector:

E(y) = (1n ⊗ Ium)µ⇒ E(Y ) = (Ium � 1′n)µ = Iµ1′.

V ar(Y ) = Γum � In.

Now we rewrite model’s structure using this operator:

Y
um×n

= [y1,y2, . . . ,yn] ∼ N
(
(Ium � 1′n)µ,Γum � In

)
.

Let us consider transformation Ium�Qn on Y um×n where Q is an orthogonal matrix, i.e. QQ′ = Q′Q = I.

Proposition 3.6. If V ar(Y ) = Σ � I with any covariance matrix Σ then this covariance matrix is

invariant with respect to transformation I �Q.

Proof. Let U = (I �Q)Y . Then

ΣU = V ar((I �Q)Y ) = (I �Q)V ar(Y )(I �Q)′

= (I �Q)(Σ� I)(I �Q′) = (I �Q)(Σ�Q′)
= Σ�Q′Q = Σ� I.

Proposition 3.7. Let ϑΣY be the space generated by covariance matrices Σ and let PE(Y ) denote

orthogonal projector on the subspace of mean matrix of a random matrix Y . Moreover let U = Q (Y ),

where Q is an arbitrary orthogonal operator. Then we have

(3.5) If PE(Y )ΣY = ΣY PE(Y ) then PE(U)ΣU = ΣUPE(U).
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(3.6) If ϑΣY is a quadratic subspace then ϑΣU is also a quadratic subspace.

Proof. It is easy to prove that the orthogonal projector on the subspace of mean random matrix U is

PE(U) = QPE(Y )Q
′. Moreover, one can show that ΣU = QΣYQ

′. Then it holds

PE(U)ΣU = QPE(Y )Q
′QΣYQ

′ = QPE(Y )ΣYQ
′ = QΣY PE(Y )Q

′ = QΣYQQ
′PE(Y )Q

′ = ΣUP (U)

which implies (3.5). To prove (3.6) using QQ′ = I note that (ΣU )
2

= Q (ΣY )
2
Q′. Since ϑΣY is a

quadratic subspace then ϑΣU is also a quadratic subspace.

For the special case of Q = Q1 �Q2 we get the following:

Lemma 3.8. Since the space ϑV ar(Y ) generated by covariance matrices Γ � I is a quadratic subspace

and orthogonal projector PE(Y ) = Ium � 1
nJn commutes with covariance matrices, we have

PE(U)V ar(U) = V ar(U)PE(U) and ϑV ar(U) is also a quadratic subspace.

Remark 3.9. The proof that for the model (3.4) ϑV ar(Y ) is a quadratic subspace and assumption that

commutativity of PE(Y ) holds see [13].

Using Proposition 3.6, we can easily prove the following:

Lemma 3.10. Let U = (Ium�Q2)Y , where Q2 =

[
1√
n
1n

...K1n

]
is Helmert matrix, so that K ′1n

K1n
=

In−1 and K ′1n
1n = 0. Then U = [u1, . . . ,un] has independent column vectors, where

u1 ∼ N(
√
nµ,Γ) and ui ∼ N(0,Γ) for i = 2, . . . n.

Proof. Since transformation Ium�Q2 is linear, the matrix U is normally distributed with independent

column vectors. In view of Preposition 3.6 the covariance structure is unchanged. It is clear from structure

of Q2 that for i = 2, . . . , n, E(ui) =
∑n
j=1 kji−1µ = µ

∑n
j=1 kji−1 = 0, where kji is ji-th element of K1n

.

For convenience we will use operator vec−1 for vectors u1, . . . ,un given in previous lemma. For each ui with

dimension um × 1 we define matrix U i of size m × u dividing vector ui using vec−1m for column vector of

dim m× 1 i.e.

U i =
[
u
(i)
1 , . . . ,u(i)

u

]
with distribution

U1 ∼ N
(√

n
[
µ

(1)
1 , . . . ,µ(1)

u

]
, (Γ0 − Γ1)� (Iu −

1

u
Ju) + (Γ0 + (u− 1)Γ1)� 1

u
Ju

)
,

U i ∼ N
(

0m×u, (Γ0 − Γ1)� (Iu −
1

u
Ju) + (Γ0 + (u− 1)Γ1)� 1

u
Ju

)
for i = 2, . . . , n.

Now we use the same orthogonal mapping for each matrix U i which according to the Proposition 3.7

saves the property of quadratic subspace generated by covariance structure. Let W i = (I �Q1)U i, where

Q1 =

[
1√
u
1u

...K1u

]
. Each matrix W i can be expressed as

W i =
[
w

(i)
1 , . . . ,w(i)

u

]
,
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where w
(i)
j is m× 1 vector. On can easily prove that

V ar(W i) = (Γ0 − Γ1)�
[

0 0′

0 Iu−1

]
+ (Γ0 + (u− 1)Γ1)�

[
1 0′

0 0u−1

]
so that we have the following:

Corollary 3.11. Vectors w
(i)
j are independent and

(3.7) w
(1)
1 ∼ N

√nu u∑
j=1

µj ,Γ0 + (u− 1)Γ1

 ,

(3.8) w
(i)
1 ∼ N (0,Γ0 + (u− 1)Γ1) for i = 2, . . . , n,

(3.9) w
(1)
j ∼ N

(
√
nu

u∑
l=1

kl,j−1µl,Γ0 − Γ1

)
for j = 2, . . . , u,

where klj is lj-th element of K1u
.

(3.10) w
(i)
j ∼ N (0,Γ0 − Γ1) for i = 2, . . . , n, j = 2, . . . , u.

Remark 3.12. According to full characterization of Jordan Algebra, note that covariance structure is

isomorphic to Cartesian product of Jordan Algebra of n(u−1) and n full m×m symmetric matrices Γ0−Γ1

and Γ0 + (u− 1)Γ1, respectively, see [6].

Now we formulate null hypothesis for structure of mean

H0 : µ1 = µ2 = . . . = µu,

This hypothesis can be written equivalently as

H0 : µ
(c)
2 = µ

(c)
3 = . . . = µ(c)

u = 0,

where µ
(c)
j =

√
nu
∑u
l=1 kl,j−1µl.

Following idea of [10] this hypothesis is equivalent

H0 :

u∑
j=2

µ
(c)
j µ

(c)′

j = 0.

One can prove that quadratic estimator of
∑u
j=2 µ

(c)
j µ

(c)′

j is a function of complete sufficient statistics (see

[13]) and has the following form:

(3.11)
̂u∑

j=2

µ
(c)
j µ

(c)′

j =

u∑
j=2

µ̂
(c)
j µ̂

(c)′

j − (u− 1)Γ̂0 − Γ1.

Note that

(3.12)

u∑
j=2

µ̂
(c)
j µ̂

(c)′

j
df
= (u− 1)∆̂2
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is positive part and

(3.13) (u− 1)Γ̂0 − Γ1 =
u− 1

(n− 1)(u− 1)

n∑
i=2

u∑
j=2

w
(i)
j w

(i)′

j
df
= (u− 1)∆̂1

is negative part of estimator in (3.11). Moreover, under null hypothesis positive part has Wishart distri-

bution and negative part multiplied by (n−1) is Wishart distributed with the same covariance matrix Γ0−Γ1.

Now we prove the following:

Lemma 3.13. If W 1 ∼ Wm(Σ, n1) and W 2 ∼ Wm(Σ, n2) are independent, then for every fixed vector

x 6= 0 ∈ Rm:

T =
n2x

′W 1x

n1x′W 2x
∼ Fn1,n2

.

Proof. According to Theorem 3.4.2 in [9], if W ∼ Wm(Σ, n) then for every x 6= 0 ∈ Rm:

x′Wx

x′Σx
∼ χ2

n.

Now if we calculate ratio of x′W 1x
n1

and x′W 2x
n2

we get:

x′W 1x

n1
x′W 2x

n2

=

x′W 1x

n1x′Σx
x′W 2x

n2x′Σx

∼

χ2
n1

n1
χ2
n2

n2

∼ Fn1,n2
.

Using Lemma 3.13 we get the following result:

Theorem 3.14. Under null hypothesis test statistic

(3.14) T =
x′
∑u
j=2 µ̂

(c)
j µ̂

(c)′

j x

(u− 1)x′Γ̂0 − Γ1x
=
x′∆̂2x

x′∆̂1x

has F distribution with (u− 1) and (n− 1)(u− 1) degrees of freedom for any fixed x.

From the above theorem we have the following

Corollary 3.15. Since under alternative hypothesis expectation of x′∆̂2x is bigger than expectation of

x′∆̂1x, the null hypothesis is rejected if

T > Fα,u−1,(n−1)(u−1).

4. Alternative tests.

4.1. Roy’s test. One can ask what is the optimal choice of x in the previous test statistic. Since the

distribution of

T =
x′∆̂2x

x′∆̂1x
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is the same for any x, we can look for higher values of T in order to get higher power of the test. Let us

denote y = ∆̂
1/2

1 x. This is a regular transformation, since we assume ∆1 > 0. If the number of degrees of

freedom is greater than the dimensionality, i.e. (n − 1)(u − 1) > m, then also ∆̂1 > 0 with probability 1.

That is why

Tm
df
= max

x
T = max

y

y′∆̂
−1/2
1 ∆̂2∆̂

−1/2
1 y

y′y
= λmax

(
∆̂
−1/2
1 ∆̂2∆̂

−1/2
1

)
= λmax

(
∆̂2∆̂

−1
1

)
.

We know that under null hypothesis

(n− 1)(u− 1)∆̂1 ∼ Wm ((n− 1)(u− 1),Γ0 − Γ1) ,

(u− 1)∆̂2 ∼ Wm (u− 1,Γ0 − Γ1) ,

where ∆̂1 and ∆̂2 are independent.

Using the Definition 3.7.2 and Equation 3.7.12 of [9], we can tell that the distribution of

R =

1
(n−1)Tm

1 + 1
(n−1)Tm

is Roy’s largest root distribution with parameters m, (n − 1)(u − 1), and u − 1 if n − 1 > m. Thus, the

hypothesis can also be tested using critical values of Roy’s distribution.

However, one has to bear in mind that the maximizing vector x is the eigenvector u1 corresponding to

the largest eigenvalue, which is no more fixed but depends on the data. As a consequence, Roy’s test does

not necessarily have higher power than the F-test. Practical experience e.g. in MANOVA designs show that

Roy’s test performs better than other ones only when the largest eigenvalue is substantially greater than the

remaining ones.

4.2. Likelihood ratio test. There is one more test we have to compare our test with - the likelihood

ratio test. LRT is preferred by many statisticians for its optimal asymptotic properties. However, when the

sample size is not high, properties of LRT can be far from the optimal ones. So that we again need some

practical computational comparison.

LRT for this situation was developed by Fleiss in [4]. The test statistic is of the form

L =

∣∣∣∆̂1

∣∣∣∣∣∣∆̂1 + 1
n∆̂2

∣∣∣ ,
where 1

n∆̂2 = 1
n(u−1)

∑u
j=2 µ̂

(c)
j µ̂

(c)′

j = 1
u−1X

(
I − 1

uJu
)
X
′
, X = 1

n

∑n
i=1Xi, Xi = vec−1 yi. This statistic

has under H0 Wilks lambda distribution with parameters m, u−1, and (n−1)(u−1) if n−1 > m (compare

with Definition 3.7.1 in [9]). We obtain critical values for both tests by 1 000 000 simulations using Monte

Carlo method.

5. Simulation study. In our test statistic we take vector x = 1m, so we consider sum of elements of

positive and negative part of estimator
̂∑u

j=2 µ
(c)
j µ

(c)′

j . Using argument of minimal sufficiency we need only to

generate independently w
(1)
2 , . . . ,w

(1)
u according N(0m, Im) and random matrix with Wishart distribution



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 33, pp. 41-52, August 2018.

Roman Zmyślony, Ivan Žežula, Arkadiusz Kozio l 48

Wm((n − 1)(u − 1), Im) because the test statistic is under null hypothesis independent of the choice of

covariance structure. In each step of simulation we add randomly chosen vectors η2, . . . ,ηu to the vectors

w
(1)
j for j = 2, . . . , u multiplied by fixed λ to obtain power function of the test. Here λ is between 0 and

some suitable value Λ, which is chosen empirically (using small number of simulation) such that power is

close to 1. Naturally, for λ = 0 we have null hypothesis. When λ increases then power should also increase.

We have compared powers of all three tests as a function of λ.

All three tests are functions of complete sufficient statistics (see [14], [15], [16], [20]). Because there

is no uniformly most powerful test it is natural that those tests are not comparable with respect to their

powers, i.e. any of them can be the most powerful in a specific case. However, we can conclude that in

case u = 2 Roy’s test is equivalent to LRT because maximum eigenvalue is only one that is greater than

zero. Our simulation study has confirmed this assertion. For real data example (mineral contents in bones)

taken from [5] on page 43 we calculated p-values for all three tests. For F test p-value is equal to 0.0363

and for LRT and Roy’s test equals 0.1725, so that we make different conclusions on standard 5% level of

significance. Figure 1 shows comparison of tests powers in the case when estimated parameters are the true

ones. Figures 2 and 3 display superiority of F test over the other ones when all elements of the contrast

vector are all positive or all negative. Figures also differ in sample size. Figure 4 illustrates the situation

when components of contrast vector have different signs. In this case F test has the smallest power. The

figures referenced above are included after the bibliography.

6. Conclusion. In paper we present F test which is a new alternative for testing the hypothesis of

structured mean vector under BCS covariance structure. We compare it with other known tests of the

hypothesis which can be found in the literature, and are used in practice. Simulations show that any of the

three existing tests can have the largest power in a specific case.
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[10] A. Michalski, R. Zmyślony. Testing hypotheses for linear functions of parameters in mixed linear models. Tatra Mountains

Mathematical Publications, 17:103–110, 1999.
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Figure 1. n = 25, u = 2,m = 3
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Figure 2. n = 10, u = 3,m = 3



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 33, pp. 41-52, August 2018.

51 Application of Jordan Algebra for testing hypotheses about structure of mean vector in model with
block compound symmetric covariance structure

Figure 3. n = 25, u = 3,m = 3
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Figure 4. n = 25, u = 3,m = 3


