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ON N/P–ASYMPTOTIC DISTRIBUTION OF VECTOR OF WEIGHTED TRACES OF

POWERS OF WISHART MATRICES∗

JOLANTA PIELASZKIEWICZ† , DIETRICH VON ROSEN‡ , AND MARTIN SINGULL§

Abstract. The joint distribution of standardized traces of 1
n
XX′ and of

(
1
n
XX′

)2
, where the matrix X : p× n follows a

matrix normal distribution is proved asymptotically to be multivariate normal under condition n
p

n,p→∞→ c > 0. Proof relies on

calculations of asymptotic moments and cumulants obtained using a recursive formula derived in Pielaszkiewicz et al. (2015).

The covariance matrix of the underlying vector is explicitely given as a function of n and p.

Key words. Wishart matrix, Multivariate normal distribution, Spectral distribution, Spectral moments, Covariance

matrix.
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1. Introduction. We continuously observe that the amount of data in a number of different applica-

tions becomes extensive. To make the analysis suitable for big data sets we make an assumption about the

increasing sample size, i.e., n→∞, and the increasing dimensionality (number of parameters), i.e., p→∞.

There is a strong interest to derive methods dealing with large–dimensional problems, such as problems

related to large–size covariance matrices, when n ≥ p, or p > n. The first of the mentioned cases has been

widely studied as it corresponds to a natural case in which the sample size is bigger than the number of

parameters. We can refer here to classical books on multivariate analysis such as [12] and [1]. The second of

the mentioned cases has applications in, for example, finance, genetics and astronomy that are well–known

examples of areas generating data sets with p > n. That case has been studied within the area of high–

dimensional analysis, where, in particular, covariance estimation and regression have been investigated under

p > n. Moreover, notice that in the case where p > n the sample covariance matrix becomes singular, and

hence cannot be inverted as demanded in a number of results valid for p ≤ n. Problems under the assump-

tion p > n were, among others, considered by [13] (studies on the spectral distribution of specific classes of

random matrices, when p→∞), [11] (a work of reference in random matrix theory) and [4] (studies on the

distribution of covariance matrices and their eigenvalues, when p → ∞). In this paper we assume that the

Kolmogorov condition holds, which assures proportionality between p and n, as p and n tend to infinity, and

is characterized by the constant c, such that limn,p→∞
n
p = c ∈ (0,∞). The assumption c ∈ (0,∞) allows

us to obtain formulas depending on c that remain relevant for p > n and p ≤ n, although the elements of

covariance matrix of the analyzed vector will be given directly as functions of sample size and number of

parameters.

Let the trace Tr{·} be defined as the sum of the diagonal elements of a square matrix and let Ak = A · · ·A︸ ︷︷ ︸
k times

.

Moreover, E[·] denotes expectation. The trace of the power of a symmetric matrix relates to the sum of the
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powers of its eigenvalues. It is considered in multivariate analysis, for example as a tool while approximating

densities, as well as in a number of hypothesis testing problems related to the covariance matrix. In this paper

we also show applications of trace results to hypothesis testing. The normalized trace of powers of the Wishart

matrix W ∼ Wp(I, n), namely 1
p Tr{( 1

nW )k}, is an interesting object from several perspectives. It converges

to its expectation, for any k, which can be derived using asymptotic results of [14]. Furthermore, the

expectation of 1
p Tr{( 1

nW )k} gives the kth moments of the Marchenko–Pastur distribution, see the original

paper by [9] in high–dimensional analysis. In this paper we consider a scaled version of the normalized trace

of powers of Wishart matrices, which is of the form

Yk =
√
np

(
1

p
Tr

{(
1

n
W

)k}
− E

[
1

p
Tr

{(
1

n
W

)k}])
.

The expression will be proven to be central normally distributed for k = 1 and k = 2. Proofs can be extended

to higher dimensions, i.e., for k > 2.

The distribution of (η1, . . . , ηm), where

ηk =
1

(n+ p)k

(
Tr{W k} − E

[
Tr{W k}

])
has been considered by Jonsson, [6]. The random variables ηk and Yk differ by a constant

√
c/(1 + c) in

n/p–asymptotics. He provides a combinatorial proof based on moments calculations as suggested in [2] by

Arharov. In the latter paper proofs are not given. Jonsson also improved scaling of the random variable, in

relation to Arharov’s paper, where (n + p)k/2ηk were considered. The proofs given in our paper are more

straightforward than those given by Jonsson. See statement and proof of Theorem 4.1 regarding multivariate

normal distribution in [6]. Moreover, in our paper the variance is given explicitly. In comparison, papers

applying Jonsson’s results, e.g., see [7], must use the results for moments given in [5], for example. In

the present paper we give an alternative proof, using cumulants and moments of the variables Yk seen as

polynomials with respect to 1
p . In this approach the coefficients of polynomials are determined in finite

and asymptotic regime where the explicit calculations are made. The results are under symmetric scaling

with respect to p and n [7] and give a covariance matrix that makes results suitable to be used in further

applications, for example, in hypothesis testing.

The paper is organized as follows. In Section 2, notations are introduced, together with the recursive

formula for E
[∏k

i=0 Tr{Wmi}
]
, which will be used in a number of proofs of the paper. Then, in Section 3,

we prove marginal asymptotic normality of Yt, t = 1, 2. In Section 4 the joint asymptotic normality is

considered and an explicit form of the covariance matrix is presented. In addition to conclusions presented

in Section 5 we give some brief comments on application of results to hypothesis testing problem considered

in paper [15].

2. Preliminaries. Let the matrix X ∈ Rp×n follow a central matrix normal distribution, i.e., X ∼
Np,n(0,Σ, In). The matrix Σ denotes the dispersion matrix assumed to be positive definite and Ip stands

for the identity matrix of size p. Then W = XX ′, where X ′ denotes the transpose of X, follows a Wishart

distribution, W ∼ Wp(Σ, n) with n degrees of freedom. Moreover, as mentioned in the introduction, for all

results in the paper we assume that the Kolmogorov condition holds, i.e., limn,p→∞
n
p = c > 0.

Let W ∼ Wp(Ip, n). Then, by a result of [14], for all k ∈ N and all m0, m1, . . . ,mk such that m0 = 0,

mk ∈ N, mi ∈ N0, i = 1, . . . , k−1, we have the recursive relation for the expectation of the product of traces
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of powers of Wishart matrices

E
[ k∏
i=0

Tr{Wmi}
]

= (n− p+mk − 1)E
[

Tr{Wmk−1}
k−1∏
i=0

Tr{Wmi}
]

+ 2

k−1∑
i=1

miE
[

Tr{Wmk+mi−1}
k−1∏
j=0
j 6=i

Tr{Wmj}
]

+

mk−1∑
i=0

E
[

Tr{W i}Tr{Wmk−1−i}
k−1∏
j=0

Tr{Wmj}
]
. (2.1)

We use m
(t)
1 (n, p) to denote E[ 1p Tr{( 1

nW )t}], in particular

m
(1)
1 (n, p) = E

[
1
p Tr

{
1
nW

}]
= 1,

m
(2)
1 (n, p) = E

[
1
p Tr

{(
1
nW

)2}]
= 1 + p

n + 1
n ,

m
(3)
1 (n, p) = E

[
1
p Tr

{(
1
nW

)3}]
=
(

1 + p
n + 2

n

)(
1 + p

n + 1
n

)
+ p

n + 2
n2 ,

m
(4)
1 (n, p) = E

[
1
p Tr

{(
1
nW

)4}]
=
(

1 + p
n + 3

n

)((
1 + p

n + 2
n

)(
1 + p

n + 1
n

)
+ p

n + 2
n2

)
+ 2
(

1 + p
n + 1

n

)(
p
n + 4

n2

)
.

In the following section a vector Y = (Y1, Y2) will be considered, where the tth coordinate is given by

Yt =
√
np
(

1
p Tr

{(
1
nW

)t}
−m(t)

1 (n, p)
)

, t = 1, 2 and W ∼ Wp(Ip, n) and we find the asymptotic marginal

distribution of Y1 and Y2. Note that the vector Y is centralized and standardized with
√
np to ensure that

its variance will not vanish in the limit.

3. Main results on asymptotic marginal distribution. The aim of this section is to prove theorems

regarding the marginal normal distribution of Y1 and Y2, using formula (2.1). In Theorem 3.1 we consider

Y1 =
√
np
(

1
p Tr

{
1
nW

}
− 1
)

. Here we can avoid (2.1) thanks to the fact that the moments of Y1 can be

computed using the χ2–distribution. Hence, its moments are given by

E[(Tr{W})k] = np(np+ 2)(np+ 4) · . . . · (np+ 2(k − 1)),

which can be calculated directly from the density function or the moment generating function. It leads us to

the same equation as in (3.3) in the proof of Theorem 3.1 given below. Despite this fact, the proof is carried

out so the reader is introduced to the methodology that will cover Y2 (see, Theorem 3.6). Indeed the next

theorem can also be proved via an expansion of the characteristic function.

Theorem 3.1. Let W ∼ Wp(Ip, n). Then, under the Kolmogorov condition n
p

p,n→∞→ c, the asymptotic

distribution of the random variable

Y1 =
√
np
(1

p
Tr
{ 1

n
W
}
− 1
)

is Gaussian with mean and variance equal to 0 and 2, respectively.
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Proof. Obviously,

E[Y1] =
√
npE

[
1
p Tr

{
1
nW

}
− 1
]

=
√
np
(
E
[
1
p Tr

{
1
nW

}]
− 1
)

= 0.

The result regarding the variance of Y1 will follow from the proof of normality of the distribution since

the proof is based on identification of moments (cumulants). The aim is to show that there are only a

finite number of non-zero cumulants of Y1, which is a characterization of the Gaussian distribution and was

originally proved by Marcinkiewicz in [10]. The result of [10] was later referred to in a number of publications,

including a paper by [3] and some recent papers, such as the one by [8]. To determine cumulants, the moments

of Y1 will be studied at first.

Using the formula in (2.1) for the expectation of the product of traces of Wishart matrices we obtain

that for m ≥ 2

E[Y m
1 ] = E

[
(np)m/2

(
1
p Tr

{
1
nW

}
−m(1)

1 (n, p)
)m]

= (np)m/2E
[(

1
p Tr

{
1
nW

}
− 1
)m]

= (np)m/2
m∑
i=0

(
m
i

)
(−1)m−iE

[(
1
p Tr

{
1
nW

})i]
= (np)m/2

[
(−1)m +

m∑
i=1

(
m
i

)
(−1)m−i

{(
1 + 2(i−1)

np

)
E
[(

1
p Tr

{
1
nW

})i−1]}]
= (np)m/2

[
(−1)m +

m∑
i=1

(
m
i

)
(−1)m−i

i−1∏
l=0

(
1 + 2l

np

)]
. (3.3)

We rewrite this formula as a polynomial with respect to 1
np and will determine the coefficients of the

polynomial, i.e.,

E[Y m
1 ] = (np)

m/2
(
a1,m + a2,m

2
np + a3,m

(
2
np

)2
+ . . .+ am,m

(
2
np

)m−1)
= a1,m(np)m/2 + a2,m(np)m/2−1 + a3,m22(np)m/2−2 + . . .+ am,m2m−1(np)1−m/2,

where

a1,m :=

m∑
i=0

(−1)m−i
(
m
i

)
, for m ≥ 1,

a2,m :=

m∑
i=2

(−1)m−i
(
m
i

) i−1∑
k=1

k =
m

2

m−1∑
i=1

(−1)m−i−1i
(
m−1

i

)
, for m ≥ 2,

a3,m :=

m∑
i=3

(−1)m−i
(
m
i

) i−1∑
k=2

k

k−1∑
w=1

w, for m ≥ 3,

...

ak,m :=

m∑
i=k

(−1)m−i
(
m
i

) i−1∑
j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1, for m ≥ k, (3.4)

...

am,m :=

m∑
i=m

(−1)m−i
(
m
i

) i−1∑
j1=m−1

j1

j1−1∑
j2=m−2

j2 . . .

jm−2−1∑
jm−1=1

jm−1 = (m− 1)!.
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Note that the coefficients ak,m are only defined for k ≤ m and that am,m = (m− 1)!.

To be able to show that the odd moments vanish, and even moments have some particular form, we

prove the following two lemmas.

Lemma 3.2. A coefficient ak,m, given in (3.4), satisfies the following recursive formula

ak,m = (m− 1)!

k−1∑
i=2

1

(m− i)!
ak−(i−1),m−i

for any k ≥ 3 and any m > k.

Proof. To prove the lemma we use the definition of ak,m and some standard calculations. We have

ak,m =

m∑
i=k

(−1)m−i

(
m

i

)
i−1∑

j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= (−1)m−k

(
m

k

)
(k − 1)! +

m∑
i=k+1

(−1)m−i

(
m

i

)
i−1∑

j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= (−1)m−k

(
m

k

)
(k − 1)! + (−1)m−(k+1)

(
m

k + 1

)
k∑

j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m

k + 2

)
k+1∑

j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 + . . .

+ (−1)m−m

(
m

m

)
m−1∑

j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

=

(
(−1)m−k

(
m

k

)
+ (−1)m−(k+1)

(
m

k + 1

)
+ (−1)m−(k+2)

(
m

k + 2

)
+ . . . + 1

)
(k − 1)!

+ (−1)m−(k+1)

(
m

k + 1

)
k∑

j1=k

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m

k + 2

)
k+1∑
j1=k

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ . . . +

m−1∑
j1=k

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (−1)m−(k+1)

(
m

k + 1

)
k

k−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m

k + 2

)[
k

k−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 + (k + 1)

k∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

]

+ . . . +

[
k

k−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 +

m−1∑
j1=k+1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

]
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= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (−1)m−(k+1)

(
m− 1

m− (k + 1)

)
k

k−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m

k + 2

)
(k + 1)

k∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 + . . . +

m−1∑
j1=k+1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (−1)m−(k+1)

(
m− 1

m− (k + 1)

)
k

k−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m− 1

m− (k + 2)

)
(k + 1)

k∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+3)

(
m

k + 3

)
(k + 2)

k+1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 + . . . +

m−1∑
j1=k+3

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (−1)m−(k+1)

(
m− 1

m− (k + 1)

)
k

k−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m− 1

m− (k + 2)

)
(k + 1)

k∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ . . . + (−1)0
(
m− 1

0

)
(m− 1)

m−2∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (m− 1)

[
(−1)m−(k+1)

(
m− 2

m− (k + 1)

)
k−1∑

j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ (−1)m−(k+2)

(
m− 2

m− (k + 2)

)
k∑

j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

+ . . . + (−1)0
(
m− 2

0

)
m−2∑

j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

]

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (m− 1)

[ m−2∑
i=k−1

(−1)m−2−i

(
m− 2

i

)
i∑

j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

]

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! + (m− 1)

[ m−2∑
i=k−1

(−1)m−2−i

(
m− 2

i

)
i−1∑

j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1︸ ︷︷ ︸
ak−1,m−2

+

m−2∑
i=k−1

(−1)m−2−i

(
m− 2

i

)
i

i−1∑
j3=k−3

j3 . . .

jk−2−1∑
jk−1=1

jk−1

]

= (−1)m−k

(
m− 1

m− k

)
(k − 1)!

+ (m− 1)

[
ak−1,m−2 + (m− 2)

m−2∑
i=k−1

(−1)m−2−i

(
m− 3

i− 1

)
i−1∑

j3=k−3

j3 . . .

jk−2−1∑
jk−1=1

jk−1

]
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= (−1)m−k

(
m− 1

m− k

)
(k − 1)!

+ (m− 1)

[
ak−1,m−2 + (m− 2)

m−3∑
i=k−2

(−1)m−3−i

(
m− 3

i

)
i∑

j3=k−3

j3 . . .

jk−2−1∑
jk−1=1

jk−1

]

= (−1)m−k

(
m− 1

m− k

)
(k − 1)! +

(m− 1)!

(m− k)!
(−1)m−k+1 +

k−1∑
i=2

(m− 1)!

(m− i)!
ak−(i−1),m−i

= (m− 1)!

k−1∑
i=2

1

(m− i)!
ak−(i−1),m−i,

which establishes the lemma.

Moreover, in the following lemma we show that for all moments E[Y m
1 ] there are only a finite number

of coefficients ak,m that are different from zero.

Lemma 3.3. For the coefficient ak,m, given in (3.4), it holds that

ak,m = 0 if m ≥ 2k − 1

for all m and k, such that m ≥ k.

Proof. Obviously, for all m

a1,m =

m∑
i=0

(−1)m−i
(
m
i

)
= (1− 1)m = 0.

We now show that a2,m is equal to zero for m = 3, 4, 5, . . . so the only non-zero coefficient a2,m is a2,2 = 1.

For m > 2

a2,m =
m

2

m−1∑
i=1

(−1)m−i−1i

(
m− 1

i

)
m≥3
=

m

2

[
m− 1 +

m−2∑
i=1

(−1)m−i−1i

((
m− 2

i− 1

)
+

(
m− 2

i

))]

=
m

2

[
m− 1 +

m−2∑
i=1

(−1)m−i−1i

(
m− 2

i− 1

)
+

m−2∑
i=1

(−1)m−i−1i

(
m− 2

i

)]

=
m

2

[m−1∑
i=1

(−1)m−i−1i

(
m− 2

i− 1

)
+

m−2∑
i=1

(−1)m−i−1i

(
m− 2

i

)]

=
m

2

[m−2∑
i=0

(−1)m−i(i+ 1)

(
m− 2

i

)
+

m−2∑
i=1

(−1)m−i−1i

(
m− 2

i

)]

=
m

2

[m−2∑
i=1

(−1)m−ii

(
m− 2

i

)
+

m−2∑
i=0

(−1)m−i
(
m− 2

i

)
−

m−2∑
i=1

(−1)m−ii

(
m− 2

i

)]

=
m

2

m−2∑
i=0

(−1)m−i
(
m− 2

i

)
= 0.
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Moreover, we show that ak,k+1 =
∑k−1

i=2
k!
i for k ≥ 3. We have

ak,k+1 =

k+1∑
i=k

(−1)k+1−i
(
k + 1

i

) i−1∑
j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= −
(
k + 1

k

)
(k − 1)! +

k∑
j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1

= −(k + 1)(k − 1)! +

k∑
j1=k−1

j1

j1−1∑
j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 = −(k + 1)(k − 1)! + (k − 1)!

+ k
k−1∑

j2=k−2

j2 . . .

jk−2−1∑
jk−1=1

jk−1 = −k! + k

(
(k − 2)! + (k − 1)

k−2∑
j3=k−3

j3 . . .

jk−2−1∑
jk−1=1

jk−1

)

= −k! + k(k − 2)! + k(k − 1)

(
(k − 3)! + (k − 2)

k−3∑
j4=k−4

j4 . . .

jk−2−1∑
jk−1=1

jk−1

)

= −k! + k(k − 2)! + k(k − 1)(k − 3)! + . . .+ k(k − 1) · · · 3
2∑

jk−1=1

jk−1 =

k−1∑
i=2

k!

i
.

Since ak,m is defined for k ≤ m and due to the fact that ak,k = (k− 1)! and ak,k+1 =
∑k−1

i=2
k!
i for k ≥ 3, we

always have at least two coefficients that do not vanish. Further we aim to prove that there are only k − 1

non-zero coefficients in E[Y k
1 ]. Hence, ak,m = 0 for m ≥ 2k − 1 remains to be shown. For this part of the

proof, mathematical induction will be used. As we already have seen a1,m = 0, for all m ≥ 1, and a2,m = 0,

for all m ≥ 3, so the first inductive step is completed. We assume that ai,m = 0 for all m ≥ 2i − 1, for

i = 1, 2, . . . , k − 1. Then, for m ≥ 2k − 1

ak,m = (m− 1)!

k−1∑
i=2

1

(m− i)!
ak−(i−1),m−i = 0,

where the first equality is by Lemma 3.2 and the last equality follows from the inductive assumption, as for all

i = 2, . . . , k−1 the first index of ak−(i−1),m−i is a number between 2 and k−1 and m−i ≥ 2(k−(i−1))−1 =

2k− 2i+ 1 implies m− 2k+ 1 ≥ 2− i which is true for all the possible values of i. Finally, by mathematical

induction ak,m = 0 for all m ≥ 2k − 1 and all k ≥ 3.

Having investigated the properties of the coefficients ak,m, we prove Theorem 3.4. It states that the

asymptotic value of the mth moment of Y1 is zero for odd m, and is a finite number, specified in the theorem,

for even moments.

Theorem 3.4. For any m and Y1 =
√
np
(

1
p Tr

{
1
nW

}
− 1
)

the moments of Y1 converge according to

mY1

k := E[Y k
1 ]→

{
0, if k is odd,

2k/2ak/2+1,k, if k is even,
as

n

p
→ c, p→∞, n→∞.

Proof. Consider E[Y k
1 ]. We assume first that k is odd, i.e., k = 2l+ 1 for some l ∈ N. Then, ai,k = 0 for

all i = 1, . . . , l + 1 by Lemma 3.3. Hence the first non-zero term in E[Y k
1 ] equals√

(np)2l+1al+2,k

(
2

np

)l+1

=
al+2,k√
np
→ 0 as

n

p
→ c, p→∞, n→∞.
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For even moments, i.e., k = 2l for some l ∈ N, we have ai,k = 0 for all i = 1, . . . , l. Hence, the first non-zero

term in the E[Y k
1 ] is

√
(np)2lal+1,k

(
2
np

)l
= 2lal+1,k. Finally, we obtain as stated in the theorem

E[Y k
1 ]→

{
0, if k is odd,

2k/2ak/2+1,k, if k is even,
as

n

p
→ c, p→∞, n→∞.

Now, after having presented the above result about moments we continue by studying the cumulants

of Y1. We denote the kth cumulant of the random variable Y1 by cY1

k . We can use the classical moment–

cumulant relation formula

cY1

k = mY1

k −
k−1∑
p=1

(
k − 1

k − p

)
cY1
p mY1

k−p. (3.5)

Then, by Theorem 3.4, the first four cumulants converge to

cY1
1 = 0,

cY1
2 = mY1

2 − c
Y1
1 mY1

1 = mY1
2 = 2a2,2 = 2,

cY1
3 = mY1

3 − c
Y1
1 mY1

2 − 2cY1
2 mY1

1

n,p→∞→ 0,

cY1
4 = mY1

4 − c
Y1
1 mY1

3 − 3cY1
2 mY1

2 − 3cY1
3 mY1

1 = mY1
4 − 3cY1

2 mY1
2

n,p→∞→ 22a3,4 − 3(2a2,2)2

= 4(a3,4 − 3a22,2) = 0.

The variance Var[Y1] = cY1
2 = 2 as stated in Theorem 3.1.

Obviously, all cumulants of odd order converge to zero, as both the odd moments are zero and the parity

of moments and cumulants in the products of (3.5) are different (hence, one of them always goes to 0).

Indeed, by the moment–cumulant formula we have

cY1

k → mY1

k −
(
k − 1

k − 2

)
cY1
2 mY1

k−2
k is odd

= 0.

Consider now the kth cumulant for even k, i.e., k = 2l. Let k ≥ 4. Then, by Lemma 3.2 and Lemma 3.3

cY1

k → mY1

k −
(
k − 1

k − 2

)
cY1
2 mY1

k−2 = mY1

2l − (2l − 1)2a2,22l−1al,2l−2

= 2lal+1,2l − (2l − 1)2la2,2al,2l−2 = 2l(al+1,2l − (2l − 1)a2,2al,2l−2)

= 2l(al+1,2l − (2l − 1)al,2l−2) = 2l
(

(2l − 1)!

l∑
i=2

1

(2l − i)!
al+2−i,2l−i − (2l − 1)al,2l−2

)
= 2l

(
(2l − 1)!

1

(2l − 2)!
al,2l−2 − (2l − 1)al,2l−2

)
= 2l(2l − 1)

(
al,2l−2 − al,2l−2

)
= 0.

Thus, we have proved that all cumulants of Y1, apart from the second one, converge to zero, which is a

characterization of the Gaussian distribution, see [10]. Hence, Y1 converges to a Gaussian random variable

which completes the proof of Theorem 3.1.

Using the recursive formula (2.1), we will now prove the asymptotic distribution for Y2. The difficulty

in this case comes from the fact that the recursive formula we are using has a different form depending on
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the moment we are considering. Similarly to the proof of Theorem 3.1 we will show asymptotic normality

by proving that there are only a finite number of cumulants that do not vanish. To be able to reach such a

conclusion, we prove the following statement regarding the moments of Y2.

Theorem 3.5.

E[Y k
2 ]→

{
0, if k is odd,

dk(c), if k is even,
as

n

p
→ c, p→∞, n→∞,

where dk(c) is a function of the constant c, which depends on k.

Proof. By a binomial expansion

E[Y m
2 ] = E

[
(np)m/2

(1

p
Tr
{( 1

n
W
)2}
−m(2)

1 (n, p)
)m]

= (np)m/2
m∑
i=0

(
m

i

)
(−1)m−iE

[(1

p
Tr
{( 1

n
W
)2})i](

E
[1

p
Tr
{( 1

n
W
)2}])m−i

.

We consider the sum

k∑
i=0

(
k

i

)
(−1)k−iE

[(
1

p
Tr

{(
1

n
W

)2})i](
E
[

1

p
Tr

{(
1

n
W

)2}])k−i

(3.6)

as a polynomial with respect to 1
p , after the substitution n = ph, where h→ c for increasing n and p. Using

the formula (2.1) for any k we have(
E
[

1

p
Tr

{(
1

ph
W

)2}])k−i

E
[(

1

p
Tr

{(
1

ph
W

)2})i]
=

(
1 +

1

h
+

1

hp

)k−i+1(
1 +

4(i− 1)

hp2

)
E
[(

1

p
Tr

{(
1

n
W

)2})i−1]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i

E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})k−2]
=

(
1 +

1

h
+

1

hp

)k

+O

(
1

p2

)
=

(
1 +

1

h

)k

+
k

hp

(
1 +

1

h

)k−1

+O

(
1

p2

)
.

Hence, the constant term and the term of order 1
p of (3.6), given as a polynomial with respect to 1

p , are

equal to zero. Indeed,

k∑
i=0

(
k

i

)
(−1)k−i

{(
1 +

1

h

)k

+
1

hp

(
1 +

1

h

)k−1

+O

(
1

p2

)}

=

{(
1 +

1

h

)k

+
1

hp

(
1 +

1

h

)k−1} k∑
i=0

(
k

i

)
(−1)k−i︸ ︷︷ ︸

=0

+

k∑
i=0

(
k

i

)
(−1)k−iO

(
1

p2

)

=

k∑
i=0

(
k

i

)
(−1)k−iO

(
1

p2

)
,
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where we mark the sum of alternating binomial coefficients that equals zero. Similarly, for the next term 1
p2

we identify the corresponding coefficient. The first two summands of (3.6), i.e., the cases when i ∈ {0, 1}
can be written as

(
E
[

1

p
Tr

{(
1

ph
W

)2}])k−i

E
[(

1

p
Tr

{(
1

ph
W

)2})i]
i∈{0,1}

=

(
1 +

1

h
+

1

ph

)k

and hence the term of order 1
p equals

(
k

2

)(
1 +

1

h

)k−2
1

h2
, i = 0, 1. (3.7)

Depending on the index i, the coefficients of 1
pk , for k ≥ 2, have a somewhat complicated form and will be

further considered. In further investigation we assume that i ≥ 2 and then

(
E
[

1

p
Tr

{(
1

hh
W

)2}])k−i

E
[(

1

p
Tr

{(
1

hh
W

)2})i]
=

(
1 +

1

h
+

1

hp

)k−i+1(
1 +

4(i− 1)

hp2

)
E
[(

1

p
Tr

{(
1

n
W

)2})i−1]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i

E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−2]

=

(
1 +

1

h
+

1

hp

)k−i+1

E
[(

1

p
Tr

{(
1

n
W

)2})i−1]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i+1

E
[(

1

p
Tr

{(
1

n
W

)2})i−1]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i

E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−2]

=

(
1 +

1

h
+

1

hp

)k−i+2(
1 +

4(i− 2)

hp2

)
E
[(

1

p
Tr

{(
1

n
W

)2})i−2]
+

(
1 +

1

h
+

1

hp

)k−i+1
4(i− 2)

hp2
E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−3]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i+1

E
[(

1

p
Tr

{(
1

n
W

)2})i−1]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i

E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−2]
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=

(
1 +

1

h
+

1

hp

)k−i+2

E
[(

1

p
Tr

{(
1

n
W

)2})i−2]
+

4(i− 2)

hp2

(
1 +

1

h
+

1

hp

)k−i+2

E
[(

1

p
Tr

{(
1

n
W

)2})i−2]
+

4(i− 1)

hp2

(
1 +

1

h
+

1

hp

)k−i+1

E
[(

1

p
Tr

{(
1

n
W

)2})i−1]
+

(
1 +

1

h
+

1

hp

)k−i+1
4(i− 2)

hp2
E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−3]
+

(
1 +

1

h
+

1

hp

)k−i
4(i− 1)

hp2
E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−2]

=

(
1 +

1

h
+

1

hp

)k

+

(
1 +

1

h
+

1

hp

)k−i i−1∑
j=1

(
1 +

1

h
+

1

hp

)j−1
4(i− j)
hp2

E
[

1

p
Tr

{(
1

n
W

)3}(
1

p
Tr

{(
1

n
W

)2})i−j−1]
+

(
1 +

1

h
+

1

hp

)k−i i−1∑
j=1

(
1 +

1

h
+

1

hp

)j
4(i− j)
hp2

E
[(

1

p
Tr

{(
1

n
W

)2})i−j]

=

(
1 +

1

h
+

1

hp

)k

+

(
1 +

1

h
+

1

hp

)k−i i−1∑
j=1

(
1 +

1

h
+

1

hp

)j−1
4(i− j)
hp2

{(
1 +

1

h
+

2

hp

)

E
[(

1

p
Tr

{(
1

n
W

)2})i−j]}
+

(
1 +

1

h
+

1

hp

)k−i i−1∑
j=1

(
1 +

1

h
+

1

hp

)j−1
4(i− j)
hp2{

1

h
E
[

1

p
Tr

{(
1

n
W

)}
1

p
Tr

{(
1

n
W

)}(
1

p
Tr

{(
1

n
W

)2})i−j]
+O(

1

p2
)

}
+

(
1 +

1

h
+

1

hp

)k−i i−1∑
j=1

(
1 +

1

h
+

1

hp

)j
4(i− j)
hp2

E
[(

1

p
Tr

{(
1

n
W

)2})i−j]
.

The coefficient corresponding to the term 1
p2 equals

(
k

2

)(
1 +

1

h

)k−2
1

h2
+

{(
1 +

1

h

)k i−1∑
j=1

8(i− j)
h

+

(
1 +

1

h

)k−2 i−1∑
j=1

4(i− j)
h2

}

=

(
k

2

)(
1 +

1

h

)k−2
1

h2
+

4

h

(
1 +

1

h

)k−2(
2

(
1 +

1

h

)2

+
1

h

) i−1∑
j=1

(i− j), i ≥ 2.
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From the above presentation and (3.7), the term of order 1
p2 of equation (3.6) vanishes for k ≥ 3 as

k∑
i=0

(
k

i

)
(−1)k−i

{(
k

2

)(
1 +

1

h

)k−2
1

h2
+

4

h

(
1 +

1

h

)k−2(
2

(
1 +

1

h

)2

+
1

h

)
1{i≥2}

i−1∑
j=1

(i− j)

}

=
4

h

(
1 +

1

h

)k−2(
2

(
1 +

1

h

)2

+
1

h

) k∑
i=2

(
k

i

)
(−1)k−i

i−1∑
j=1

(i− j)

=
4

h

(
1 +

1

h

)k−2(
2

(
1 +

1

h

)2

+
1

h

) k∑
i=2

(
k

i

)
(−1)k−i

i−1∑
j=1

(i− j) = 0, (3.8)

where 1{i≥2} stands for the indicator of a set {i ≥ 2}. Moreover, the absence of the term 1
p2 indicates that

the first following odd term, in this case 1
p3 , also vanishes. It is a consequence of the fact that to obtain

terms of order 1
pj and 1

pj+1 , where j is even, the recursive formula (2.1) has to be used the same number of

times. Indeed, the coefficient for 1
p3 is given by(

k

3

)(
1 +

1

h

)k−3
1

h3
+

{
2k + 1

h2

(
1 +

1

h

)k−1

+
k − 1

h3

(
1 +

1

h

)k−2} i−1∑
j=1

4(i− j), i ≥ 2.

Hence, by the same argument as in (3.8), the coefficient corresponding to the term 1
p3 equals zero for k ≥ 3.

The same procedure can be repeated in formula (3.6) for terms of higher orders. As for the terms 1
p2

and 1
p3 , zero was obtained due to the fact that

k∑
i=2

(
k

i

)
(−1)k−i

i−1∑
j=1

(i− j) = 0

for k ≥ 3. As
∑k

i=2

(
k
i

)
(−1)k−i

∑i−2
j=1 (i− j)

∑i−j−1
w=1 (i− j − w) = 0, for k ≥ 5 also the terms involving 1

p4

and 1
p5 cancel out. In general, the term corresponding to 1

p2m as well as 1
p2m+1 vanishes for k ≥ 2m+ 1 as

k∑
i=m+1

(
k

i

)
(−1)k−i

m∏
q=1

jq−m+q−1∑
jq+1=1

(jq − jq+1) = 0, for k ≥ 2m+ 1 with j1 = i.

If we assume for a moment that k is even, then the term corresponding to 1
pk cannot vanish in (3.6) as it is

not true that k ≥ k + 1. However, the term corresponding to 1
pk−2 vanishes as k ≥ k − 2 + 1 = k − 1 holds.

The following term 1
pk−1 also vanishes for the same reason. Assuming k to be odd, the term corresponding

to 1
pk−1 vanishes as k ≥ k obviously is true, and then the same holds for the following odd term 1

pk . Finally,

all terms of orders 1 up to 1
pk−1 in (3.6) vanish in the case of even k, and terms of order 1 up to 1

pk in the case

of k being odd. This implies the statement of Theorem 3.5 saying that odd moments of Y2 asymptotically

equal zero, while even ones tend to the constant depending on c.

Theorem 3.6. Let W ∼ Wp(Ip, n). Then, under the Kolmogorov condition n
p

p,n→∞→ c, the asymptotic

distribution of Y2 =
√
np
(

1
p Tr

{(
1
nW

)2}
− m(2)

1 (n, p)
)

, is Gaussian with mean zero and non-zero finite

variance.

Proof. The random variable Y2 is centered as

E[Y2] =
√
npE

[
1

p
Tr

{(
1

n
W

)}
−m

(2)
1 (n, p)

]
=
√
np

(
E
[

1

p
Tr

{(
1

n
W

)}]
−m

(2)
1 (n, p)

)
= 0.
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We still must prove, using the statement of Theorem 3.5, that all cumulants of degree greater than 2 asymptotically

equal zero.

The moment–cumulant relation formula (3.5), together with the fact given by Theorem 3.5 that all odd moments

of Y2 are asymptotically equal to zero indicates that all odd cumulants of Y2 vanish while n, p → ∞. Furthermore,

we need to investigate the cumulants of even degree.

For the arbitrary t the kth cumulant cYt
k for k ≥ 3 is given, using the moment–cumulant relation formula, by

cYt
k = mYt

k −
k−1∑
p=1

(
k − 1

k − p

)
cYt
p mYt

k−p = mYt
k −

(
k − 1

k − 2

)
cYt
2 mYt

k−2 = mYt
k − (k − 1)mYt

2 mYt
k−2

= (np)k/2
(

k∑
i=0

(
k

i

)
(−1)k−iE

[(
1

p
Tr

{(
1

n
W

)t})i](
E
[

1

p
Tr

{(
1

n
W

)t}])k−i
)

−(k − 1)np

(
E
[(

1

p
Tr

{(
1

n
W

)t})2]
−
(
E
[

1

p
Tr

{(
1

n
W

)t}])2
)

(np)k/2−1

(
k−2∑
i=0

(
k − 2

i

)
(−1)k−2−iE

[(
1

p
Tr

{(
1

n
W

)t})i](
E
[

1

p
Tr

{(
1

n
W

)t}])k−2−i
)

= (np)k/2
{

k∑
i=0

(
k

i

)
(−1)k−iE

[(
1

p
Tr

{(
1

n
W

)t})i](
E
[

1

p
Tr

{(
1

n
W

)t}])k−i

−(k − 1)

(
E
[(

1

p
Tr

{(
1

n
W

)t})2]
−
(
E
[

1

p
Tr

{(
1

n
W

)t}])2)
k−2∑
i=0

(
k − 2

i

)
(−1)k−2−iE

[(
1

p
Tr

{(
1

n
W

)t})i](
E
[

1

p
Tr

{(
1

n
W

)t}])k−2−i
}
. (3.9)

As k is even and t = 2, by Theorem 3.5 it is sufficient to consider terms of order 1
pk

in (3.6). Note that both minuend

and subtrahend of cumulants in (3.9) are polynomials of the same degree. We have

(
E
[(

1

p
Tr

{(
1

n
W

)2})2]
−
(
E
[

1

p
Tr

{(
1

n
W

)2}])2)
︸ ︷︷ ︸

= 4
hp2

{(
1+ 1

h
+ 1

hp

)2
+
(
1+ 1

h
+ 1

hp

)(
1+ 1

h
+ 2

hp

)
+ 1

h
(1+ 2

hp2
)
}

(3.10)

×
k−2∑
i=0

(
k − 2

i

)
(−1)k−2−iE

[(
1

p
Tr

{(
1

n
W

)2})i](
E
[

1

p
Tr

{(
1

n
W

)2}])k−2−i

︸ ︷︷ ︸
=O
(

1
pk−2

)
which after multiplication gives a polynomial of O( 1

pk
) (in first phrase we have terms of at least order 1

p2
, and from

the second term of order at least 1
pk−2 ). From previously performed calculations in the proof of Theorem 3.5 we know

that the 1
pk

coefficient of the minuend of (3.9), for even k, is given by

k∑
i= k

2
+1

(
k

i

)
(−1)k−i

k
2∏

q=1

jq− k
2
+q−1∑

jq+1=1

(jq − jq+1) 6= 0,

since it is not true that k ≥ k + 1. Moreover, the coefficient corresponding to 1
pk

in the subtrahend of (3.9) depends
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on three sums:

k−2∑
i= k−2

2
+1

(
k − 2

i

)
(−1)k−2−i

k−2
2∏

q=1

jq− k−2
2

+q−1∑
jq+1=1

(jq − jq+1) 6= 0, since k − 2 < k − 1,

k−2∑
i= k−4

2
+1

(
k − 2

i

)
(−1)k−2−i

k−4
2∏

q=1

jq− k−4
2

+q−1∑
jq+1=1

(jq − jq+1) = 0, since k − 2 ≥ k − 3,

k−2∑
i= k−6

2
+1

(
k − 2

i

)
(−1)k−2−i

k−6
2∏

q=1

jq− k−6
2

+q−1∑
jq+1=1

(jq − jq+1) = 0, since k − 2 ≥ k − 5.

The above sums come from the three possible ways to obtain terms of order 1
pk

from (3.10). Finally, as

k∑
i= k

2
+1

(
k

i

)
(−1)k−i

k
2∏

q=1

jq− k
2
+q−1∑

jq+1=1

(jq − jq+1)

−(k − 1)

k−2∑
i= k−2

2
+1

(
k − 2

i

)
(−1)k−2−i

k−2
2∏

q=1

jq− k−2
2

+q−1∑
jq+1=1

(jq − jq+1) = 0,

we can conclude that the term 1
pk

vanishes in the cumulant ck. Hence, ck = pkO( 1
pk+1 ) → 0 for any k which is a

characterization of the Gaussian distribution and, therefore, finishes the proof of Theorem 3.6.

4. Main results on asymptotic multivariate normal distribution. Although the marginal density

for Yt =
√
np
(

1
p Tr

{(
1
nW

)t}
−m(t)

1 (n, p)
)

for t ∈ {1, 2} has already been proved in the previous section,

we still need to verify the asymptotic multivariate normal distribution of the random vector Y = (Y1, Y2).

Theorem 4.1. Let W ∼ Wp(Ip, n) and Y = (Y1, Y2), where

Yt =
√
np
(1

p
Tr
{( 1

n
W
)t}
−m(t)

1 (n, p)
)

for t = 1, 2. Then, if n
p

p,n→∞→ c, Y asymptotically follows a multivariate normal distribution with mean zero

and covariance matrix

ΣY = (Cov(Yi, Yj))
m
i,j=1 =

(
2 4(1 + 1

c )

4(1 + 1
c ) 4

c + 8(1 + 1
c )2

)
.

Proof. We will only show the expression for ΣY . The theorem has already been stated by [6]. In principle

we could have copied the calculations from the previous section and apply them to a1Y1 +a2Y2, for arbitrary

a1 and a2, but the approach is lengthy.

The exact value of the variance Var[Y1] = 2 comes from the statement of Theorem 3.1. Remaining

variances and covariance are calculated according to (2.1) and are given by

Var[Y2] = Var
[√

np
(

1
p Tr

{(
1
nW

)2}
−m(2)

1 (n, p)
)]

= npVar
[
1
p Tr

{(
1
nW

)2}]
= np

(
E
[(

1
p Tr

{(
1
nW

)2})2]
−
(
E
[
1
p Tr

{(
1
nW

)2}])2)
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= np
(
E
[

1
p2n4 Tr{(W )2}Tr{(W )2}

]
−
(

1 + p
n + 1

n

)2)
= np

(
1

p2n4

(
(n+ p+ 1)E

[
Tr{W}Tr{(W )2}

]
+ 4E

[
Tr{(W )3}

])
−
(

1 + p
n + 1

n

)2)
= np

(
1

p2n4

(
((n+ p+ 1)(np+ 4) + 4(n+ p+ 2))E

[
Tr{(W )2}

]
+ 4E

[
Tr{W}Tr{W}

])
−
(

1 + p
n + 1

n

)2)
= np

(
1

p2n4

(
((n+ p+ 1)(np+ 4) + 4(n+ p+ 2))(n+ p+ 1)np+ 4(np+ 2)np

)
−
(

1 + p
n + 1

n

)2)
= np

(((
1 + p

n + 1
n

)
4
np + 4

np

(
1 + p

n + 2
n

))(
1 + p

n + 1
n

)
+ 4

n2

(
1 + 2

np

))
= 4
((

1 + p
n + 1

n

)
+
(

1 + p
n + 2

n

))(
1 + p

n + 1
n

)
+ 4p

n

(
1 + 2

np

)
→ 8

(
1 + 1

c

)2
+ 4

c ,

Cov[Y1, Y2] = np
(
E
[
1
p Tr

{(
1
nW

)2}
1
p Tr

{
1
nW

}]
− E

[
1
p Tr

{
1
nW

}]
E
[
1
p Tr

{(
1
nW

)2}])
= np

(
1

p2n3E
[

Tr{(W )2}Tr{W}
]
−
(

1 + 1
c + 1

n

))
= np

(
1

p2n3 (np+ 4)E
[

Tr{(W )2}
]
−
(

1 + 1
c + 1

n

))
= np

(
1

p2n3 (np+ 4)(n+ p+ 1)np
]
−
(

1 + 1
c + 1

n

))
= 4
(

1 + p
n + 1

n

)
→ 4

(
1 + 1

c

)
.

Without the proof we present an extended version of Theorem 4.1.

Proposition 4.2. Let W ∼ Wp(Ip, n) and Y = (Y1, Y2, Y3), where

Yt =
√
np
(1

p
Tr
{( 1

n
W
)t}
−m(t)

1 (n, p)
)

for t = 1, 2, 3. Then, the 3-dimensional vector Y is an asymptotically multivariate normal distribution with

mean zero and covariance matrix

ΣY = (Cov(Yi, Yj))
m
i,j=1 (4.11)

=

 2 4(1 + 1
c
) 6((1 + 1

c
)2 + 1

c
)

4(1 + 1
c
) 4

c
+ 8(1 + 1

c
)2 12(1 + 1

c
)((1 + 1

c
)2 + 2

c
)

6((1 + 1
c
)2 + 1

c
) 12(1 + 1

c
)((1 + 1

c
)2 + 2

c
) 24((1 + 1

c
)2 + 1

c
)2 + 42

c
(1 + 1

c
)2

 ,

when n
p

p,n→∞→ c.

5. Conclusions. We have proved asymptotic multivariate normality of the vector of the standardized

traces of 1
nXX

′ and of
(

1
nXX

′
)2

under the Kolmogorov condition. It is an algebraic proof based on the

recursive formula for E
[∏k

i=0 Tr{(XX ′)mi}
]

that is an alternative to the combinatorial result of Jonsson,
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[6]. In this paper we present an explicit form for the covariance matrix of the underlying vector as a function

of n and p. Normality of the considered vector was utilized for example in authors article on testing for

identity of the covariance matrix using a goodness-of-fit approach.
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