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RANK FUNCTION AND OUTER INVERSES∗

K. NAYAN BHAT† , MANJUNATHA PRASAD KARANTHA‡ , AND NUPUR NANDINI§

Abstract. For the class of matrices over a field, the notion of ‘rank of a matrix’ as defined by ‘the dimension of subspace

generated by columns of that matrix’ is folklore and cannot be generalized to the class of matrices over an arbitrary commutative

ring. The ‘determinantal rank’ defined by the size of largest submatrix having nonzero determinant, which is same as the column

rank of given matrix when the commutative ring under consideration is a field, was considered to be the best alternative for the

‘rank’ in the class of matrices over a commutative ring. Even this determinantal rank and the McCoy rank are not so efficient

in describing several characteristics of matrices like in the case of discussing solvability of linear system. In the present article,

the ‘rank–function’ associated with the matrix as defined in [Solvability of linear equations and rank–function, K. Manjunatha

Prasad, http://dx.doi.org/10.1080/00927879708825854] is discussed and the same is used to provide a necessary and sufficient

condition for the existence of an outer inverse with specific column space and row space. Also, a rank condition is presented

for the existence of Drazin inverse, as a special case of an outer inverse, and an iterative procedure to verify the same in terms

of sum of principal minors of the given square matrix over a commutative ring is discussed.
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1. Introduction. Given a matrix A over a field, the notion of rank(A) given by the dimension of

subspace generated by the columns is well defined, folklore. Given a matrix A over real or complex field, the

statements

(i) The linear system Ax = b is consistent if and only if rank(A) = rank
(
A b

)
, where

(
A b

)
is the

matrix obtained by augmenting the column b with A;

(ii) A generalized inverse (similarly, an outer inverse) G is a reflexive generalized inverse if and only if

rank(G) = rank(A);

(iii) The matrix A has group inverse if and only if rank(A) = rank(A2); and

several other results depending on the notion of column rank are well established in the literature. But,

whenever we consider the matrices with entries taken from an arbitrary commutative ring, all the properties

discussed above fail to hold in general and in fact, the notion of column rank itself is not well defined. The

determinantal rank, denoted by ρ(A), is widely used as an alternative notion for rank(A) in several contexts,

but still does not help in extending those few properties discussed above. Throughout this paper, A denotes

an arbitrary commutative ring with identity, E denotes the set of all nonzero idempotents in A.

Definition 1.1. Given an m × n matrix A over a commutative ring A, the determinantal rank of A,

denoted by ρ(A), is the size of largest submatrix of A with nonzero determinant.
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In [4, 5, 9], attempts have been made for providing some necessary and some sufficient conditions for

the solvability of linear system Ax = b over a commutative ring. For the purpose, the notion of McCoy rank

has been introduced.

Definition 1.2. The McCoy rank of an m× n matrix A over a commutative ring, denoted by ρM (A),

is the largest t for which Ann(Dt(A)) = (0), where Dt(A) is the ideal generated by t × t minors of A, and

for S ⊂ A, Ann(S) = {a ∈ A|a · s = 0 for all s ∈ S}.

From the definition, it is trivial that ρM (A) ≤ ρ(A). In spite of the usefulness of McCoy rank in establishing

some important results, it remains unacceptable for several reasons. For example, observe that the nonzero

matrix A =

(
3 0

0 3

)
over Z6 is with ρM (A) = 0, a deviation from very basic property of rank. In search

of a suitable notion replacing ‘column rank’, the rank-function was introduced and several properties of the

same were discussed in [13] and [8]. The rank–function associated with given matrix is an integer valued

function on the set E of nonzero idempotents in the commutative ring A.

Definition 1.3 (Rank–Function, [13]). The rank–function of an m × n matrix A, denoted by RA, is

the integer valued function

RA : E → Z

such that RA(e) = ρ(eA) for all e ∈ E.

It has been observed that rank–function is an effective alternative notion, particularly when the matrix

under discussion is regular. In fact, the following theorem from [13] provides a necessary and sufficient

condition for the solvability of linear system over a commutative ring, whenever the matrix involved is

regular.

Theorem 1.4 (Theorem 2.2, [13]). Let A be an m × n regular matrix such that there exists a matrix

G satisfying AGA = A. Then the linear system Ax = b is consistent if and only if RA = RT , where

T =
(
A b

)
is the matrix obtained by augmenting A with b.

In [8], the authors have explored several interesting properties of rank–function and used them to study the

notion of dimension–function for the modules over a commutative ring. In this paper, we further study the

properties of generalized inverses and outer inverses with reference to the rank–function.

2. Rank–function and outer inverses. First, we introduce some notation and definitions. If A is a

commutative ring with identity, Am×n denotes the set of all m× n matrices over A.

Definition 2.1. A matrix A ∈ Am×n is a regular matrix if there is a matrix G ∈ An×m such that

AGA = A,

in which case G is called a generalized inverse or simply a g-inverse of A. A matrix H is an outer inverse

of A if

HAH = H.

A reflexive generalized inverse of A, if exists, is a matrix G satisfying

AGA = A, GAG = A.
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Rm×n denotes the set of all m×n regular matrices over the commutative ring A and R denotes the class of

all regular matrices over the commutative ring. An arbitrary g-inverse of A is denoted by A− and the class of

all g-inverses is denoted by {A−}. Also, an arbitrary outer inverse of A is denoted by A= and the class of all

outer inverses is denoted by {A=}. An arbitrary reflexive generalized inverse of A and the class of all reflexive

generalized inverses are denoted by A−
r and {A−

r } respectively. If A ∈ Am×n, AT denotes the transpose

of A, C(A) denotes the submodule generated by the columns of A in Am, R(A) denotes the submodule

generated by the rows of A in An. We refer to [15, 3] and [6] for the basic properties of generalized inverses.

If I = {i1, i2, . . . , ir} and J = {j1, j2, . . . , jr} are ordered r-element subsets of {1, 2, ...,m} and {1, 2, ..., n},
respectively, then AI

J denotes a submatrix of A determined by the rows indexed by I and columns indexed

by J . If A is a square matrix, Tr(A) denotes the trace of matrix A, |A| denotes the determinant of A, and

if aij is the (i, j)th entry then ∂
∂aij
|A| denotes the cofactor of aij in the expansion of |A|. If p and r are

positive integers such that r ≤ p, then the set of all r elements subsets with lexicographical order is denoted

by Qr,p. If A is an m × n matrix, then the r-th compound matrix of A, denoted by Cr(A), is the
(
m
r

)
×
(
n
r

)
matrix whose rows and columns are indexed by Qr,m and Qr,n, respectively, and (I, J)th element is |AI

J |. If

J ∈ Qr,m, i ∈ J and j is any integer such that 1 ≤ j ≤ m, then the set obtained by replacing i by j in J

is conveniently denoted by J − {i} + {j}. The ideal generated by an element x ∈ A is denoted by 〈x〉, the

ideal generated by a1, . . . , ak ∈ A is denoted by 〈a1, . . . , ak〉, and for a matrix A over A, 〈A〉 denotes the

ideal generated by all the entries aij of A in A. The matrices P and Q are said to be space equivalent, and

denoted by P '
sp
Q, if C(P ) = C(Q) and R(P ) = R(Q).

In the following, we present some notions related to Rao–regularity and some results from [12] before

addressing the main results of the paper.

Definition 2.2 (Rao–regular matrix, [12]). An m × n matrix A over a commutative ring A is Rao–

regular if there exists an idempotent e ∈ A obtained by a linear combination of r × r minors of matrix A

such that e ·A = A, where r is the determinantal rank of matrix A. Such an idempotent e, whenever exists,

is called Rao–idempotent of A and denoted by I(A).

In the case that A is a Rao–regular matrix, then I(A) is an idempotent e such that 〈e〉 = 〈(|AI
J |)〉 =

〈(aij)〉, in other words 〈e〉 = 〈Cr(A)〉 = 〈A〉. For all the basic properties required for our discussion, readers

are referred to [12, 8]. The following lemma is immediate consequence of Theorem 2.2 of [13] and the

definition of rank–function.

Lemma 2.3. Let A be a regular matrix over a commutative ring A. Then,

(i) C(X) ⊆ C(A) if and only if RA = RT1
, where T1 =

(
A X

)
,

(ii) R(Y ) ⊆ R(A) if and only if RA = RT2 , where T2 =

(
A

Y

)
.

Suppose G is a reflexive generalized inverse of A such that AGA = A and GAG = G. Using the Cauchy-

Binet formula, it is easily verified that ρ(eA) = ρ(eG) and then referring to the definition of rank–function,

we get

(2.1) G ∈ {A−
r } =⇒ RA = RG.

The following theorem provides a necessary and sufficient condition, in terms of rank–function, for an outer

inverse (similarly, for a generalized inverse) to be a reflexive generalized inverse.

Theorem 2.4. Let A ∈ Am×n. Then the following assertions hold.
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(i) An outer inverse G is a reflexive generalized inverse if and only if RA = RG.

(ii) A generalized inverse H is a reflexive generalized inverse if and only if RA = RH .

Proof. Let G ∈ {A=} and RA = RG. Define B = AGA. It is easily verified that B is matrix such that

(a) B is regular with G as a reflexive generalized inverse, and

(b) C(B) ⊆ C(A) and R(B) ⊆ R(A).

From (a) and the equation (2.1), it is clear that RB = RG = RA. Now, for T =
(
B A

)
=

(
AGA A

)
, we

have that RT = RA and therefore RT = RB . Now from (i) of Lemma 2.3, we get that C(A) ⊆ C(B), and

therefore (b) implies C(A) = C(B) and hence BGA = A. Now note that

A = BGA ∵ G ∈ {B−
r }

= (AGA)GA ∵ AGA = B

= A(GAG)A = AGA = B ∵ G ∈ {A=}.

Therefore G ∈ {A−
r }, thus proving the ‘if part’ of (i). The ‘only if’ part is trivial from (2.1).

Part (ii) is proved by taking G = HAH ∈ {A−
r } and then proving G = H in the earlier lines.

Now, we will provide an interesting necessary and sufficient condition for the existence of outer inverse

with specific column space and row space in terms of the rank–function and regularity.

Theorem 2.5. Given A ∈ Am×n, X ∈ An×p and Y ∈ Ar×m, the following statements are equivalent.

(i) There exists an outer inverse G such that C(G) = C(X) and R(G) = R(Y ) (known as an (X,Y )-

inverse).

(ii) The matrix Y AX is regular and RX = RY = RY AX .

Proof. LetG be an (X,Y )-inverse ofA satisfying (i). From Lemma 8 of [1], the existence of (X,Y )-inverse

implies that XAY is regular, and with the property that C(Y AX) = C(Y ) and R(Y AX) = R(X). Referring

to (i) of Lemma 2.3, for T =
(
Y AX Y

)
we get that RT = RY AX . Since T =

(
Y AX Y

)
= Y

(
AX I

)
and

(
AX I

)
has right inverse, we get that RT = RY . Therefore RY = RY AX . Since

(
Y AX

X

)
=

(
Y A

I

)
X,

RX = RY AX is similarly proved with the help of (ii) of Lemma 2.3. Hence (i) implies (ii).

Consider the matrices X,Y and A satisfying (ii). For the matrix T as defined above, we know that

RT = RY . Now from (ii), we have that RY = RY AX and therefore RT = RXAY . So from (i) of Lemma

2.3, we get that C(Y ) ⊆ C(Y AX). R(X) ⊆ R(Y AX) is similarly proved by considering S =

(
Y AX

X

)
and

referring to (ii) of Lemma 2.3. Hence C(Y ) = C(Y AX) and R(X) = R(Y AX). Now, it is easily proved that

the matrix

(2.2) X(Y AX)−Y

is the outer inverse satisfying (i), as in Lemma 8 of [1]. Thus (ii) implies (i).

The above result reduces to the well known result, given in the following corollary, whenever the com-

mutative ring A is a field.

Corollary 2.6. Let X,Y and A be the matrices as considered in Theorem 2.5, and A be a field. Then

A has (X,Y )-inverse if and only if rank(X) = rank(Y ) = rank(Y AX), where rank represents the well known

column rank of matrix over field.
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3. Characterization of Drazin inverse in terms of minors. In n [7], M. P. Drazin i introduced a

typical outer inverse for an element from an associative ring or semigroup. The same outer inverse, whenever

it exists, has been popularly named after Drazin and called the Drazin inverse. Drazin inverses of matrices

have interesting applications in the branches of applied mathematics. First, we provide a definition of Drazin

inverse in the context of square matrices over a commutative ring.

Definition 3.1 (Drazin inverse). Let A be a square matrix over a commutative ring. The Drazin

inverse of A, whenever it exists, is the matrix G satisfying the following properties.

(3.3) GAG = G, AG = GA, GAk+1 = Ak for some positive integer k.

The smallest integer k satisfying the above equation is called the Drazin index of A, and denoted by ind(A).

The Drazin inverse of A, whenever it exists, is unique and denoted by AD.

Whenever the smallest positive integer k in the equation (3.3) is one, the Drazin inverse of A is known as

group inverse and is denoted by A#. The case of A being a nilpotent matrix, i.e., Ak = 0 for some positive

integer k, may be considered to be a trivial case and treat AD = 0, and the index is the order of nilpotency

of A.

In order to continue with the characterization of matrices having Drazin inverse in terms of rank–function

and then in terms of minors, first we recall some interesting properties of Rao–regular matrices and its role

in discussing the Drazin inverse.

From the characterization of regular matrices as given in Lemma 4 of [12], we have that if A is an m×n
regular matrix with ρ(A) = r, then A can be written as

(3.4) A = Ar +Ar−1 + · · ·+A1, (Rao–decomposition)

where each of Ak (1 ≤ k ≤ r) is Rao–regular with ρ(Ak) = k unless Ak is the zero matrix, and I(Ak) = ek
such that eiej = 0 for i 6= j. It was also noted from [12] that the Rao–decomposition of a regular matrix is

unique and in fact, Ar is a strictly nonzero matrix with er as a generator of the ideal of all r × r minors of

A. Further, we say two regular matrices A and B have similar Rao–decomposition if the matrices Ai and

Bi in the respective Rao–decomposition have same rank and have same Rao-idempotents.

The Drazin inverse AD of the matrix A, whenever it exists, is an outer inverse and therefore it is a regular

matrix. Let Gk + Gk−1 + · · · + G1 be the Rao–decomposition of Drazin inverse, where Gi are Rao–regular

with Rao–idempotents ei for all i = 1, 2, . . . k. In such a case the matrix A has a decomposition (need not

be a Rao–decomposition) given by

A = Ak +Ak−1 + · · ·+A1 +A0,

where Ai = eiA for 1 ≤ i ≤ k, and A0 = A − (Ak + · · · + A1). Since the idempotents ei are orthogonal

to each other and AD is the Drazin inverse of A, it is easily verified that Gi is the Drazin inverse of Ai for

1 ≤ i ≤ k.

Remark 3.2. In the following, we provide some useful and interesting observations on regular matrices:

(i) If P and Q are the matrices such that C(P ) = C(Q) (or, R(P ) = R(Q)), then the regularity of P

implies the regularity of Q (Lemma 9, [1]). Further P and Q have similar Rao–decompositions.

(ii) If G is the (X,Y )-inverse of A, then X,Y, Y AX and G have similar Rao–decompositions, and further

RX = RY = RY AX = RG. Proof follows from Theorem 2.5 and (i) above.
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(iii) If G = AD and d is the index of A, then G,Gd, Ad, Gk, and Ak (k ≥ d) have similar Rao–

decompositions and have same rank–functions. Proof is easy, with the observation that Gk is the

group inverse of Ak for all k ≥ d, and those matrices are space equivalent (having same column

space and same row space).

The following theorem, which characterizes the matrices having Drazin inverse, is an immediate conse-

quence of Theorem 2.5.

Theorem 3.3. Let A be a square matrix over a commutative ring and not a nilpotent matrix. Then the

following statements are equivalent.

(i) A has Drazin inverse

(ii) There exists a positive integer k such that A2k+1 is regular and RAk = RA2k+1

(iii) There exists a positive integer k such that Ak+m is regular and RAk = RAk+m for m = 0, 1, 2, . . ..

Proof. Note thatAD, whenever exists, is the outer inverseG such that C(G) = C(Ad) andR(G) = R(Ad),

where d is the Drazin index of A. Now (i) ⇔(ii) is an immediate consequence of Theorem 2.5.

(iii) =⇒ (ii) is trivial. If k is an integer satisfying (ii), then we get that RA2k+1 = RT , where

T =
(
A2k+1 Ak

)
. Then referring to Lemma 2.3, we get that C(Ak) ⊆ C(A2k+1), which in turn implies that

C(Ak) = C(Ak+m), for all m = 0, 1, 2, . . .. Similarly, we prove that R(Ak) = R(Ak+m), for all m = 0, 1, 2, . . ..

Therefore RAk = RAk+m for all nonnegative integer m and the regularity of Ak+m follows from the regularity

of A2k+1 and (i) of Remark 3.2.

From the equivalence of (i) and (ii) in the Theorem 3.3, we give following characterization of the Drazin

index:

The Drazin index of square matrix A over a commutative ring is the least positive integer

k such that Ak+m is regular and RAk = RAk+m for m = 0, 1, 2, . . ..

If the commutative ring under discussion is the real or complex field, then rank(Ak) = rank(Ak+m) for

m = 0, 1, 2, . . . is equivalent to saying that rank(Ak) = rank(Ak+1). Therefore the Drazin index of a square

matrix is the least positive integer k for which rank(Ak+1) = rank(Ak).

The following theorem from [1] provides necessary and sufficient condition for a matrix to have Rao–

regular Drazin inverse.

Theorem 3.4 (Theorem 14, [1]). Given a matrix A ∈ An×n has Rao–regular Drazin inverse if and

only if there exists an integer k such that the following hold:

(i) Cp(A) are nilpotent for all p ≥ k,

(ii) ρ(Ad) = k and λ = Tr(Ck(Ad)) is π-regular (i.e., β = λp is regular for some positive integer p) for

some positive integer d, and

(iii) (1− ββ−)A is nilpotent.

In the above case, ββ− is the Rao–idempotent of Drazin inverse.

Now we will prove a result which leads to an iterative method to verify if the matrix given has a Drazin

inverse. Given a square matrix A, let k̂ represent the determinantal rank of Ak, i.e. k̂ = ρ(Ak).

Theorem 3.5. Given a square matrix A over a commutative ring, let k be the least positive integer for
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which Tr(Ck̂(Ak)) is not nilpotent. Then A has Drazin inverse if and only if the following hold.

(i) Tr(Ck̂(Ak))(say, u) is π-regular such that um is regular for positive integer m.

(ii) F = (1− e)A has Drazin inverse of rank less than k̂, unless F is nilpotent.

In the above case, k̂ is exactly the rank of the Drazin inverse AD of A and e is the Rao–idempotent of first

factor in the Rao–decomposition of AD.

Proof. Let A be a matrix with Drazin inverse, say G, and with index d. If t is the rank of G, let

(3.5) G = Gt +Gt−1 + · · ·+G1

be the Rao–decomposition and each of Gi with Rao–idempotent ei. From the properties of compound

matrices and the orthogonality of Rao–idempotents, it is clear that Ct(G) is the Drazin inverse of Ct(A),

ρ(Ct(G)) = 1, and Ct(G) = Ct(Gt). If d is the index of Ct(A), then ρ((Ct(A))d) = ρ(Ct(A
d)) = ρ(Ct(G

d)) =

1 (∵ Gd = (Ad)#). From (i) =⇒ (iii) of Theorem 12 from [1], it is known that if X (X = Ct(A) in

this case) is a matrix such that ρ(Xd) = 1 and X has Drazin inverse, then for w = Tr(Xd) is regular

satisfying ww− = I(Xd). Further, note that Tr(Xnd) = (Tr(Xd))n (because ρ(Xd) = 1) is regular such that

vv− = ww− = I(Ad), where v = Tr(Xnd).

Again from the properties of compound matrices, we have that Cî(G) is the Drazin inverse of Cî(A)

for every i, and therefore we get that Cî(A) is a nilpotent matrix for î > k̂. In fact, t is the least positive

integer for which Ct(A) is not nilpotent. Now from the definitions of k and k̂, we have that t = k̂ and k ≤ d.

Therefore, the matrix P = Ct(A) is such that P k = (Ct(A))k = Ct(A
k) is of rank one. Choose n such that

k divides nd and nd = mk to get that Tr(Ct(A
nd)) = Tr(Ct(A

mk)) = (Tr(Ct(A
k)))m = um is regular, thus

proving (i).

Clearly, (1− e)G is the nonzero Drazin inverse of F = (1− e)A, unless B is nilpotent. Since um(um)− =

ww− = e is the Rao–idempotent of Xn = Pm, for s = mk = nd we get that ŝ = t and eCt(A
s) = Ct(A

s).

This in turn gives that Ct(F
s) = (1 − e)Ct(A

s) = 0 and therefore, the determinantal rank of F s is strictly

less than t. Therefore ρ((1− e)G) is strictly less than t, thus proving (ii).

Conversely, assume (i) and (ii) hold. Define E = eA. Note that the matrix E inherits all the properties of

A stated in the theorem and, in addition, we observe that E is Rao–regular with e being its Rao–idempotent

and (1− e)E = 0. Since E satisfies the sufficient conditions given in Theorem 3.4 (Theorem 14, [1]), E has

Rao–regular Drazin inverse, say G1. If G2 is the Drazin inverse of F = (1 − e)A, then it is easily verified

that G1 +G2 is the Drazin inverse of A = E + F .

Remark 3.6. In [1], the authors have given a determinantal formula for a Rao-regular Drazin inverse of

a square matrix, whenever it exists. Readers are referred to [17] for a full-rank determinantal representation

of Drazin inverse of a square matrix over real field, with the observation that a matrix need not have a rank

factorization over an arbitrary commutative ring. Many efforts have been made to extend the determinantal

formula for different types of generalized inverse over a field or integral domain. Some references for such

work are [16, 2, 14, 10] and [11]. Obtaining a necessary and sufficient condition for the existence of (X,Y )-

inverse of a matrix A appears to be a continuation of the present work, and finding determinantal formula

for Rao–regular outer inverse could also be a future research problem. Such a work could extend the work

of Yu and Wei [19], obtaining the determinantal representation of the generalized inverse A
(2)
T,S over integral

domains and its applications, to the case of matrices over commutative ring. We refer to [18] for the initial

work on A
(2)
T,S generalized inverse. Since the present work in not dealing with determinantal formula, we

deviate from that problem and leave the same for future work.
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