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THE PROPERTIES OF PARTIAL TRACE AND BLOCK TRACE OPERATORS OF

PARTITIONED MATRICES∗

KATARZYNA FILIPIAK† , DANIEL KLEIN‡ , AND ERIKA VOJTKOVÁ§

Abstract. The aim of this paper is to give the properties of two linear operators defined on non-square partitioned matrix:

the partial trace operator and the block trace operator. The conditions for symmetry, nonnegativity, and positive-definiteness

are given, as well as the relations between partial trace and block trace operators with standard trace, vectorizing and the

Kronecker product operators.

Both partial trace as well as block trace operators can be widely used in statistics, for example in the estimation of unknown

parameters under the multi-level multivariate models or in the theory of experiments for the determination of an optimal designs

under the linear models.
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1. Introduction. Throughout the paper we use “vec” operator which stacks the columns of the matrix

one below another. The i-th column of an identity matrix Iu is denoted by ei,u, moreover recall that

Iu =
∑u
i=1 ei,ue

′
i,u and vec Iu =

∑u
i=1 ei,u ⊗ ei,u.

In this paper we consider two linear operators from the mp× np dimensional space V of matrices, into

the m× n space U of matrices, defined on specific partitions of A = (Aij) ∈ V, where Aij are either p× p
or m× n blocks of A.

Definition 1.1. For an arbitrary matrix A = (Aij) : mp × np the m × n partial trace operator,

denoted by PTrp A, and the m × n block trace operator, denoted by BTrm,n A, can be defined in the

following equivalent forms:

(i) the matrix of the traces of p× p blocks of A, that is

PTrp A = (tr Aij), i = 1, . . . ,m, j = 1, . . . , n,

and, respectively, the sum of all diagonal m× n blocks of A, that is

BTrm,n A =

p∑
i=1

Aii;

(ii) PTrp A =
∑p
i=1(Im ⊗ e′i,p)A(In ⊗ ei,p),

BTrm,n A =
∑p
i=1(e′i,p ⊗ Im)A(ei,p ⊗ In);
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(iii) PTrp A = (Im ⊗ vec′ Ip)(A⊗ Ip)(In ⊗ vec Ip),

BTrm,n A = (vec′ Ip ⊗ Im)(Ip ⊗A)(vec Ip ⊗ In).

Since both of the operators correspond to two different partitions of the mp×np matrix A, the subscripts

used in the notation indicate the size of blocks of A due to the respective partition. For convenience, if n = m

we denote BTrm,n A as BTrm A.

The partial trace and block trace operators of square matrices have been studied in the physics and

mathematics before, though not necessarily under these names and using different notations. De Pillis [3]

studied mn ×mn block matrices with blocks of order n. He showed that replacing every block of positive

semi-definite matrix by its trace preserves positive semi-definiteness. Zhang [30] considered square block

matrices with blocks replaced by their functions. Among others he proved the same result as de Pillis [3],

denoting the block matrix with blocks replaced by their traces by T . Note, that the operation considered

by de Pillis [3] as well as Zhang [30] correspond to the partial trace operator defined in Definition 1.1 (i) for

particular case m = n, and the property of preserving positive semi-definiteness corresponds to the property

given in Lemma 2.4 (iii) of this paper.

For an arbitrary Kronecker product of two Hilbert spaces H1 and H2 of dimensionsm and n, respectively,

Bhatia [1] and Petz [21] defined two different matrix operations as linear maps from the space of linear

operators on the Kronecker product H1 ⊗H2 onto the space of linear operators on H1 and on H2. Both

of these linear maps were called partial trace operators, and are widely used in physical sciences. Bhatia [1]

denoted partial trace operators by A1 = trH1 A and by A2 = trH2 A, whilst Petz [21] used the notation Tr2
and Tr1, respectively. Both of these authors have shown several inequalities used in quantum mechanics.

Note that the first and third definition of A1 of Bhatia [1, p. 126, 127] correspond respectively to the partial

trace operator PTrp A given in Definition 1.1 (ii) and (i) for m = n. Moreover, the definitions of A2 of

Bhatia [1, p. 126, 127] correspond to the partial trace operator PTrm A defined as in Definition 1.1 (ii)

and (i) but with different partition of A (the blocks of A are m×m dimensional here).

Petz [21] defined respective partial traces for a Kronecker product using the properties of standard trace

operator. The definition of Tr2 corresponds to the property of partial trace operator given in Lemma 2.13,

whilst the definition of Tr1 corresponds to the property of block trace operator given in Lemma 2.13, with

m = n in both cases. It means that for A being a Kronecker product of two square matrices, H1 : m ×m
and H2 : p× p, we get BTrp(H1 ⊗H2) = tr(H1)H2, thus, Tr1 of Petz [21] can be also expressed in terms of

block trace operator given in Definition 1.1 with different partition, i.e., BTrp A.

Recently, some inequalities related to partial trace operators defined by Bhatia [1] or Petz [21] were

studied by Choi [2]. He considered partitioned matrices not necessarily having Kronecker product structure

and denoted the operators respectively by tr2A and tr1A.

Vitória [29] and Martins et al. [20] considered the block trace operator trb(Ab) of square block matrix

Ab in context of differential equations. Recently, Jackson et al. [11] and Jackson et al. [12] used the block

trace operator btr(A) of a square block matrix A in meta-analysis. Considering some statistical properties

of physical model Nehorai and Paldi [19] defined the block trace operator btr[A] of a square matrix A. This

definition corresponds in fact to the definition of partial trace given in Definition 1.1 (i).

In statistical research Filipiak and Markiewicz [7, 8] denoted the partial trace operator on an mp×mp
matrix A by TrA and TrpA and used it to show optimality of some experimental designs. Moreover, Filipiak

and Klein [5] proved some properties of partial trace operator to express the maximum likelihood estimators
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of unknown parameters under the generalized growth curve model. Roy et al. [23] used the block trace

operator, denoted by blktrA, for solving the problem of testing the mean vector for doubly multivariate

observations. The same notation for block trace was used also by Roy et al. [24] for maximum likelihood

estimation problem for doubly exchangeable covariance structure.

In some statistical applications it is comfortable to use the partial trace of non-square matrices (see

e.g. Section 3.1), which can be defined for every block matrix with square blocks. Since there is very

strong relation between considered operators, and since also non-square matrices can be summed up, we

have decided to define the block trace operator (as a generalization of the standard trace operator applied

on the blocks of a matrix) also for non-square matrices. Therefore in this paper we extend the operators

presented in the literature into the case of arbitrary matrix (not necessarily square).

The aim of this paper is to unify the notation used for partial trace and block trace operators and

to show the relation between them as well as some of their properties. We characterize some sequential

properties of these two operators as well as some preserved (and not preserved) properties, such as symmetry,

nonnegativity, positive semi-definiteness, M-matrix property, singularity, and commutativity. We also study

the relations between considered operators and “vec” and Kronecker product operators, which are very useful

especially in statistics. Finally, we show the conditions for which the partial trace and block trace operator

of a product of matrices can be presented as the product of matrices and we present some properties in

relation to Bhatia’s [1] definition of partial trace operator.

Both operators can be widely used for multi-level multivariate models in statistics, for example in the

estimation of unknown parameters. They allow an elegant presentation of a complex formulas for estimators

as well as an easier and faster computation of estimates. Possible applications of these operators in statistics

are presented in Section 3.

2. Properties of partial trace and block trace operators. Let Km,n be a commutation matrix

defined as a matrix which transforms vec X into vec(X′) for any matrix X : m × n (for the details see e.g.

Magnus and Neudecker [18] or Ghazal and Neudecker [9]). The following lemma shows that the commutation

matrix provides a unique relation between partial trace and block trace operators.

Lemma 2.1. For any matrix A : mp × np the following relations between partial trace and block trace

operators hold:

PTrp A = BTrm,n(Kp,mAKn,p) and BTrm,n A = PTrp(Km,pAKp,n).

Proof. We show only the first equality, as the second one can be obtained by analogy. Using Defini-

tion 1.1 (ii) and Magnus and Neudecker [18, formula (24)] we obtain

PTrp A =
∑p
i=1(Im ⊗ e′i,p)A(In ⊗ ei,p)

=
∑p
i=1(e′i,p ⊗ Im)Kp,mAKn,p(ei,p ⊗ In)

= BTrm,n(Kp,mAKn,p).

In the following we study the properties of partial trace and block trace operators, such as non-negativity

(non-negativity of the entries), positive semi-definiteness, transpose, symmetry, or connections between

the “vec” operator and Kronecker product. However, we start with the following sequential properties of

operators.
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Lemma 2.2. For an arbitrary matrix B : nps×mps the following relations hold:

PTrs(PTrp B) = PTrps B,

BTrm,n(BTrmp,np B) = BTrm,n B,

PTrp(BTrmp,np B) = PTrps [Kmp,sBKs,np]

= PTrps [(Km,s ⊗ Ip)B(Ks,n ⊗ Ip)]

= BTrm,n [(Is ⊗Kp,m)B(Is ⊗Kn,p)] ,

BTrm,n(PTrs B) = BTrm,n [Ks,mpBKnp,s]

= BTrm,n [(Ip ⊗Ks,m)B(Ip ⊗Kn,s)]

= PTrps [(Km,p ⊗ Is)B(Kp,n ⊗ Is)] .

Proof. First two relations follow directly from Definition 1.1 (ii). We show only the first part of the

third equality, as the remaining ones can be obtained by analogy. Using Definition 1.1 (ii) and Magnus and

Neudecker [18, formula (24)] we obtain

PTrp(BTrmp,np B) =

p∑
j=1

(Im ⊗ e′j,p) ·
s∑
i=1

(e′i,s ⊗ Imp)B(ei,s ⊗ Inp) · (In ⊗ ej,p)

=

p∑
j=1

(Im ⊗ e′j,p) ·
s∑
i=1

(Imp ⊗ e′i,s)Kmp,sBKs,np(Inp ⊗ ei,s) · (In ⊗ ej,p)

=

p∑
j=1

s∑
i=1

(Im ⊗ e′j,p ⊗ e′i,s)Kmp,sBKs,np(In ⊗ ej,p ⊗ ei,s)

=

ps∑
i=1

(Im ⊗ e′i,ps)Kmp,sBKs,np(In ⊗ ei,ps)

= PTrps (Kmp,sBKs,np) .

Next lemma follows directly from Definition 1.1.

Lemma 2.3. For an arbitrary matrix A : mp× np the following relations hold:

PTr′p A = PTrp(A
′) and BTr′m,n A = BTrn,m(A′).

The following lemma shows that for the square matrix A of order mp the partial trace and block trace

operators preserve symmetry, nonnegativity, positive semi-definiteness and M-matrix property of symmetric

matrices.

Lemma 2.4. Let A be an arbitrary mp×mp matrix. Then

(i) if A is symmetric, then the partial trace and block trace operators are symmetric;

(ii) if A is nonnegative (nonpositive), then the partial trace and block trace operators are nonnegative (non-

positive);

(iii) if A is positive semi-definite, then the partial trace and block trace operators are positive semi-definite;

(iv) if A is a symmetric M-matrix, then the partial trace and block trace operators are symmetric M-matrices.

Proof. The first two properties are trivial, for the third one it is enough to represent the positive

semi-definite matrix A = BB′, where B is an mp × t matrix of full column rank, and substitute it into

Definition 1.1 (ii): both operators must be positive semi-definite as the products of a matrix and its transpose.

Note, that the proof of positive semi-definiteness of the partial trace operator can also be found in de Pillis [3]
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or Zhang [30]. For the fourth property first recall that one of the conditions for a Z-matrix being an M-matrix

is the positivity of all real eigenvalues, which for symmetric matrix means its positive definiteness. Trivially,

partial trace and block trace operator preserves Z-matrix property and since they preserves also positive

definiteness, the resulting partial trace and block trace matrix is M-matrix.

It is worth to note that if M-matrix is not symmetric then partial and block trace operators do not

preserve M-matrix property. As a counterexample one can see that for

M =


1 0 −1.5 −0.5

0 1 0 −0.5

−0.5 0 1 0

0 −1.5 0 1


we have PTr2 M is singular. Moreover, this example also shows that partial trace operator does not preserve

non-singularity. Using Lemma 2.1 similar counterexample for block trace operator can be given. From

the opposite way singularity is not preserved neither. As an example it is enough to take a singular block

diagonal matrix A with blocks Ip and Jp, where Jp is a matrix of ones, for which both PTrp A and BTr2 A

are not singular.

We now focus on the relations between the partial trace and block trace operators for a square matrix

A of order mp and a standard trace operator. The following properties are trivial and follows directly from

Definition 1.1 (i).

Lemma 2.5. For any matrix A : mp×mp the following relation holds:

(i) PTrmp A = BTr1 A = tr A;

(ii) tr(PTrp A) = tr(PTrm A) = tr(BTrp A) = tr(BTrm A) = tr A.

It is well-known that tr(XY) = tr(YX) for arbitrary matrices of proper sizes. We study the assumptions

under which such a relation can hold also for partial trace and block trace operators. The following corollary

follows directly from Lemmas 2.3 and 2.4.

Corollary 2.6. For arbitrary symmetric matrices A,B : mp×mp the following relations hold:

(i) PTrp(AB) = PTr′p(BA),

BTrm(AB) = BTr′m(BA);

(ii) PTrp(AB) = PTr′p(AB) ⇔ PTrp(AB) = PTrp(BA),

BTrm(AB) = BTr′m(AB) ⇔ BTrm(AB) = BTrm(BA);

(iii) AB = BA ⇒ PTrp(AB) = PTrp(BA),

AB = BA ⇒ BTrm(AB) = BTrm(BA).

We now prove the following property of commutativity of two matrices under the partial trace and block

trace operators. It shows that if one of the matrices has particular Kronecker product structure, then the

matrices under the partial trace and block trace operators commute.

Lemma 2.7. For arbitrary matrices A : mp× np and C : n×m the following relations hold:

PTrm[A(Ip ⊗C)] = PTrn[(Ip ⊗C)A],

BTrp[A(C⊗ Ip)] = BTrp[(C⊗ Ip)A].
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Proof. Let Aij , i, j = 1, . . . , p, be the m× n blocks of A. Then

PTrm[A(Ip ⊗C)] = (tr(AijC))1≤i,j≤p = (tr(CAij))1≤i,j≤p = PTrm[(Ip ⊗C)A].

Let now Aij and cij be respectively the (i, j)th block of A and the (i, j)th entry of C, i = 1, . . . ,m,

j = 1, . . . , n. Then

BTrp[A(C⊗ Ip)] =

m∑
i=1

n∑
j=1

cijAji = BTrp[(C⊗ Ip)A].

Next properties present the connections between the partial trace and block trace operators with the

“vec” operator (Lemma 2.8), “vec” and Kronecker product operators (Lemma 2.9), and Kronecker product

operator (Lemma 2.11). All of them can be useful especially in matrix differentiation.

Lemma 2.8. For arbitrary matrices B : p×m and C : p× n the following relations hold:

PTrp (vec B vec′C) = B′C,

BTrm,n
(
vec B′ vec′C′

)
= B′C.

Proof. We show only the first equality, as the second one can be proved by analogy. From Definition 1.1

(ii) we obtain

PTrp[vec B vec′C] =

p∑
i=1

(Im ⊗ e′i,p) vec B vec′C(In ⊗ ei,p)

=

p∑
i=1

vec(e′i,pB) vec′(e′i,pC)

=

p∑
i=1

B′ei,pe
′
i,pC = B′C.

Lemma 2.9. For an arbitrary matrix A : mp× np the following relations hold:

vec(PTrp A) = (Imn ⊗ vec′ Ip)(In ⊗Km,p ⊗ Ip) vec A,

vec(BTrm,n A) = (vec′ Ip ⊗ Imn)(Ip ⊗Kp,n ⊗ Im) vec A.

Proof. We show only the first equality, as the second one can be obtained by analogy. From Defini-

tion 1.1 (ii) and using Magnus and Neudecker [18, Lemma 4]: e′i,p ⊗ Im = (Im ⊗ e′i,p)Km,p, we get

vec(PTrp A) = vec

[
p∑
i=1

(Im ⊗ e′i,p)A(In ⊗ ei,p)

]

=

p∑
i=1

(In ⊗ e′i,p ⊗ Im ⊗ e′i,p) vec A

=

p∑
i=1

[
In ⊗ (Im ⊗ e′i,p)Km,p ⊗ e′i,p

]
vec A

= (In ⊗ Im ⊗ vec′ Ip)(In ⊗Km,p ⊗ Ip) vec A.
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From the above lemma next corollary follows.

Corollary 2.10. For arbitrary matrices A : mp× np and B,C : p× p, the following relations hold:

vec
{

PTrp
[
(Im ⊗B)A(In ⊗C′)

]}
= [Imn ⊗ vec′(B′C)](In ⊗Km,p ⊗ Ip) vec A,

vec
{

BTrm,n
[
(B⊗ Im)A(C′ ⊗ In)

]}
= [vec′(B′C)⊗ Imn](Ip ⊗Kp,n ⊗ Im) vec A.

Note that Roy et al. [24, Lemma A.1 and Corollary A.2] gave two properties of block trace operator,

which can be proven using the above corollary.

Lemma 2.11. For arbitrary matrices A : mp×np, B : s×m, and C : n× t the following relations hold:

PTrp[(B⊗ Ip)A(C⊗ Ip)] = B · PTrp(A) ·C,
BTrs,t[(Ip ⊗B)A(Ip ⊗C)] = B · BTrm,n(A) ·C.

Proof. We show only the first equality, as the second one can be obtained by analogy. From Defini-

tion 1.1 (ii) we obtain

PTrp[(B⊗ Ip)A(C⊗ Ip)] =

p∑
i=1

(Is ⊗ e′i,p)(B⊗ Ip)A(C⊗ Ip)(It ⊗ ei,p)

=

p∑
i=1

B(Im ⊗ e′i,p)A(In ⊗ ei,p)C

= B · PTrp(A) ·C.

The following corollary is a direct consequence of the previous Lemma and Lemma 2.5. It is worth to

note that this property for partial trace operator and square matrices A and C was shown in Bhatia [1].

Corollary 2.12. For arbitrary matrices A : mp× np and C : n×m the following relations hold:

tr[A(C⊗ Ip)] = tr[PTrp A ·C],

tr[A(Ip ⊗C)] = tr[BTrm,n A ·C].

Bhatia [1] originally defined the partial trace and block trace operators for the Kronecker product of two

matrices. Thus, in Lemmas 2.13 and Lemma 2.14 we give the properties of operators in mentioned case and

their extensions, respectively. Observe that the properties given in Lemma 2.13 are related to the definitions

of partial traces given in Petz [21].

Lemma 2.13. For arbitrary matrices B : m× n and C : q × q the following relations hold:

PTrq(B⊗C) = tr C ·B,
BTrm,n(C⊗B) = tr C ·B.

Proof. Follows directly from Definition 1.1 (ii).

Lemma 2.14. For arbitrary matrices A : mp×np, C : q× q, and D : s× t, the following relations hold:

(i) PTrpq(A⊗C) = tr C · PTrp A,

BTrm,n(C⊗A) = tr C · BTrm,n A;
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(ii) PTrp(D⊗A) = D⊗ PTrp A,

BTrms,nt(A⊗D) = BTrm,n A⊗D.

Proof. We prove only the relations for partial trace operator, as the respective properties for block trace

operator are analogous. From Definition 1.1 (ii) we get

PTrpq(A⊗C) =

pq∑
i=1

(Im ⊗ e′i,pq)(A⊗C)(In ⊗ ei,pq)

=

p∑
i=1

q∑
j=1

(Im ⊗ e′i,p ⊗ e′j,q)(A⊗C)(In ⊗ ei,p ⊗ ej,q)

=

p∑
i=1

(Im ⊗ e′i,p)A(In ⊗ ei,p)⊗
q∑
j=1

e′j,qCej,q

= tr C · PTrp A,

PTrp(D⊗A) =

p∑
i=1

(Ism ⊗ e′i,p)(D⊗A)(Itn ⊗ ei,p)

= D⊗
p∑
i=1

(Im ⊗ e′i,p)A(In ⊗ ei,p)

= D⊗ PTrp A.

Next lemma shows the relation between block and partial trace operators for Kronecker product of two

square matrices.

Lemma 2.15. For arbitrary square matrices B : m×m and C : q × q

PTrq(B⊗C) = BTrm(C⊗B).

Proof. Follows directly from Lemma 2.1 and the properties of the commutation matrix.

3. Applications in statistics.

3.1. Optimality of designs. A basic problem in the theory of experimental designs is to characterize

optimal designs. If the response to a treatment in an experiment is affected by the other treatments, then the

universal optimality of designs under an interference model is usually studied; see e.g. Druilhet [4], Kunert

and Martin [16], Filipiak and Markiewicz [7, 8] and many others. One of the condition of universal optimality

in Kiefer’s sense [13] is expressed as the maximal trace of the information matrix over all possible designs.

Since in the interference model the information matrix is the Schur complement of a non-negative definite

partitioned matrix, the condition for universal optimality can be expressed using partial trace operators.

Filipiak and Markiewicz [7, 8] used the partial trace operator of a Schur complement of a partitioned

matrix to prove universal optimality of some circular designs under the mixed interference models. The

same property was used also by Kunert and Martin [16] to prove optimality of some non-circular designs

under the interference model, however, the partial trace operator was not mentioned there. We now prove

this property in a general case.
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For any partitioned matrix A = (Aij)i,j=1,2, where A11 and A22 are square blocks not necessarily of

the same dimension, the Schur complement A11 −A12A
−1
22 A21 of A22 in A will be denoted as [A/A22].

Theorem 3.1. For any non-negative definite mp×mp matrix A = (Aij)1≤i,j≤p let us denote the right

m(p− 1)×m(p− 1) lower corner block as B. Then

tr[A/B] ≤ [PTrm A/PTrm B].

Proof. Let H be a set of all m ×m orthogonal matrices. For any symmetric matrix C the balancing

operator, or center matrix, under the compact group H is defined to be

C =

∫
H

HCH′dH,

where the integral is taken with respect to the unique invariant probability measure on the group H (cf.

Pukelsheim [22]). The H-center matrix C is H-invariant, i.e., C = HCH′ for all H ∈ H. Since the set of

all matrices that are invariant under the orthogonal transformation is the set {αIm : α ∈ R} and obviously

tr C = tr C, we have C = m−1 tr C · Im.

Let us denote the center matrix with respect to the group Ip ⊗H by A. Obviously, Aij are the center

matrices with respect to the group H and hence A = m−1 PTrm A ⊗ Im. Moreover, from the concavity of

the Schur complement (cf. Li and Mathias [17]) we have

[A/B] ≤L [A/B],

where ≤L means the Löwner ordering. Thus

tr[A/B] = tr [A/B] ≤ tr[A/B] = tr[m−1 PTrm A⊗ Im/m
−1 PTrm B⊗ Im]

= m−1 tr ([PTrm A/PTrm B]⊗ Im) = [PTrm A/PTrm B].

3.2. Multi-level multivariate models. Filipiak et al. [6] considered the problem of estimation and

hypothesis testing under the doubly-multivariate model with specified, separable, covariance structure. Let

Yi for i = 1, . . . , n be independent and identically matrix normally distributed (q×p)-dimensional observation

matrices. It means that Yi ∼ Nq,p(M,Σ,Ψ), where M : q×p is any real matrix and Ψ : p×p and Σ : q× q
are symmetric, positive-definite matrices (cf. e.g. Kollo and von Rosen [15]). Since usually matrices Ψ

and Σ are unknown, the researcher is interested in their estimation. Filipiak et al. [6] have shown that

the maximum likelihood estimators of unknown covariance matrices can be obtained as a solution of the

following system of matrix equations:{
nq vec Ψ = (Ip2 ⊗ vec′Σ−1)(Ip ⊗Kp,q ⊗ Iq) vec S

np vec Σ = (vec′Ψ−1 ⊗ Iq2)(Ip ⊗Kp,q ⊗ Iq) vec S
(3.1)

with S = Y(In − n−11n1′n)Y′, where Y = (vec Y1, vec Y2, . . . , vec Yn) and 1n is an n-dimensional vector

of ones. Note, that (3.1) follows from differentiation of likelihood function with respect to Ψ and Σ.

Observe, that using Corollary 2.10, the above system can be presented as{
nq Ψ = PTrq

[
(Ip ⊗Σ−1)S

]
np Σ = BTrq

[
(Ψ−1 ⊗ Iq)S

]
.

(3.2)
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Both systems of matrix equations can be solved only numerically. Moreover, the number of operations in

(3.2) is much smaller than in (3.1), which makes computing the estimates much faster, especially when q is

big. Finally, representation (3.2) is much more elegant and easier to understand comparing to (3.1).

Similar representation can be used for example in the situation of Ψ structured as autoregression of

order one or compound symmetry; cf. Filipiak et al. [6].

If for a doubly multivariate data Yi ∼ Npq(µ,Σ) we assume the covariance structure known as a

block compound symmetry or block exchangeable structure, the block trace operator can be used in order

to express the maximum likelihood estimators of unknown covariance parameters. This structure can be

written in the form Σ = Pp ⊗∆1 + Qp ⊗∆2, where ∆i : q × q are unknown and Pp = p−11p1
′
p and

Qp = Ip −Pp. Then maximum likelihood estimators of ∆1 and ∆2 can be expressed as

∆̂1 = 1
n BTrq [(Pp ⊗ Iq)S] ,

∆̂2 = 1
n(p−1) BTrq

[
(Qp ⊗ Iq)S

]
,

with S = Y(In − n−11n1′n)Y′, where Y = (Y1,Y2, . . . ,Yn); cf. Roy et al. [24].

Let us consider now the multi-level multivariate model, in which Y is a tensor of order 3, distributed

as Nn,p,q([[X ; A,B,C]] , In,Ψ,Σ), where [[X ; A,B,C]] denotes the Tucker operator, which represents the

three-mode multiplication of an unknown tensor X on its three ‘sides’ or modes by the known matrices of

proper size: A, B and C, respectively; cf. Filipiak and Klein [5], Kolda [14], Savas and Lim [25] or Singull

et al. [26].

In order to determine the maximum likelihood estimators of Ψ and Σ, Filipiak and Klein [5, Lemma 3]

presented Definition 1.1 (iii) of partial trace operator and proved Lemma 2.9 and a special case of Lemma 2.11.

The form of the estimators are given respectively in Theorem 4 and Theorem 6 of Filipiak and Klein [5]. As it

can be observed, the estimators presented in Theorem 6 can be obtained only numerically, as the estimators

are not given in explicit form. A problem arises here in relation to the convergence of the numerical

algorithm to a unique solution giving the maximum likelihood estimators. Considering the algorithm only

from algebraic point of view it can be seen from partial trace representation (9) of Filipiak and Klein [5,

p. 81], that it gives a unique solution only under special conditions.

Similar problem of uniqueness of the algorithm for the estimation of unknown covariance matrix appears

in Srivastava et al. [27]. However, equation (A.7) of Srivastava et al. [27, p. 158], that is

0 = (vec′ In ⊗ Iq)(In ⊗ (P1 −P2))(vec In ⊗ Iq), (3.3)

is not so obvious to be satisfied if and only if P1 = P2. As a consequence, the proof of this fact has some

weakness, which could be easy noted if (3.3) would be represented using block trace operator (Definition 1.1

(iii)) as

0 = BTrq(P1 −P2).

3.3. Distributional properties. In this section we extend the result of Glueck and Muller [10] about

the distribution of the trace of a Wishart matrix to the distribution of block and partial traces. Let Y : p×n
be the random matrix, normally distributed, that is Y ∼ Np,n(M,Σ, In), where Σ : p× p is any symmetric,

positive-definite matrix, and M : p × n is any real matrix (cf. Kollo and von Rosen [15]). Glueck and

Muller [10] showed the following theorem, in which they allowed also a singular covariance matrix. We

present this theorem assuming only positive-definiteness of this matrix.
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Theorem 3.2. Let Y ∼ Np,n(M,Σ, In), where Σ : p × p is a symmetric positive-definite matrix with

spectral decomposition Σ = VΛV′, where V′V = Ip and Λ is a diagonal matrix with positive eigenvalues

λ1, . . . , λp on its diagonal. Let Q : n× n be any constant idempotent matrix of rank ν ≥ p. Then

tr(YQY′) ∼
p∑
i=1

λi χ
2
ν(δi),

where χ2
ν(δi) denotes the non-central χ2 distribution with ν degrees of freedom and non-centrality parameter

δi = e′i,pV
′MQM′Vei,p.

We now extend this result to the distribution of the partial and block trace operators, which can be used

in multi-level multivariate models.

Theorem 3.3. Let assume that Y ∼ Npq,n(M,Σ, In), where Σ : pq×pq is a symmetric positive-definite

matrix and there exits an orthogonal matrix V : p × p and a block-diagonal matrix Λ with positive-definite

blocks Λi : q × q, i = 1, . . . , p, such that Σ = (V ⊗ Iq)Λ(V′ ⊗ Iq). Let Q : n× n be any constant symmetric

idempotent matrix of rank ν ≥ pq. Then

BTrq(YQY′) ∼
p∑
i=1

Wq(Λi, ν,∆i),

where ∆i = (Vei,p ⊗ Iq)
′MQM′(Vei,p ⊗ Iq).

Proof. From Lemma 2.7 and Definition 1.1 (ii) we have:

BTrq(YQY′) = BTrq((Ip ⊗ Iq)YQY′)

= BTrq((Vp ⊗ Iq)(Vp ⊗ Iq)
′YQY′)

= BTrq((V ⊗ Iq)
′YQY′(V ⊗ Iq))

=

p∑
i=1

(Vei,p ⊗ Iq)
′YQY′(Vei,p ⊗ Iq).

Observe now, that (V ⊗ Iq)
′Y ∼ Npq,n((V ⊗ Iq)

′M,Λ, In) and Λ is block-diagonal, which implies that

for every j, k = 1, . . . , p, j 6= k, (Vej,p ⊗ Iq)
′Y is independent of (Vek,p ⊗ Iq)

′Y and (Vei,p ⊗ Iq)
′Y ∼

Nq,n((Vei,p⊗Iq)
′M,Λi, In), i = 1, . . . , p. Therefore (Vei,p⊗Iq)

′YQY′(Vei,p⊗Iq) ∼Wq(Λi, ν,∆i) with ν

being equal to rank Q and ∆i given in the theorem (cf. Vaish and Chaganty [28]). It completes the proof.

Similar distributional property for partial trace follows from the previous theorem and Lemma 2.1.

Corollary 3.4. Let assume that Y ∼ Npq,n(M,Σ, In), where Σ : pq × pq is a symmetric positive-

definite matrix and there exits an orthogonal matrix V : p × p and a matrix Λ, whose p × p blocks are

diagonal, such that Σ = (Iq ⊗V)Λ(Iq ⊗V′). Let Q : n × n be any constant symmetric idempotent matrix

of rank ν ≥ pq. Then

PTrp(YQY′) ∼
p∑
i=1

Wq(Λi, ν,∆i),

where

Λi = (ei,p ⊗ Iq)
′Kp,qΛKq,p(ei,p ⊗ Iq),

∆i = (Vei,p ⊗ Iq)
′Kp,qMQM′Kq,p(Vei,p ⊗ Iq).
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