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ON THE INVERSE OF A CLASS OF WEIGHTED GRAPHS∗

S.K. PANDA† AND S. PATI‡

Abstract. In this article, only connected bipartite graphs G with a unique perfect matching M are considered. Let Gw

denote the weighted graph obtained from G by giving weights to its edges using the positive weight function w : E(G)→ (0,∞)

such that w(e) = 1 for each e ∈ M. An unweighted graph G may be viewed as a weighted graph with the weight function

w ≡ 11 (all ones vector). A weighted graph Gw is nonsingular if its adjacency matrix A(Gw) is nonsingular. The inverse of a

nonsingular weighted graph Gw is the unique weighted graph whose adjacency matrix is similar to the inverse of the adjacency

matrix A(Gw) via a diagonal matrix whose diagonal entries are either 1 or −1. In [S.K. Panda and S. Pati. On some graphs

which possess inverses. Linear and Multilinear Algebra, 64:1445–1459, 2016.], the authors characterized a class of bipartite

graphs G with a unique perfect matching such that G is invertible. That class is denoted by Hnmc. It is natural to ask whether

Gw is invertible for each invertible graph G ∈ Hnmc and for each weight function w 6≡ 11. In this article, first an example is

given to show that there is an invertible graph G ∈ Hnmc and a weight function w 6≡ 11 such that Gw is not invertible. Then

the weight functions w for each graph G ∈ Hnmc such that Gw is invertible, are characterized.
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1. Introduction. Let G be a simple, undirected graph. We use V (G) and E(G) to denote the vertex

set and the edge set of G, respectively. We use [i, j] to denote an edge between the vertices i and j. By Gw

we denote the weighted graph obtained from G by assigning weights to its edges using the weight function

w : E(G) → (0,∞). The unweighted graph G may be viewed as a weighted graph, where each edge has

weight 1. Let Gw be a weighted graph on vertices 1, . . . , n. The adjacency matrix A(Gw) of Gw is the square

symmetric matrix of size n whose (i, j)th entry aij is given by

aij =

{
w([i, j]), if [i, j] ∈ E(G),

0, otherwise.

A perfect matching in a graph G is a spanning forest whose components are paths on two vertices. Note

that G can have more than one perfect matching. If G has a unique perfect matching, then we denote it by

M. Furthermore, when v is a vertex, we shall always use v′ to denote the matching mate for v, that is, v′

is the vertex for which the edge [v, v′] ∈M. Let G be a graph with a unique perfect matching M. An edge

e ∈M is called a matching edge, while an edge (of G) e /∈M is called a nonmatching edge. Let H be the class

of connected bipartite graphs G with a unique perfect matching M. A weighted graph Gw is nonsingular if

A(Gw) is nonsingular. A weighted bipartite graph with a unique perfect matching is nonsingular.

The inverse of a graph was first introduced by Godsil [3]. The weighted version was supplied in [6].

Definition 1.1. [6] Let Gw be a nonsingular weighted graph. Suppose that there is a signature matrix

S (a diagonal matrix with diagonal entries 1 or −1) such that SA(Gw)−1S is nonnegative. Consider the

weighted graph H such that A(H) = SA(Gw)−1S. Then H is called the inverse graph of Gw, and it is

denoted by G+
w .
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Let Hg = {G ∈ H | G/M is bipartite}, where G/M is the graph obtained from G by contracting each

matching edge to a vertex. In [3], Godsil showed that if G ∈ Hg, then G+ exists. He posed the problem

of characterizing the graphs in H which possess inverses. In [1], Akbari and Kirkland characterized the

unicyclic graphs G ∈ H which possess inverses. In [8], Tifenbach and Kirkland supplied necessary and

sufficient conditions for graphs in H to possess inverses, utilizing constructions derived from the graph itself.

In [5], Panda and Pati characterized a class of bipartite graphs G with a unique perfect matching such that

G is invertible. This class contains the class Hg and the unicyclic graphs. In [6], Panda and Pati extended

the notion of an inverse graph to positively weighted graphs. They showed that for each G ∈ Hg, the inverse

graph G+
w exists for each weight function w such that w(e) = 1 for each e ∈M.

Graphs G and H are isomorphic (G ∼= H) if one can be obtained by relabeling the vertices of the other.

An invertible graph G is said to be a self-inverse graph if G is isomorphic to its inverse graph. Characterizing

self-inverse graphs in H is also a challenging problem. This question, for the class Hg was asked by Godsil

in 1985 and has already been answered by Simion and Cao in [7]. In [8], Tifenbach and Kirkland supplied

necessary and sufficient conditions for a unicyclic graph G ∈ H to be self-inverse. In [9], Tifenbach supplied

a necessary and sufficient condition for a graph G ∈ H to satisfy G ∼= G+ via a particular isomorphism. In

[6], the authors have proved many different characteristics of the inverse graphs of the graphs G ∈ Hg.

To proceed further we need the following known definitions.

Definition 1.2. [5] Consider a graph G with a unique perfect matchingM. A path P = [u1, u2, . . . , u2k]

is called an alternating path if the edges on P are alternately matching and nonmatching edges, that is, for

each i, if [ui, ui+1] is a matching (resp., nonmatching) edge and [ui+1, ui+2] ∈ E(G), then [ui+1, ui+2] is

a nonmatching (resp., matching) edge. Let P = [u1, u2, . . . , u2k] be an alternating path. We say P is an

mm-alternating path (matching-matching-alternating path) if [u1, u2], [u2k−1, u2k] ∈ M. We say P is an

nn-alternating path (nonmatching-nonmatching-alternating path) if [u1, u2], [u2k−1, u2k] /∈M.

Example 1.3. Consider the graph G shown in Figure 1. The graph G has a unique perfect matching

M = {[1, 1′], [2, 2′], [3, 3′], [4, 4′]}. The alternating paths [1, 1′, 2, 2′, 3, 3′], [2′, 4, 4′, 5, 5′, 3], [1′, 2, 2′, 3, 3′] and

[1, 1′, 2, 2′, 3] in G are examples of mm-alternating path, nn-alternating path, nm-alternating path and mn-

alternating path, respectively.
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Figure 1. Here, the solid edges are the matching edges.

Definition 1.4. [5] Let G be a connected graph with a unique perfect matchingM and [u, v] /∈M. An

extension at [u, v] is an nn-alternating u-v-path other than [u, v]. An extension at [u, v] is called even type

(resp., odd type) if the number of nonmatching edges on that extension is even (resp., odd). For example, in

the graph G shown in Figure 1, the path [2′, 4, 4′, 5, 5′, 3] is an extension at [2′, 3].
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Definition 1.5. [5] The nonmatching edge [u, v] is said to be an odd type edge, if either there are no

extensions at [u, v] or each extension at [u, v] is odd type. An odd type nonmatching edge [u, v] is said to

be simple odd type if there is no extension at [u, v]. We say [u, v] is an even type edge, if each extension at

[u, v] is even type. We say [u, v] is mixed type, if it has an even type extension and an odd type extension.

Let E be the set of all even type edges of G.

Definition 1.6. [5] By Hnmc we denote the class of graphs G in H such that G has no mixed type

edges and G satisfies the condition

C: The extensions at two distinct even type edges never have an odd type edge in common.

Here ‘nmc’ is an abbreviation of ‘no mixed type edges and a condition’. Thus,

Hnmc = {G ∈ H | G has no mixed type edges and G satisfies condition C}.

Definition 1.7. [5] Let G ∈ Hnmc and E be the set of all even type edges. Then by (G−E)/M denote

the graph obtained by deleting all the even type edges and then contracting each matching edge to a single

vertex.

Theorem 1.8. [5] Let G ∈ Hnmc. Then the inverse G+ exists if and only if (G− E)/M is bipartite.

Definition 1.9. [6] Let G ∈ H. We shall consider weight functions w such that w(e) = 1 for each

matching edge e. Let WG be the class of such weight functions on G.

The following result can be found in [6].

Theorem 1.10. Let G ∈ Hg and w ∈ WG. Then the inverse G+
w exists.

Having considered Theorems 1.8 and 1.10, it is natural to ask the following questions.

a) Does G+
w exist for each invertible graph G ∈ Hnmc and for each w( 6≡ 11) in WG (see, Example 2.3)?

b) If the answer of question a) is negative, then characterize all the weight functions w for each graph

G ∈ Hnmc such that G+
w exists (see, Theorem 2.11).

We supply answers to both these questions in Section 2. Finally, we show that if G ∈ Hnmc and G+
w

exists for some weight function w ∈ WG, then (G− E)/M is bipartite. That is, there is no weight function

w ∈ WG such that G+
w exists for some G ∈ {G ∈ Hnmc | (G− E)/M is nonbipartite}.

2. Inverses of weighted graphs. To state the next result, we need the following definition.

Definition 2.1. Let G be a graph. Assume that P is a path in G. We use w(P ) to mean the weight of

P , which is the product of the weights of the edges on P . That is w(P ) =
∏

e∈E(P )

w(e).

The following is essentially contained in [2, Theorem 1] and [4, Lemma 2.1]. We note that the mm-

alternating paths have been termed as alternating paths in [2, 4].

Lemma 2.2. Consider Gw, where G ∈ H and w ∈ WG. Let B = [bij ], where

bij =
∑

P (i,j)∈P(i,j)

(−1)(‖P (i,j)‖−1)/2w(P ),

where P(i, j) is the set of mm-alternating i-j-paths in Gw and ‖P (i, j)‖ is the number of edges in the i-j-path

P (i, j). Then B = A(Gw)−1.
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The following example tells us that there is an invertible graph G in Hnmc such that G+
w does not exist

for some w ∈ WG.

Example 2.3. Consider the graph G shown in Figure 2. Notice that G ∈ Hnmc. By Theorem 1.8, G+

exists. We consider the weight function w : E(G) → (0,∞) such that w(e) = 1 for each edge in G − [1′, 3]

and w([1′, 3]) = 2. Suppose that G+
w exists. Then there is a signature matrix S such that SA(Gw)−1S ≥ 0.

We use si and A(Gw)−1i,j to denote the ith diagonal entry of S and ijth entry of the matrix A(Gw)−1,

respectively. Notice that A(Gw)−11,2′ = −1 = A(Gw)−11,2′ = A(Gw)−11,3′ and A(Gw)−12,2′ = 1. Then we have

s1s
′
2 = s2s

′
3 = s1s

′
3 = −1 and s2s

′
2 = 1. Therefore, s21s

2
2s

2
2′s

2
3′ = −1 which is not possible. Hence, the answer

to question a) is negative.
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Figure 2. Here the solid edges are the matching edges.

Next we give an unexpected combinatorial answer to the following question. Let G ∈ {G ∈ Hnmc |
(G−E)/M is bipartite}. What are those weight functions w ∈ WG for which G+

w exists? In order to answer

this we need the following definition and results from the literature.

Definition 2.4. Let G ∈ H and suppose that u and v are two distinct vertices in G. Following [5], we

call an mm-alternating u-v-path a minimal path, if this path does not contain any even type extensions (of

any nonmatching edge in G).

To proceed further we need the following three known results.

Lemma 2.5. [5] Let G ∈ Hnmc. Let P (i, j) be an mm-alternating i-j-path. Then there exists a unique

minimal i-j-path Pm(i, j) and a set F of even type edges on Pm(i, j) such that P (i, j) is created from Pm(i, j)

by replacing each edge f ∈ F with an even type extension Qf at f .

Lemma 2.6. [5] Let G ∈ Hnmc with (G − E)/M is bipartite. Then G does not contain a cycle which

has an odd number of odd type edges. In particular, if one path from u to v contains an odd (resp., even)

number odd type edges, then each path from u to v must contain an odd (resp., even) number odd type edges.

Lemma 2.7. [5] Let G ∈ H and P (i, j) be an mm-alternating i-j-path. Let [u, v] be a nonmatching edge

on P (i, j) and Q(u, v) be an extension at [u, v]. Then Q(u, v) contains no vertex of P (i, j) other than u and

v. That is, V (P (i, j)) ∩ V (Q(u, v)) = {u, v}.

We need another definition which is given below.

Definition 2.8. Let G ∈ H, w ∈ WG and e be an even type edge in G. We define W (e) =
∑
Q(e)

w(Q(e)),

where the sum is taken over all extensions at e. That is, W (e) is the sum of the weights of all extensions at

e.
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The following result supplies a necessary condition on weight functions w such that G+
w exists for each

G ∈ {G ∈ Hnmc | (G− E)/M is bipartite}.

Theorem 2.9. Let G ∈ Hnmc for which (G − E)/M is bipartite and let w ∈ WG. Assume that G+
w

exists. Then w(e) ≤W (e) for each e ∈ E

Proof. As G ∈ Hnmc and (G−E)/M is bipartite, by Theorem 1.8, G+ exists. Now suppose that w ∈ WG

is a weight function such that G+
w exists. We shall show that w(e) ≤ W (e) holds for each even type edge

e in G. Proceeding by the way of contradiction, let if possible, w(e) > W (e) hold for some even type edge

e = [u, v]. Let Q(u, v) = [u, u1, u
′
1, u2, u

′
2, . . . , u2k−1, u

′
2k−1, v] be a maximum length even type extension at

[u, v]. Let [x, y] be a nonmatching edge on Q(u, v). The edge [x, y] is odd type.

Claim. The edge [x, y] is simple odd type.

Proof of the Claim. Suppose that the edge [x, y] is not simple odd type. Then there is an extension Q(x, y)

at [x, y], and by Lemma 2.7, x and y are the only common points on the paths Q(x, y) and [u′, Q(u, v), v′].

In that case, by replacing [x, y] with Q(x, y) in Q(u, v), we get a larger length even type extension at [u, v],

which is a contradiction. So the claim is justified.

Thus, each nonmatching edge on Q(u, v) is simple odd type. Consider B = A(Gw)−1. By using Lemma

2.2, we see that

i) bui,u′i
= 1 for all i = 1, . . . , 2k − 1;

ii) −w([u′, u′1]) = bu′,u′1 , bv′,u2k−1
= −w([v′, u′2k−1]) and bui,u′i+1

= −w([ui, u
′
i+1]) for all i = 1, . . . , 2k − 2,

as each nonmatching edge on Q(u, v) is simple odd type; and

iii) bu′,v′ = −w(e) + W (e) < 0.

Since G+
w exists, there is a signature matrix S such that SA(Gw)−1S ≥ 0. Then we have

i) sui
su′i = 1 for all i = 1, . . . , 2k − 1;

ii) −1 = su′su′1 = sv′su2k−1
= sui

su′i+1
for all i = 1, . . . , 2k − 2; and

iii) su′sv′ = −1.

Therefore, s2u′s
2
v′s

2
u1
· · · s2u2k−1

s2u′1
· · · s2u′2k−1

= −1 which is not possible. This is a contradiction to our hy-

pothesis that G+
w exists. Hence, w(e) ≤W (e) for all e ∈ E .

The following result tells us that the above necessary condition on weight functions w is also sufficient

for the existence of G+
w for a graph G ∈ {G ∈ Hnmc | (G− E)/M is bipartite}.

Theorem 2.10. Let G ∈ Hnmc for which (G−E)/M is bipartite and w ∈ WG. Assume that w(e) ≤W (e)

for each e ∈ E. Then G+
w exists.

Proof. Suppose that G ∈ Hnmc with (G − E)/M bipartite. Take a weight function w ∈ WG such that

w(e) ≤W (e) holds for each e ∈ E . We shall show that G+
w exists. Let S be the signature matrix defined by

s1 = 1 and si = (−1)z, where z is the number of odd type edges on a i-1-path. This matrix is well defined, in

view of Lemma 2.6. Suppose that SA(Gw)−1S � 0. That is, there exist i and j such that siA(Gw)−1i,j sj < 0.

We have two possibilities.

Case I. The entry A(Gw)−1i,j < 0. Then si = sj . By Lemma 2.6, the parity of the number of odd type

edges on any path from 1 to i is the same with that of any path from 1 to j. It follows that any path from

i to j must contain an even number of odd type edges.
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Let P 1
m(i, j), P 2

m(i, j), . . . , P t
m(i, j) be the minimal paths from i to j. Let Pr(i, j) be the set of all

mm-alternating i-j-paths which are created from P r
m(i, j), for r = 1, . . . , t. Using Lemma 2.5, we have

|P(i, j)| =
∑t

r=1 |Pr(i, j)|. Using Lemma 2.2, we have

A(Gw)−1i,j =

t∑
r=1

∑
P (i,j)∈Pr(i,j)

[
(−1)

‖P (i,j)‖−1
2 w(P (i, j))

]
, (2.1)

where
∑

P (i,j)∈Pr(i,j)

[
(−1)

‖P (i,j)‖−1
2 w(P (i, j))

]
is the contribution to A(Gw)−1i,j coming from the rth minimal

path P r
m(i, j).

Assume first that P r
m(i, j) contains an odd number of nonmatching edges. As any i-j-path contains

an even number of odd type edges, we must have an odd number of even type edges on P r
m(i, j). Let

e1, e2, . . . , ek be the even type edges on the rth minimal path P r
m(i, j), where k is odd. Let ml ≥ 1 be the

number of extensions (these are even type) at the edge el, for l = 1, . . . , k. Suppose that we choose the even

type edges ei1 , . . . , eip from e1, e2, . . . , ek and create an mm-alternating i-j-path by using one extension for

each of the chosen even type edges. Then we can create mi1 · · ·mip many such mm-alternating i-j-paths

and each such path has an odd (resp., even) number of nonmatching edges if p is even (resp., odd). Thus,

the contribution of the mm-alternating paths that are created from P r
m(i, j) by choosing p many edges out

of e1, e2, . . . , ek, to A(Gw)−1i,j is

(−1)p+1w(P r
m(i, j))

∑
{ei1 ,...,eip}⊆{e1,e2,...,ek}

W (ei1)W (ei2) · · ·W (eip)

w(ei1)w(ei2) · · ·w(eip)
.

Hence, the total contribution of Pr(i, j), the set of mm-alternating i-j-paths that are created from P r
m(i, j),

to A(Gw)−1i,j is

k∑
p=0

(−1)p+1w(P r
m(i, j))

∑
{ei1 ,...,eip}⊆{e1,e2,...,ek}

W (ei1)W (ei2) · · ·W (eip)

w(ei1)w(ei2) · · ·w(eip)

= −w(P r
m(i, j))

k∑
p=0

∑
T⊆{e1,e2,...,ek}

|T |=p

∏
ei∈T

−W (ei)

w(ei)

= −w(P r
m(i, j))

k∏
i=1

[
1− W (ei)

w(ei)

]
≥ 0,

as k is odd. Similarly, if P r
m(i, j) contains an even number of nonmatching edges, then also the contribution

P r
m(i, j), to A(Gw)−1i,j is nonnegative. Hence, A(Gw)−1i,j ≥ 0, by (2.1). This contradicts the hypothesis that

A(Gw)−1i,j < 0.

Case II. The entry A(Gw)−1i,j > 0. Carrying the arguments in a way similar to CASE I, we get a

contradiction to our hypothesis that A(Gw)−1i,j > 0.

Hence, we conclude that SA(Gw)−1S ≥ 0. That is, G+
w exists.

The main theorem of this section is the following.

Theorem 2.11. Let G ∈ Hnmc for which (G− E)/M is bipartite and w ∈ WG. Then G+
w exists if and

only if w(e) ≤W (e) for each e ∈ E, where E is the set of all even type edges.
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Remark 2.12. It is clear that Theorems 1.8 and 1.10 are particular cases of Theorem 2.11.

Instead of looking at {G ∈ Hnmc | (G − E)/M is bipartite}, let us look at the larger class Hnmc itself.

Suppose that for G ∈ Hnmc and w ∈ WG, the inverse G+
w exists. What can be said about such a graph G?

The following result says that in that case the graph G must belong to {G ∈ Hnmc | (G−E)/M is bipartite}.
In other words, these are the only graphs in Hnmc which have inverses for some weight functions.

Proposition 2.13. Let G ∈ Hnmc and w ∈ WG. If G+
w exists, then (G− E)/M is bipartite.

Proof. Let G ∈ Hnmc, w ∈ WG for which G+
w exists. Let S be the signature matrix such that

SA(Gw)−1S ≥ 0. As G ∈ Hnmc, deleting the even type edges, we see that (G − E) has no even type

edges. Then by using Lemma 2.2, we have

i) A(Gw)−1u′,v′ < 0 for any nonmatching edge [u, v] ∈ (G− E) and

ii) A(Gw)−1x,x′ = 1 for any matching edge [x, x′] ∈ (G− E).

Let [u, v] ∈ (G − E) be a nonmatching edge. So A(Gw)−1u′,v′ < 0. Since su′A(Gw)−1u′,v′sv′ ≥ 0, we have that

su′sv′ = −1. Let [x, x′] be a matching edge in (G − E). By similar arguments, we have sxsx′ = 1. Taking

X = {u ∈ (G− E)/M | su > 0} and Y = {u ∈ (G− E)/M | su < 0}, we get a bipartition.

We summarize our observation of this article by the following result which also addresses question b).

Theorem 2.14. Let G ∈ Hnmc and w ∈ WG.

i) If (G− E)/M is bipartite, then G+
w exists if and only if w(e) ≤W (e) for each e ∈ E.

ii) If (G− E)/M is not bipartite, then G+
w does not exist.
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