SOME INEQUALITIES FOR THE KHATRI-RAO PRODUCT OF MATRICES*

CHONG-GUANG CAO ${ }^{\dagger}$, XIAN ZHANG ${ }^{\dagger}$, AND ZHONG-PENG YANG ${ }^{\S}$

Abstract

Several inequalities for the Khatri-Rao product of complex positive definite Hermitian matrices are established, and these results generalize some known inequalities for the Hadamard and Khatri-Rao products of matrices.

Key words. Matrix inequalities, Hadamard product, Khatri-Rao product, Tracy-Singh product, Spectral decomposition, Complex positive definite Hermitian matrix.

AMS subject classifications. 15A45, 15A69

1. Introduction. Consider complex matrices $A=\left(a_{i j}\right)$ and $C=\left(c_{i j}\right)$ of order $m \times n$ and $B=\left(b_{i j}\right)$ of order $p \times q$. Let A and B be partitioned as $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)$, where $A_{i j}$ is an $m_{i} \times n_{j}$ matrix and $B_{k l}$ is a $p_{k} \times q_{l}$ matrix $\left(\sum m_{i}=m\right.$, $\left.\sum n_{j}=n, \sum p_{k}=p, \sum q_{l}=q\right)$. Let $A \otimes B, A \circ C, A \odot B$ and $A * B$ be the Kronecker, Hadamard, Tracy-Singh and Khatri-Rao products, respectively. The definitions of the mentioned four matrix products are given by Liu in [1]. Additionally, Liu [1, p. 269] also shows that the Khatri-Rao product can be viewed as a generalized Hadamard product and the Kronecker product is a special case of the Khatri-Rao or Tracy-Singh products. The purpose of this present paper is to establish several inequalities for the Khatri-Rao product of complex positive definite matrices, and thereby generalize some inequalities involving the Hadamard and Khatri-Rao products of matrices in [1, Eq. (13) and Theorem 8], [6, Eq. (3), Lemmas 2.1 and 2.2, Theorems 3.1 and 3.2], and [3, Eqs. (2) and (9)].

Let $S(m)$ be the set of all complex Hermitian matrices of order m, and $S^{+}(m)$ the set of all complex positive definite Hermitian matrices of order m. For M and N in $S(m)$, we write $M \geq N$ in the Löwner ordering sense, i.e., $M-N$ is positive semidefinite. For a matrix $A \in S^{+}(m)$, we denote by $\lambda_{1}(A)$ and $\lambda_{m}(A)$ the largest and smallest eigenvalue of A, respectively. Let B^{*} be the conjugate transpose matrix of the complex matrix B. We denote the $n \times n$ identity matrix by I_{n}, also we write I when the order of the matrix is clear.
2. Some Lemmas. In this section, we give some preliminaries.

[^0]
ELA

Lemma 2.1. There exists an $m p \times \sum m_{i} p_{i}$ real matrix Z such that $Z^{T} Z=I$ and

$$
\begin{equation*}
A * B=Z^{T}(A \odot B) Z \tag{2.1}
\end{equation*}
$$

for any $A \in S(m)$ and $B \in S(p)$ partitioned as follows:

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 t} \\
\cdots & \cdots & \cdots \\
A_{t 1} & \cdots & A_{t t}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 t} \\
\cdots & \cdots & \cdots \\
B_{t 1} & \cdots & B_{t t}
\end{array}\right]
$$

where $A_{i i} \in S\left(m_{i}\right)$ and $B_{i i} \in S\left(p_{i}\right)$ for $i=1,2, \cdots, t$.
Proof. Let

$$
Z_{i}=\left[\begin{array}{lllllll}
O_{i 1} & \cdots & O_{i i-1} & I_{m_{i} p_{i}} & O_{i i+1} & \cdots & O_{i t}
\end{array}\right]^{T}, \quad i=1,2, \cdots, t
$$

where $O_{i k}$ is the $m_{i} p_{k} \times m_{i} p_{i}$ zero matrix for any $k \neq i$. Then $Z_{i}^{T} Z_{i}=I$ and

$$
Z_{i}^{T}\left(A_{i j} \odot B\right) Z_{j}=Z_{i}^{T}\left(A_{i j} \odot B_{k l}\right)_{k l} Z_{j}=A_{i j} \otimes B_{i j}, \quad i, j=1,2, \cdots, t
$$

Letting $Z=\left[\begin{array}{ccc}Z_{1} & & \\ & \ddots & \\ & & Z_{t}\end{array}\right]$, the lemma follows by a direct computation.
If $t=2$ in Lemma 2.1, then Eq. (2.1) becomes Eq. (13) of [1].
Corollary 2.2. There exists a real matrix Z such that $Z^{T} Z=I$ and

$$
\begin{equation*}
M_{1} * \cdots * M_{k}=Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right) Z \tag{2.2}
\end{equation*}
$$

for any $M_{i} \in S(m(i))(1 \leq i \leq k, k \geq 2)$ partitioned as

$$
M_{i}=\left[\begin{array}{ccc}
N_{11}^{(i)} & \cdots & N_{1 t}^{(i)} \tag{2.3}\\
\cdots & \cdots & \cdots \\
N_{t 1}^{(i)} & \cdots & N_{t t}^{(i)}
\end{array}\right]
$$

where $N_{j j}^{(i)} \in S\left(m(i)_{j}\right)$ for any $1 \leq i \leq k$ and $1 \leq j \leq t$.
Proof. We proceed by induction on k. If $k=2$, the corollary is true by Lemma 2.1. Suppose the corollary is true when $k=s$, i.e., there exists a real matrix P such that $P^{T} P=I$ and $M_{1} * \cdots * M_{s}=P^{T}\left(M_{1} \odot \cdots \odot M_{s}\right) P$, we will prove that it is true when $k=s+1$. In fact,

$$
\begin{aligned}
& M_{1} * \cdots * M_{s+1}= \\
= & \left(M_{1} * \cdots * M_{s}\right) * M_{s+1} \\
= & P^{T}\left(M_{1} \odot \cdots \odot M_{s}\right) P * M_{s+1} \\
= & Q^{T}\left[P^{T}\left(M_{1} \odot \cdots \odot M_{s}\right) P \odot M_{s+1}\right] Q \quad\left(Q^{T} Q=I\right) \\
= & Q^{T}\left[P^{T}\left(M_{1} \odot \cdots \odot M_{s}\right) P \odot\left(I_{m(s+1)} M_{s+1} I_{m(s+1)}\right)\right] Q \\
= & Q^{T}\left(P^{T} \odot I_{m(s+1)}\right)\left[\left(M_{1} \odot \cdots \odot M_{s}\right) \odot M_{s+1}\right]\left(P \odot I_{m(s+1)}\right) Q .
\end{aligned}
$$

ELA

Letting $Z=\left(P \odot I_{m(s+1)}\right) Q$, the corollary follows.
If the Khatri-Rao and Tracy-Singh products are replaced by the the Hadamard and Kronecker products in Corollary 2.2, respectively, then (2.2) becomes Lemma 2.2 in [6].

Lemma 2.3. Let A and B be compatibly partitioned matrices, then $(A \odot B)^{*}=$ $A^{*} \odot B^{*}$.

Proof.

$$
\begin{aligned}
(A \odot B)^{*} & =\left(\left(A_{i j} \odot B\right)_{i j}\right)^{*}=\left(\left(\left(A_{i j} \otimes B_{k l}\right)_{k l}\right)_{i j}\right)^{*}=\left(\left(\left(A_{i j} \otimes B_{k l}\right)_{k l}\right)^{*}\right)_{j i} \\
& =\left(\left(\left(A_{i j} \otimes B_{k l}\right)^{*}\right)_{l k}\right)_{j i}=\left(\left(A_{i j}^{*} \otimes B_{k l}^{*}\right)_{l k}\right)_{j i}=\left(A_{i j}^{*} \odot B^{*}\right)_{j i} \\
& =A^{*} \odot B^{*} .
\end{aligned}
$$

Definition 2.4. Let the spectral decomposition of $A\left(\in S^{+}(m)\right)$ be

$$
A=U_{A}^{*} D_{A} U_{A}=U_{A}^{*} \operatorname{diag}\left(d_{1}, \cdots, d_{m}\right) U_{A},
$$

where $d_{i}>0$ for all i. For any $c \in \mathbf{R}$, we define the power of matrix A as follows

$$
A^{c}=U_{A}^{*} D_{A}^{c} U_{A}=U_{A}^{*} \operatorname{diag}\left(d_{1}^{c}, \cdots, d_{m}^{c}\right) U_{A}
$$

Lemma 2.5. Let $A \in S^{+}(m), B \in S^{+}(p)$ and $c \in \mathbf{R}$, then
i) $A \odot B \in S^{+}(m p), \lambda_{1}(A \odot B)=\lambda_{1}(A) \lambda_{1}(B)$, and $\lambda_{m p}(A \odot B)=\lambda_{m}(A) \lambda_{p}(B)$;
ii) $(A \odot B)^{c}=A^{c} \odot B^{c}$.

Proof. Let $A=U_{A}^{*} D_{A} U_{A}$ and $B=U_{B}^{*} D_{B} U_{B}$ be the spectral decompositions of A and B, respectively. From Lemma 2.3 and [1, Theorem 1(a)], we derive

$$
\begin{align*}
& (2.4)\left(U_{A} \odot U_{B}\right)^{*}\left(U_{A} \odot U_{B}\right)=\left(U_{A}^{*} \odot U_{B}^{*}\right)\left(U_{A} \odot U_{B}\right)=\left(U_{A}^{*} U_{A}\right) \odot\left(U_{B}^{*} U_{B}\right)=I_{m p} \\
& (2.5) \begin{aligned}
A \odot B & =\left(U_{A}^{*} D_{A} U_{A}\right) \odot\left(U_{B}^{*} D_{B} U_{B}\right)=\left(U_{A}^{*} \odot U_{B}^{*}\right)\left(D_{A} \odot D_{B}\right)\left(U_{A} \odot U_{B}\right) \\
& =\left(U_{A} \odot U_{B}\right)^{*}\left(D_{A} \odot D_{B}\right)\left(U_{A} \odot U_{B}\right) .
\end{aligned} \tag{2.5}
\end{align*}
$$

The lemma follows from (2.4), (2.5), and the definitions of $A \odot B$ and $(A \odot B)^{c}$. \square
If the Tracy-Singh product is placed by the Kronecker product in Lemma 2.5, then ii) of Lemma 2.5 becomes Lemma 2.1 in [6].

Corollary 2.6. Let $M_{i} \in S^{+}(m(i))$ for $i=1,2 \cdots, k, n=\prod_{i=1}^{k} m(i)$ and $c \in \mathbf{R}$, then
i) $M_{1} \odot \cdots \odot M_{k} \in S^{+}(n), \quad \lambda_{1}\left(M_{1} \odot \cdots \odot M_{k}\right)=\prod_{i=1}^{k} \lambda_{1}\left(M_{i}\right) \quad$ and
$\lambda_{n}\left(M_{1} \odot \cdots \odot M_{k}\right)=\prod_{i=1}^{k} \lambda_{m(i)}\left(M_{i}\right) ;$
ii) $\left(M_{1} \odot \cdots \odot M_{k}\right)^{c}=M_{1}^{c} \odot \cdots \odot M_{k}^{c}$.

Proof. Using Lemma 2.5, the corollary follows by induction.
If the Tracy-Singh product is replaced by the Kronecker product in Corollary 2.6, then ii) of Corollary 2.6 becomes Eq. (3) in [6].

Lemma 2.7. [4], [5] Let $H \in S^{+}(n)$ and V be a complex matrix of order $n \times m$ such that $V^{*} V=I_{m}$, then

ELA

i) $\left(V^{*} H^{r} V\right)^{1 / r} \leq\left(V^{*} H^{s} V\right)^{1 / s}$, where r and s are two real numbers such that $s>r$, and either $s \notin(-1,1)$ and $r \notin(-1,1)$ or $s \geq 1 \geq r \geq \frac{1}{2}$ or $r \leq-1 \leq s \leq-\frac{1}{2}$;
ii) $\left(V^{*} H^{s} V\right)^{1 / s} \leq \bar{\Delta}(s, r)\left(V^{*} H^{r} V\right)^{1 / r}$,
where r and s are two real numbers such that $s>r$ and either $s \notin(-1,1)$ or $r \notin(-1,1), \bar{\Delta}(s, r)=\left\{\frac{r\left(\delta^{s}-\delta^{r}\right)}{(s-r)\left(\delta^{r}-1\right)}\right\}^{1 / s}\left\{\frac{s\left(\delta^{r}-\delta^{s}\right)}{(r-s)\left(\delta^{s}-1\right)}\right\}^{-1 / r}, W=\lambda_{1}(H)$, $w=\lambda_{n}(H)$ and $\delta=\frac{W}{w}$.
iii) $\left(V^{*} H^{s} V\right)^{1 / s}-\left(V^{*} H^{r} V\right)^{1 / r} \leq \Delta(s, r) I$, where $\Delta(s, r)=\max _{\theta \in[0,1]}$ $\left\{\left[\theta W^{s}+(1-\theta) w^{s}\right]^{1 / s}-\left[\theta W^{r}+(1-\theta) w^{r}\right]^{1 / r}\right\}$, and r, s, W, w and δ are as in ii).
3. Main results. In this section, we establish some inequalities for the KhatriRao product of matrices.

Theorem 3.1. Let $M_{i} \in S^{+}(m(i))(1 \leq i \leq k)$ be partitioned as in (2.3) and $n=\prod_{i=1}^{k} m(i)$, then
(i) $\left(M_{1}^{s} * \cdots * M_{k}^{s}\right)^{1 / s} \geq\left(M_{1}^{r} * \cdots * M_{k}^{r}\right)^{1 / r}$, where r and s are as in i) of Lemma 2.7;
(ii) $\left(M_{1}^{s} * \cdots * M_{k}^{s}\right)^{1 / s} \leq \bar{\Delta}(s, r)\left(M_{1}^{r} * \cdots * M_{k}^{r}\right)^{1 / r}$, where $W=\prod_{i=1}^{k} \lambda_{1}\left(M_{i}\right)$ and $w=\prod_{i=1}^{k} \lambda_{m(i)}\left(M_{i}\right)$, and r, s, δ and $\bar{\Delta}(s, r)$ are as in ii) of Lemma 2.7;
(iii) $\left(M_{1}^{s} * \cdots * M_{k}^{s}\right)^{1 / s}-\left(M_{1}^{r} * \cdots * M_{k}^{r}\right)^{1 / r} \leq \Delta(s, r) I$, where $W=\prod_{i=1}^{k} \lambda_{1}\left(M_{i}\right)$ and $w=\prod_{i=1}^{k} \lambda_{m(i)}\left(M_{i}\right)$, and r, s, δ and $\Delta(s, r)$ is as in iii) of Lemma 2.7.

Proof. Let $H=M_{1} \odot \cdots \odot M_{k}$, then $H \in S^{+}(n), \lambda_{1}(H)=\prod_{i=1}^{k} \lambda_{1}\left(M_{i}\right)$ and $\lambda_{n}(H)=\prod_{i=1}^{k} \lambda_{m(i)}\left(M_{i}\right)$ from i) of Corollary 2.6. Therefore, using ii) of Corollary 2.6, Corollary 2.2, and Lemma 2.7,

$$
\begin{aligned}
\left(M_{1}^{r} * \cdots * M_{k}^{r}\right)^{1 / r} & =\left(Z^{T}\left(M_{1}^{r} \odot \cdots \odot M_{k}^{r}\right) Z\right)^{1 / r} \\
& =\left(Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right)^{r} Z\right)^{1 / r} \\
& \leq\left(Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right)^{s} Z\right)^{1 / s} \\
& =\left(Z^{T}\left(M_{1}^{s} \odot \cdots \odot M_{k}^{s}\right) Z\right)^{1 / s} \\
& =\left(M_{1}^{s} * \cdots * M_{k}^{s}\right)^{1 / s}, \\
\left(M_{1}^{s} * \cdots * M_{k}^{s}\right)^{1 / s} & =\left(Z^{T}\left(M_{1}^{s} \odot \cdots \odot M_{k}^{s}\right) Z\right)^{1 / s} \\
& =\left(Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right)^{s} Z\right)^{1 / s} \\
\leq & \bar{\Delta}(s, r)\left(Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right)^{r} Z\right)^{1 / r} \\
& =\bar{\Delta}(s, r)\left(Z^{T}\left(M_{1}^{r} \odot \cdots \odot M_{k}^{r}\right) Z\right)^{1 / r} \\
& =\bar{\Delta}(s, r)\left(M_{1}^{r} * \cdots * M_{k}^{r}\right)^{1 / r},
\end{aligned}
$$

ELA

$$
\begin{aligned}
& \left(M_{1}^{s} * \cdots * M_{k}^{s}\right)^{1 / s}-\left(M_{1}^{r} * \cdots * M_{k}^{r}\right)^{1 / r}= \\
= & \left(Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right)^{s} Z\right)^{1 / s}-\left(Z^{T}\left(M_{1} \odot \cdots \odot M_{k}\right)^{r} Z\right)^{1 / r} \\
\leq & \Delta(s, r) I . \quad \square
\end{aligned}
$$

If the Khatri-Rao and Tracy-Singh products are replaced by the Hadamard and Kronecker products in Theorem 3.1, respectively, then (i) becomes Theorem 3.1 in [6], and (ii) and (iii) become Theorem 3.2 in [6].

Theorem 3.2. Let $M_{i} \in S^{+}(m(i))(1 \leq i \leq k)$ be partitioned as in (2.3), then

$$
\begin{gather*}
\left(M_{1} * \cdots * M_{k}\right)^{-1} \leq M_{1}^{-1} * \cdots * M_{k}^{-1}, \tag{3.1}\\
M_{1}^{-1} * \cdots * M_{k}^{-1} \leq \frac{(W+w)^{2}}{4 W w}\left(M_{1} * \cdots * M_{k}\right)^{-1}, \\
M_{1} * \cdots * M_{k}-\left(M_{1}^{-1} * \cdots * M_{k}^{-1}\right)^{-1} \leq(\sqrt{W}-\sqrt{w})^{2} I, \tag{3.3}\\
\left(M_{1} * \cdots * M_{k}\right)^{2} \leq M_{1}^{2} * \cdots * M_{k}^{2}, \tag{3.4}\\
M_{1}^{2} * \cdots * M_{k}^{2} \leq \frac{(W+w)^{2}}{4 W w}\left(M_{1} * \cdots * M_{k}\right)^{2}, \tag{3.5}\\
\left(M_{1} * \cdots * M_{k}\right)^{2}-M_{1}^{2} * \cdots * M_{k}^{2} \leq \frac{1}{4}(W-w)^{2} I, \tag{3.6}\\
M_{1} * \cdots * M_{k} \leq\left(M_{1}^{2} * \cdots * M_{k}^{2}\right)^{1 / 2}, \tag{3.7}\\
\left(M_{1}^{2} * \cdots * M_{k}^{2}\right)^{1 / 2} \leq \frac{W+w}{2 \sqrt{W w}}\left(M_{1} * \cdots * M_{k}\right), \tag{3.9}\\
\left(M_{1}^{2} * \cdots * M_{k}^{2}\right)^{1 / 2}-M_{1} * \cdots * M_{k} \leq \frac{(W-w)^{2}}{4(W+w)} I,
\end{gather*}
$$

where W and w are as in Theorem 3.1.
Proof. Noting that $G \geq H>O$ if and only if $H^{-1} \geq G^{-1}>O$ [2], we obtain (3.1), (3.2) and (3.3) by choosing $r=-1$ and $s=1$ in Theorem 3.1. Similarly, (3.7), (3.8) and (3.9) can be obtained by choosing $r=1$ and $s=2$ in Theorem 1. Thereby, using that $G \geq H>0$ implies $G^{2} \geq H^{2}>0$, we derive that (3.4) and (3.5) hold.

Liu and Neudecker [3] show that

$$
\begin{equation*}
V^{*} A^{2} V-\left(V^{*} A V\right)^{2} \leq \frac{1}{4}\left(\lambda_{1}(A)-\lambda_{m}(A)\right)^{2} I \tag{3.10}
\end{equation*}
$$

for $A \in S^{+}(m)$ and $V^{*} V=I$. Replacing A by $M_{1} \odot \cdots \odot M_{k}$ and V by Z in (3.10), we obtain (3.6).

If we replace the Khatri-Rao product by the Hadamard product in (3.1), (3.2), (3.3), (3.4), (3.7), (3.8) and (3.9), then we obtain some inequalities in [6]. If choosing $t=2$ and considering the real positive definite matrices in Theorem 3.2, then Theorem 3.2 becomes Theorem 8 in [1]. If choosing $t=2$ and replacing the Khatri-Rao product by the Hadamard product in (3.6) and (3.8), respectively, then we obtain Eqs. (2) and (9) of [3].

Acknowledgement We wish to thank the referees for their helpful comments.

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

ELA

REFERENCES

[1] Shuangzhe Liu. Matrix results on the Khatri-Rao and Tracy-Singh products. Linear Algebra Appl., 289:266-277, 1999.
[2] Bo-Ying Wang and Fuzhen Zhang. Schur complements and matrix inequalities of Hadamard products. Linear and Multilinear Algebra, 43:315-326, 1997.
(3] Shuangzhe Liu and Heinz Neudecker. Several matrix Kantorrovich-type inequalities. J. Math. Anal. Appl., 197:23-26, 1996.
[4] B. Mond and J.E. Pecaric. On Jensen's inequality for operator convex functions. Houston J. Math., 21:739-754, 1995.
[5] B. Mond and J.E. Pecaric. A matrix version of the Ky Fan generalization of the Kantorovich inequality II. Linear and Multilinear Algebra, 38:309-313, 1995.
[6] B. Mond and J.E. Pecaric. On inequalities involving the Hadamard product of matrices. Electronic J. Linear Algebra, 6:56-61, 2000.

[^0]: *Received by the editors on 27 June 2000. Final version accepted for publication on 5 September 2002. Handling editor: Daniel Hershkowitz.
 ${ }^{\dagger}$ Department of Mathematics, Heilongjiang University, Harbin, 150080, P. R. of China (caochongguang@163.com). Partially supported by the Natural Science Foundation of China, the Natural Science Foundation of Heilongjiang province under grant No. A01-07, and the N. S. F. of Heilongjiang Education Committee under grant No. 15011014.
 \ddagger School of Mechanical and Manufacturing Engineering, The Queen’s University of Belfast, Ashby Building, Stranmillis Road, Belfast, BT9 5AH, Northern Ireland, UK (x.zhang@qub.ac.uk).
 ${ }^{\S}$ Department of Mathematics, Putian College, Putian, Fujian, 351100, P. R. of China (yangzhongpeng@sina.com). Partially supported by NSF of Fujian Education Committee.

