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SOME INEQUALITIES FOR THE KHATRI-RAO
PRODUCT OF MATRICES∗
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Abstract. Several inequalities for the Khatri-Rao product of complex positive definite Hermitian
matrices are established, and these results generalize some known inequalities for the Hadamard and
Khatri-Rao products of matrices.
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1. Introduction. Consider complex matrices A = (aij) and C = (cij) of order
m × n and B = (bij) of order p × q. Let A and B be partitioned as A = (Aij) and
B = (Bij), where Aij is an mi × nj matrix and Bkl is a pk × ql matrix (

∑
mi = m,∑

nj = n,
∑

pk = p,
∑

ql = q). Let A⊗B, A◦C, A�B and A∗B be the Kronecker,
Hadamard, Tracy-Singh and Khatri-Rao products, respectively. The definitions of the
mentioned four matrix products are given by Liu in [1]. Additionally, Liu [1, p. 269]
also shows that the Khatri-Rao product can be viewed as a generalized Hadamard
product and the Kronecker product is a special case of the Khatri-Rao or Tracy-Singh
products. The purpose of this present paper is to establish several inequalities for the
Khatri-Rao product of complex positive definite matrices, and thereby generalize some
inequalities involving the Hadamard and Khatri-Rao products of matrices in [1, Eq.
(13) and Theorem 8], [6, Eq. (3), Lemmas 2.1 and 2.2, Theorems 3.1 and 3.2], and [3,
Eqs. (2) and (9)].

Let S(m) be the set of all complex Hermitian matrices of order m, and S+(m)
the set of all complex positive definite Hermitian matrices of order m. For M and
N in S(m), we write M ≥ N in the Löwner ordering sense, i.e., M − N is positive
semidefinite. For a matrix A ∈ S+(m), we denote by λ1(A) and λm(A) the largest
and smallest eigenvalue of A, respectively. Let B∗ be the conjugate transpose matrix
of the complex matrix B. We denote the n× n identity matrix by In, also we write
I when the order of the matrix is clear.

2. Some Lemmas. In this section, we give some preliminaries.
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Lemma 2.1. There exists an mp×∑
mipi real matrix Z such that ZTZ = I and

A ∗B = ZT (A�B)Z(2.1)

for any A ∈ S(m) and B ∈ S(p) partitioned as follows:

A =


 A11 · · · A1t

· · · · · · · · ·
At1 · · · Att


 , B =


 B11 · · · B1t

· · · · · · · · ·
Bt1 · · · Btt


 ,

where Aii ∈ S(mi) and Bii ∈ S(pi) for i = 1, 2, · · · , t.
Proof. Let

Zi =
[
Oi1 · · · Oi i−1 Imipi Oi i+1 · · · Oit

]T

, i = 1, 2, · · · , t,

where Oik is the mipk ×mipi
zero matrix for any k 
= i. Then ZT

i Zi = I and

ZT
i (Aij �B)Zj = ZT

i (Aij �Bkl)klZj = Aij ⊗Bij , i, j = 1, 2, · · · , t.

Letting Z =




Z1

. . .
Zt


, the lemma follows by a direct computation.

If t = 2 in Lemma 2.1, then Eq. (2.1) becomes Eq. (13) of [1].
Corollary 2.2. There exists a real matrix Z such that ZTZ = I and

M1 ∗ · · · ∗Mk = ZT (M1 � · · · �Mk)Z(2.2)

for any Mi ∈ S(m(i)) (1 ≤ i ≤ k, k ≥ 2) partitioned as

Mi =




N
(i)
11 · · · N

(i)
1t

· · · · · · · · ·
N

(i)
t1 · · · N

(i)
tt


 ,(2.3)

where N
(i)
jj ∈ S(m(i)j) for any 1 ≤ i ≤ k and 1 ≤ j ≤ t.

Proof. We proceed by induction on k. If k = 2, the corollary is true by Lemma
2.1. Suppose the corollary is true when k = s, i.e., there exists a real matrix P such
that PTP = I and M1 ∗ · · · ∗Ms = PT (M1 � · · ·�Ms)P , we will prove that it is true
when k = s+ 1. In fact,

M1 ∗ · · · ∗Ms+1 =
= (M1 ∗ · · · ∗Ms) ∗Ms+1

= PT (M1 � · · · �Ms)P ∗Ms+1

= QT
[
PT (M1 � · · · �Ms)P �Ms+1

]
Q (QTQ = I)

= QT
[
PT (M1 � · · · �Ms)P � (

Im(s+1)Ms+1Im(s+1)

)]
Q

= QT
(
PT � Im(s+1)

)
[(M1 � · · · �Ms)�Ms+1]

(
P � Im(s+1)

)
Q.
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Letting Z =
(
P � Im(s+1)

)
Q, the corollary follows.

If the Khatri-Rao and Tracy-Singh products are replaced by the the Hadamard
and Kronecker products in Corollary 2.2, respectively, then (2.2) becomes Lemma 2.2
in [6].

Lemma 2.3. Let A and B be compatibly partitioned matrices, then (A � B)∗ =
A∗ �B∗.

Proof.

(A�B)∗ =
(
(Aij �B)ij

)∗
=

((
(Aij ⊗Bkl)kl

)
ij

)∗
=

((
(Aij ⊗Bkl)kl

)∗)
ji

=
((
(Aij ⊗Bkl)

∗)
lk

)
ji
=

((
A∗

ij ⊗B∗
kl

)
lk

)
ji
=

(
A∗

ij �B∗)
ji

= A∗ �B∗.

Definition 2.4. Let the spectral decomposition of A (∈ S+(m)) be

A = U∗
ADAUA = U∗

Adiag(d1, · · · , dm)UA,

where di > 0 for all i. For any c ∈ R, we define the power of matrix A as follows

Ac = U∗
AD

c
AUA = U∗

Adiag(d
c
1, · · · , dc

m)UA.

Lemma 2.5. Let A ∈ S+(m), B ∈ S+(p) and c ∈ R, then
i) A�B ∈ S+(mp), λ1(A�B) = λ1(A)λ1(B), and λmp(A�B) = λm(A)λp(B);
ii) (A�B)c = Ac �Bc.

Proof. Let A = U∗
ADAUA and B = U∗

BDBUB be the spectral decompositions of
A and B, respectively. From Lemma 2.3 and [1, Theorem 1(a)], we derive

(UA � UB)∗(UA � UB) = (U∗
A � U∗

B)(UA � UB) = (U∗
AUA)� (U∗

BUB) = Imp(2.4)
A�B = (U∗

ADAUA)� (U∗
BDBUB) = (U∗

A � U∗
B)(DA �DB)(UA � UB)

= (UA � UB)∗(DA �DB)(UA � UB).
(2.5)

The lemma follows from (2.4), (2.5), and the definitions of A�B and (A� B)c.
If the Tracy-Singh product is placed by the Kronecker product in Lemma 2.5,

then ii) of Lemma 2.5 becomes Lemma 2.1 in [6].

Corollary 2.6. Let Mi ∈ S+(m(i)) for i = 1, 2 · · · , k, n =
k∏

i=1

m(i) and c ∈ R,

then

i) M1 � · · · �Mk ∈ S+(n), λ1(M1 � · · · �Mk) =
k∏

i=1

λ1(Mi) and

λn(M1 � · · · �Mk) =
k∏

i=1

λm(i)(Mi);

ii) (M1 � · · · �Mk)c =M c
1 � · · · �M c

k .
Proof. Using Lemma 2.5, the corollary follows by induction.
If the Tracy-Singh product is replaced by the Kronecker product in Corollary 2.6,

then ii) of Corollary 2.6 becomes Eq. (3) in [6].
Lemma 2.7. [4], [5] Let H ∈ S+(n) and V be a complex matrix of order n ×m

such that V ∗V = Im, then

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002



ELA

Some Inequalities for the Khatri-Rao Product of Matrices 279

i) (V ∗HrV )1/r ≤ (V ∗HsV )1/s, where r and s are two real numbers such that s > r,
and either s 
∈ (−1, 1) and r 
∈ (−1, 1) or s ≥ 1 ≥ r ≥ 1

2 or r ≤ −1 ≤ s ≤ −1
2 ;

ii) (V ∗HsV )1/s ≤ ∆(s, r)(V ∗HrV )1/r,
where r and s are two real numbers such that s > r and either s 
∈ (−1, 1) or

r 
∈ (−1, 1), ∆(s, r) =
{

r(δs − δr)
(s− r)(δr − 1)

}1/s {
s(δr − δs)

(r − s)(δs − 1)

}−1/r

, W = λ1(H),

w = λn(H) and δ = W
w .

iii) (V ∗HsV )1/s − (V ∗HrV )1/r ≤ ∆(s, r)I, where ∆(s, r) = max
θ∈[0, 1]{

[θW s + (1− θ)ws]1/s − [θW r + (1− θ)wr ]1/r
}
, and r, s, W , w and δ are as in ii).

3. Main results. In this section, we establish some inequalities for the Khatri-
Rao product of matrices.

Theorem 3.1. Let Mi ∈ S+(m(i)) (1 ≤ i ≤ k) be partitioned as in (2.3) and

n =
k∏

i=1

m(i), then

(i) (M s
1 ∗ · · · ∗M s

k)
1/s ≥ (M r

1 ∗ · · · ∗M r
k )

1/r, where r and s are as in i) of Lemma 2.7;

(ii) (M s
1 ∗ · · · ∗ M s

k)
1/s ≤ ∆(s, r)(M r

1 ∗ · · · ∗ M r
k )

1/r, where W =
k∏

i=1

λ1(Mi) and

w =
k∏

i=1

λm(i)(Mi), and r, s, δ and ∆(s, r) are as in ii) of Lemma 2.7;

(iii) (M s
1 ∗ · · · ∗M s

k)
1/s − (M r

1 ∗ · · · ∗M r
k )

1/r ≤ ∆(s, r)I, where W =
k∏

i=1

λ1(Mi) and

w =
k∏

i=1

λm(i)(Mi), and r, s, δ and ∆(s, r) is as in iii) of Lemma 2.7.

Proof. Let H = M1 � · · · � Mk, then H ∈ S+(n), λ1(H) =
k∏

i=1

λ1(Mi) and

λn(H) =
k∏

i=1

λm(i)(Mi) from i) of Corollary 2.6. Therefore, using ii) of Corollary 2.6,

Corollary 2.2, and Lemma 2.7,

(M r
1 ∗ · · · ∗M r

k )
1/r =

(
ZT (M r

1 � · · · �M r
k )Z

)1/r

=
(
ZT (M1 � · · · �Mk)rZ

)1/r

≤ (
ZT (M1 � · · · �Mk)sZ

)1/s

=
(
ZT (M s

1 � · · · �M s
k)Z

)1/s

= (M s
1 ∗ · · · ∗M s

k)
1/s

,

(M s
1 ∗ · · · ∗M s

k)
1/s =

(
ZT (M s

1 � · · · �M s
k)Z

)1/s

=
(
ZT (M1 � · · · �Mk)sZ

)1/s

≤ ∆(s, r)
(
ZT (M1 � · · · �Mk)rZ

)1/r

= ∆(s, r)
(
ZT (M r

1 � · · · �M r
k )Z

)1/r

= ∆(s, r) (M r
1 ∗ · · · ∗M r

k )
1/r ,

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002



ELA

280 Chong-Guang Cao, Xian Zhang, and Zhong-Peng Yang

(M s
1 ∗ · · · ∗M s

k)
1/s − (M r

1 ∗ · · · ∗M r
k )

1/r =
=

(
ZT (M1 � · · · �Mk)sZ

)1/s − (
ZT (M1 � · · · �Mk)rZ

)1/r

≤ ∆(s, r)I.

If the Khatri-Rao and Tracy-Singh products are replaced by the Hadamard and
Kronecker products in Theorem 3.1, respectively, then (i) becomes Theorem 3.1 in
[6], and (ii) and (iii) become Theorem 3.2 in [6].

Theorem 3.2. Let Mi ∈ S+(m(i)) (1 ≤ i ≤ k) be partitioned as in (2.3), then

(M1 ∗ · · · ∗Mk)−1 ≤ M−1
1 ∗ · · · ∗M−1

k ,(3.1)

M−1
1 ∗ · · · ∗M−1

k ≤ (W + w)2

4Ww
(M1 ∗ · · · ∗Mk)−1,(3.2)

M1 ∗ · · · ∗Mk − (M−1
1 ∗ · · · ∗M−1

k )−1 ≤ (
√
W −√

w)2I,(3.3)

(M1 ∗ · · · ∗Mk)2 ≤ M2
1 ∗ · · · ∗M 2

k ,(3.4)

M2
1 ∗ · · · ∗M 2

k ≤ (W + w)2

4Ww
(M1 ∗ · · · ∗Mk)2,(3.5)

(M1 ∗ · · · ∗Mk)2 −M2
1 ∗ · · · ∗M 2

k ≤ 1
4
(W − w)2I,(3.6)

M1 ∗ · · · ∗Mk ≤ (M2
1 ∗ · · · ∗M 2

k )
1/2,(3.7)

(M2
1 ∗ · · · ∗M 2

k )
1/2 ≤ W + w

2
√
Ww

(M1 ∗ · · · ∗Mk),(3.8)

(M2
1 ∗ · · · ∗M 2

k )
1/2 −M1 ∗ · · · ∗Mk ≤ (W − w)2

4(W + w)
I,(3.9)

where W and w are as in Theorem 3.1.
Proof. Noting that G ≥ H > O if and only if H−1 ≥ G−1 > O [2], we obtain

(3.1), (3.2) and (3.3) by choosing r = −1 and s = 1 in Theorem 3.1. Similarly, (3.7),
(3.8) and (3.9) can be obtained by choosing r = 1 and s = 2 in Theorem 1. Thereby,
using that G ≥ H > 0 implies G2 ≥ H2 > 0, we derive that (3.4) and (3.5) hold.

Liu and Neudecker [3] show that

V ∗A2V − (V ∗AV )2 ≤ 1
4
(λ1(A) − λm(A))2 I(3.10)

for A ∈ S+(m) and V ∗V = I. Replacing A by M1 � · · · �Mk and V by Z in (3.10),
we obtain (3.6).

If we replace the Khatri-Rao product by the Hadamard product in (3.1), (3.2),
(3.3), (3.4), (3.7), (3.8) and (3.9), then we obtain some inequalities in [6]. If choosing
t = 2 and considering the real positive definite matrices in Theorem 3.2, then Theorem
3.2 becomes Theorem 8 in [1]. If choosing t = 2 and replacing the Khatri-Rao product
by the Hadamard product in (3.6) and (3.8), respectively, then we obtain Eqs. (2)
and (9) of [3].
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