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ON THE SECOND LEAST DISTANCE EIGENVALUE OF A GRAPH*

XUEYI HUANGT, QIONGXIANG HUANG!, AND LU LU

Abstract. Let G be a connected graph on n vertices, and let D(G) be the distance matrix of G. Let 01(G) > 92(G) >
- > 9n(G) denote the eigenvalues of D(G). In this paper, the connected graphs with 8,—1(G) at least the smallest root of
x3 — 322 — 11z — 6 = 0 are determined. Additionally, some non-isomorphic distance cospectral graphs are given.
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1. Introduction. Let G be a connected simple graph with vertex set V(G) = {v1, va,...,v,}. Denoted
by d(v;,v;) the length of the shortest path connecting v; and v; in G. Let H be a connected subgraph of
G and v € V(G). The distance between v and H is defined to be d(v, H) = min{d(v,w) | w € V(H)}.
Also, the diameter and distance matriz of G are defined as d(G) = max{d(v;,v;) | vi,v; € V(G)} and
D(G) = [d(vs,vj)]nxn, respectively. The characteristic polynomial ®¢(x) = det(xl — D(G)) of D(G) is also
called the distance polynomial of G.

Since D(G) is a real and symmetric, its eigenvalues can be listed as 91 (G) > 02(G) > -+ > 0,,(G). These
eigenvalues are also called the distance eigenvalues of G. The distance spectrum of G, denoted by Specp(G),
is the multiset of distance eigenvalues of G. T'wo connected graphs are said to be distance cospectral if they
share the same distance spectrum, and the graph G is called determined by its distance spectrum if any
connected graph distance cospectral with G must be isomorphic to it.

Let Ng(v) denote the neighborhood of v € V(G), G[X] the induced subgraph of G on X C V(G), and
D¢ (X) the principle submatrix of D(G) corresponding to G[X]. Also, we denote by K,, and P,, the complete
graph and path on n vertices, respectively.

For a connected graph G whose vertices are labeled as v1,vo,...,v,, and a sequence of graphs Hy, Ho,

.., Hyp, the corresponding generalized lexicographic product G[Hy, ..., H,] is defined as the graph obtained

from G by replacing v; with the graph H; for 1 < ¢ < n, and connecting all edges between H; and Hj if

v; is adjacent to v; for 1 < i # j < n. For example, Figure 1 illustrates the graph Ps[K,,, K,,, Koy, Ka,],

where A; denotes the vertex subset of Py[K,,, Ka,, Koy, Ka,] corresponding to K,, for 1 < i < 4 and the
line segments represent connecting all edges between A; and A;; for 1 <i < 3.

Connected graphs whose distance eigenvalues satisfy special conditions and the study of whether such
graphs are determined by their distance spectra have received some attention recently. Lin et al. [4] (see
also Yu [9]) proved that 9,,(G) = —2 if and only if G is a complete multipartite graph, and conjectured
that complete multipartite graphs are determined by their distance spectra. Recently, Jin and Zhang [1]
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FIGURE 1. The graph Py[Ka,, Kas, Kay, Kay].
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confirmed the conjecture. Lin et al. [5, 3] characterized all connected graphs with 9,(G) > —1 — /2 and
On—1(G) = —1, and showed that these graphs are determined by their distance spectra. Li and Meng [2]
extended the result to connected graphs with 9, (G) > —L;/ﬁ. Xing and Zhou [8] determined all connected
graphs with 02(G) < —2 4+ /2, and Liu et al. [6] generalized the result to 0:(G) < 17%@ and proved
that all these graphs are determined by their distance spectra. Very recently, Lu et al. [7] characterized all
connected graphs with 9,(G) > —3 and 93(G) < —1, and particularly, they determined all connected graphs
with exactly two distance eigenvalues different from —1 and —3, which are also shown to be determined by
their distance spectra. It is worth mentioning that most of above graphs are of diameter 2, and that only a
few infinite families of non-isomorphic distance cospectral graphs are known up to now.

In this paper, we determine all connected graphs with 9,,—1(G) > « (the diameter of these graphs could
be 2 or 3), where a ~ —1.5709 is the least root of 23 — 322 — 112 — 6 = 0. This extends a result of Lin et
al. [5]. Furthermore, we give some infinite families of non-isomorphic distance cospectral graphs.

2. Main results. First of all, we present a result on 9, (G), which is useful in the following.

LEMMA 2.1 ([3]). Let G be a connected graph on n vertices. Then 0p,(G) < —d(G) where d(G) is the
diameter of G and the equality holds if and only if G is a complete multipartite graph.

A Hermitian matriz is a square matrix with complex entries that is equal to its own conjugate transpose.
Note that all the eigenvalues of a Hermitian matrix are real, and any real symmetric matrix is always a
Hermitian matrix. The following result is well known.

LEMMA 2.2 (Cauchy Interlacing Theorem). Let A be a Hermitian matriz of order n, and B a principle
submatriz of A of order m. If A1 (A) > Aa(A) > --- > N\, (A) are the eigenvalues of A and p1(B) > pe(B) >
o > um(B) the eigenvalues of B, then \;(A) > u;(B) > Ap—m+yi(A) fori=1,...,m.

Let G be a connected graph on n vertices, and let S = {v1,...,v,} C V(G) (p > 2) be a clique of G such
that Ng(vi) \ S = Ng(v;) \ S for 1 <i,j < p. Take x, € R" (2 < ¢ < p) as the vector defined on V(G) with
x¢(v1) =1, x¢(vg) = —1 and x¢(v) = 0 for v & {v1, v}, then one can easily verify that D(G)x, = —x,. This
implies that —1 is a distance eigenvalue of G with multiplicity at least p — 1 (cf. [7]). If there are r disjoint
subsets Si,..., S, (|Si| = pi > 2) of V(G) sharing the same property as S, then we may conclude that —1

is a distance eigenvalue of G with multiplicity at least >_._, p; — . Thus, we have the following result.

LEMMA 2.3. Let G be a connected graph. If Si,...,S. (|Si| = p; > 2) are disjoint cliques of G such
that, for each 1 <i <r, Ng(u)\ S; = Ng(v) \ S; for any u,v € S;, then —1 is a distance eigenvalue of G
with multiplicity at least > ., p; — 7.

For a connected graph G, the vertex partition IT: V(G) = V4 UVoU--- UV}, is called a distance equitable
partition if, for any v € Vi, 37,y d(v,u) = bj; is a constant only dependent on i,j (1 < i,j < k). The
matrix B = (bij)kxk is called the distance divisor matriz of G with respect to II. The following lemma
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states that each eigenvalue of By is also the distance eigenvalue of G.

LEMMA 2.4 ([7]). Let G be a connected graph with distance matriz D(G), and let I1: V(G) = VUL U
-+« UV be a distance equitable partition of G with distance divisor matrixz Bry. Then det(xI — Byy)| det(al —
D(QG)), and the largest eigenvalue of By is 01(G).

The following two lemmas give the distance polynomials of Py[Kg,, Ko, , Ko, K,,] and Ps[Ky, , Ky, , Ky,],

a» as»
which are the graphs we need to consider in our main result.

LEMMA 2.5. Let G = Py[K,,, Koy, Koy, Ka,] with a1, a2,a3,a4 > 1. Then the distance polynomial of G
is given by

(2.1> CI)G(«T) — (a: + 1)a1+02+a3+a4—4(b1($)7

where ®1(z) = 2% — (a1 + a2 + az + a4 — 4)2® — [3a1a3 + 8ajaq + 3aza4 + 3(a1 + az + a3z + ag) — 6]2% +
[a1aza3 + ajagay + a1azay + azazay — (6aras + 16a1a4 + 6aza4) — 3(ay + ag + as + aq4) + 4]z + a1aza3a4 +
ayagas + ajasas + ayazas + asazas — (3arasz + 8ajag + 3asay) — (a1 + as + az +aq) + 1. In particular, —1 is
not a zero of ®1(x).

Proof. As shown in Figure 1, let A; denote the vertex subset of G corresponding to K,, for 1 <1 < 4.
Then it is easy to see that I : V(G) = A3 U Ay U A3 U Ay is a distance equitable partition of G, and the
corresponding distance divisor matrix is

a; — 1 a9 2a3 3as
By = al as —1 as 2a4
2&1 as as — 1 Qy

3&1 2@2 as ayq — 1

By Lemma 2.4, we have ®(z) = det(al — Br) | ®g(x), where ®4(x) is given in Eq. (2.1). Furthermore,

from Lemma 2.3 we know that —1 is a distance eigenvalue of G with multiplicity at least a1 +as +as+a4s—4.

Thus, our result follows because —1 is not a zero of ®;(x) due to ®1(—1) = ajasazay > 0. a

Using the same method as in Lemma 2.5, one can also obtain the distance polynomial of Ps[Ky, , Ky, , Kp,].
LEMMA 2.6. Let G = P3[Ky,, Kp,, Kp,| with by,ba,b3 > 1. Then the distance polynomial of G is given

by

(22) <I>G(x) _ ((E + 1)b1+b2+b3—3q>2(x)’

where (I)Q(SU) = 1’3 - (bl + b2 + b3 - 3).’[2 - [2([)1 + b2 + bg) + 3b1b3 - 3]1’ + b1b2b3 - 3b1b3 - (bl + b2 + bg) + 1.
In particular, —1 is not a zero of ®o(x).
The following lemma is crucial for the proof of our main result.

LEMMA 2.7. If G is a connected graph on n (n > 4) vertices with Op—1(G) > «, where o =~ —1.5709 is
the least oot of x> — 322 — 11z — 6 = 0, then each matriz listed below cannot be the principle submatriz of
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D(G)

10755 10755 10155 10155 10751

Ay f21012|, Ag|21012|, As|21013]|, Ag|21013|, As5|21012]|,
32102 32103 32102 32103 32102
12220 12230 12320 12330 21220

012311 012311

01232 01232 01231
10121 10121 10122 198211 108341

Ag 21012 A7 21011 Ag|21011 Ag | ? A :

6 y At ) 418 » 429 1321022 (0 410 (321023 >
32103 32102 32102 321922 321923
21230 21120 12120 11229032 1122902
012311 012311 012311 012311
310123 310723 310711 210151

A |521032 (> A2 (321033 A3 [327022|> A1a[321022]>
112302 112302 111202 112202
112220 112320 111220 111220
ro12311 012312 0123127 012312
390721 390721 510137 390711

Ais 327032 A6 (321031 417327021 A8 (327021 |-
112302 112201 112201 111202
L111220 211110 221110 211120
- 01212 01212 ro1211
0122 0122

10122 10121 10121
1012 1011

A1 39831, Ao {21021, Aoy |21021, Asp|21021(, Asz 39531,
2192 12201 12201 12201 2192
L 22110 21110 11110
(0121 10711 10711 (96111 10711

Aoy | 29321 Ags {21022, Agg 21011, Az 21021, Agg|21021

22100110 8251715050 P20 700|120 T 11201
L 11220 11120 11120 21110

Proof. Assume that there exists some i (1 <14 < 28) such that A; (|]4;| = m) is the principle submatrix

of D(G). Then the second least eigenvalue of A; satisfies 0,,—1(A;) > 05—1(G) > a by Lemma 2.2, which is
a contradiction because 0,,—1(4;) < a according to Table 1. 0

TABLE 1
The second least eigenvalue Opm—1 of A; (1 < i < 28).

A; Om—1 A Om—1 A Om—1 A Om—1 A; Om—1
Aq —2.2442 As —1.8864 As —2.6300 Ay —2.1466 As -2
Ag —2 Ar —1.8010 Asg -2 Ag —2 A1o —2.0671
Aqq —2.0671 Aqo -2 Aqs -2 Aqs —2.2598 Aqs —1.8894
A —1.6527  Aps 2 Ais —1.6527 A 2 Asy  —2.6180
A2 -2 Az a Azs -2 Aazg -2 Ass -2
Asg —2 Aoy o Aog o — — — —

The join of two graphs G and H, denoted by G V H, is the graph
vertex of GG to each vertex of H.

Now we are in a position to prove the main result of this paper.

obtained from G U H by joining each

THEOREM 2.8. Let G be a connected graph on n (n > 3) vertices. If 0,—1(G) > «, where o =~ —1.5709
is the least root of x3 — 3z2 — 11z — 6 = 0, then one of the following occurs:

(1) o < an_l(G) < =1 and G = P4[Ka1,Ka2,Ka3,Ka4] (a1 +ag + a3z +aq4 = ’Il) with ai,ao,as,ag > 1

satisfying ®1(a) < 0, where ®1(x) is given in Eq. (2.1);

(2) 67,4,1(6') =—1and G = Pg[Kbl,sz,Kbg] = sz V (Kb1 UKbg) (bl +by+bg=n> 4) with by,by, b3 > 1

or G=K,;

(3) 0n_1(G) =3 —1 and G = Ps.

Proof. If n = 3, the result follows by simple computation. Now suppose n > 4. Let d(G) be the diameter
of G. If d(G) > 4, then D(Ps) is a principle submatrix of D(G), and so we have —1.5709 ~ o < 9,,—1(G) <
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04(Ps) = —1.7304 by Lemma 2.2, a contradiction. If d(G) = 1, then G = K,, with 9,,_1(G) = —1 > «a, as
required. Thus, we only need to consider the following two cases.

Case 1. d(G) =3

Let H = Py = vivausvy be a diameter path of G. Then H is an induced subgraph of G and D(H) =
D¢ ({v1,v2,v3,v4}) is a principle submatrix of D(G). Firstly, we have the following claim.

Cram 1.1. d(v, H) = 1 for any v € V(G) \ V(H).

If not, we have 2 < d(v, H) < 3 since d(G) = 3. Let d; = d(v,v;) for i = 1,2,3,4. Then d; € {2,3} for
each 4, and the principle submatrix of D(G) corresponding to {vy, ve, vs, v4, v} is of the form

0 1 2 3 d
1 0 1 2 do
Dg({vl,vg,v37v4,v}) = 2 1 0 1 d3
3 2 1 0 dy

di do ds3 dy O

In Table 2, we list approximate values of each of the second least eigenvalue of D¢ ({v1,ve,vs,v4,v}). By
Lemma 2.2, we have —1.5709 = a < 0,—1(G) < 04(Dg({v1, v2,v3,v4,v}), which is impossible according to
Table 2. Hence, each vertex in V(G) \ V(H) must be adjacent to at least one vertex of H. Thus, we have
established Claim 1.1.

TABLE 2
The second least eigenvalue of Dg({v1,v2,vs,v4,v}).

(di,d2,ds3,da) 04 (d1,d2,ds3,da) 04 (dyi,d2,ds,da) 04
(2,2,2,2) —2.3956 (2,2,2,3) 23810 (2,2,3,2) 3.0586
(2,2,3,3) —2.6028 (2,3,2,2) —3.0586 (2,3,2,3) —3.1163
(2,3,3,2) —3.4142 (2,3,3,3) —3.1014 (3,2,2,2) —2.3810
(3,2,2,3) —3.1436 (3,2,3,2) ~3.1163 (3,2,3,3) —3.2798
(3,3,2,2) ~2.6028 (3,3,2,3) —3.2798 (3,3,3.2) ~3.1014
(3,3,3,3) —3.4142 —

S R TR TRERT

V1 ’U2 US V4 V1 ’U2 U3 V4 V1 ’02 US V4 V1 ’02 'US V4 V1 ’U2 'US V4
U1 U2 U3 V4

mmmm

UHU UI IU IU IU AU :1}

v V2 U3 V1 V2 V3 V1 V2 VU3 U] 'UZ U3

H13 Hyy H15
A E TR I L 20 30 T
Hi7 Hay
FIGURE 2. The graphs Hi—H2y4.
Note that d(vi,v4) = 3. From Claim 1.1 and the symmetry of v; and vy (resp., vo and wv3), for

any v € V(G) \ V(H), we can suppose that G[{v1,ve,vs,vs,v}] € {Hi1, Ha, Hs, Hy, H5, Hs} (see Figure
2). If G[{v1,vs,v3,v4,v}] = Hy, then d(v,v1) = 1, d(v,v2) = 2, and d(v,v3),d(v,v4) € {2,3}. Thus,
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D¢g({v1,va,v3,v4,0}) € {A1, Ag, A3, A4} is a principle submatrix of D(G), contrary to Lemma 2.7. Simi-
larly, if G[{v1,va, v3,v4,v}] € {Ha, Hy, Hs}, then we have Dg({vy, v2,vs,v4,v}) € {As, A, A7, Ag}, which
is impossible. Hence, we conclude that G[{v1,v2,vs,v4,v}] = Hz or Hg for any v € V(G) \ V(H). Again by
considering the symmetry of v; and vy (resp., v2 and v3), we have the following claim.

Cram 1.2. For any v € V(G) \ V(H), Ng(v) NV (H) = {v1,v2}, {vs,v4}, {v1,v2,v3} or {va,v3,v4}.

Now we denote by Vi, Vo, V3 and Vj the sets of v € V(G) \ V(H) such that Ng(v) N V(H) = {v1,v2},
{v1,va,v3}, {va,v3,v4} and {vs3,v4}, respectively. Then V(G)\ V(H) =V, UV, UV3UV,.

For any w,v € V4, if u and v are not adjacent, then G[{v1,v2,vs3,v4,u,v}] = H7, and the corresponding
principle submatrix Dg({v1,v2,v3,v4,u,v}) belongs to {Ag, A10, A11, A12} because d(u,v1) = d(v,v1) =
d(u,v2) = d(v,v2) = 1, d(u,v3) = d(v,v3) = 2 and d(u,vs),d(v,v4) € {2,3}. This is a contradiction by
Lemma 2.7, which implies that G[V;] is a complete graph, and so is G[V4] by the symmetry. Similarly,
if u,v € V5 are not adjacent, then G[{v1,va,v3,v4,u,v}] = Hg and the corresponding principle submatrix
D¢ ({v1,v2,v3,v4,u,v}) is equal to Ay3, a contradiction. Thus, G[V2] is a complete graph, and so is G[Vs]
by the symmetry.

For any u € Vi and v € Vo, if uw and v are not adjacent, then G[{vi,ve,vs,v4,u,v}] = Hy and
D¢g({v1,va,v3,v4,u,v}) € {A14, A15}, which is impossible and so each vertex of V; is adjacent to each
vertex of V5. Also, by the symmetry, each vertex of V3 is adjacent to each vertex of V4. Similarly, if u € V3
and v € V3 are adjacent, then G[{vy,v2,vs,v4,u,v}] = Hyp and Dg({v1,va, v3,04,u,v}) = Agg; if u € V4
and v € Vy are adjacent, then G[{v1,vs,v3,v4,u,v}] = Hy1 and Dg({v1,va,v3,v4,u,v}) = Aj7. Therefore,
there are no edges in G connecting V; and V3 (resp., V2 and Vj by the symmetry), and V3 and V.

For any u € V5 and v € V3, if w and v are not adjacent, then G[{vi,vq,vs,vs,u,v}] = Hia and
D¢ ({v1,v2,v3,v4,u,v}) = Ays, contrary to Lemma 2.7. Thus, each vertex of V5 is adjacent to each vertex
of V3.

Now put V/ = V; U {v;} with |V/| = a; for i = 1,2,3,4. Then V(G) = V{ UV U V4 UV],. Note that vy
(resp., v4) is adjacent to each vertex of ViUV (resp., V4UV}) but none of V{UV] (resp., V{UVS), and vg (resp.,

v3) is adjacent to each vertex of V{ UV U VY (resp., V5 UV53UV)) but none of VJ (resp., V{). Combining this
with above arguments, we may conclude that G[V/] = K, for i = 1,2,3,4 and G = P4y[K,,, K,,, Ka,, Ka,]-

By Lemma 2.5, the distance polynomial of G is ®g(z) = (z + 1)@teztestai—4g, (), where ®;(z) is
given in Eq. (2.1). Note that ®;(—1) = ajazazas > 0. Since &(G) > 0 and 9,(G) < —3 (by Lemma
2.1) are zeros of ®1(x), we claim that ®;(x) has two zeros in (—1,+00) and one zero in (—oo, —3]. Thus,
On—1(G) € [0n(G), —1), and s0 9,,—1(G) > « if and only if ®;(a) < 0.

Case 2. d(G) = 2.

As above, let H = P3 = vivovs be the diameter path of G. Then H is a induced subgraph of G and
D(H) = Dg({v1,v2,v3}) is a principle submatrix of G. We also have the following claim.

CLAM 2.1. d(v,H) =1 for any v € V(G) \ V(H).

Assume that there exists some v € V(G) \ V(H) such that d(v, H) > 1. Then d(v,v;) =2 for i =1,2,3
because d(G) = 2. Thus, Dg({v1,v2,v3,v}) = A9 is a principle submatrix of G, which is a contradiction
by Lemma 2.7.
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By Claim 2.1, for any v € V(G) \ V(H), the induced subgraph G[{v1,ve,vs,v}] must be one of
{H137H14,H15,H167H17}. If G[{Ul,vg,’lj3,1}}] = H13, then d(U,U2> = d(’U,U?,) = 2 because d(G) = 2.
Thus, there exists some other u € V(G) which is adjacent to both v and vs, and so G[{v1,ve2,vs,v,u}] €
{His, H19, Ha}, which is impossible because Aoy, A1 and Agy are not principle submatrices of D(G). Sim-
ilarly, if G[{v1, v2,v3,v}] € {H14, Hi6}, one can also deduce a contradiction because D(G) cannot contain
Aoz and Agy as its principle submatrices. Thus, G[{v1, v, v3,v}] = Hys or Hy7, and we have the following
claim.

CLAM 2.2. For any v € V(G) \ V(H), Ng(v) NV (H) = {v1,v2}, {v1,v2,v3} or {ve,vs}.

Denote by V1, Va and V3 the sets of v € V(G) \ V(H) such that Ng(v) NV (H) = {v1,v2}, {v1,v2,v3}
and {ve, vs}, respectively. Let V/ = V; U{v;} with |V/| =b; for i = 1,2,3. Then V(G) = VJ U V5 U V. We
claim that Hyy, Hao, Hos and Hyy are not induced subgraphs of G because Ags, Asg, Aoz and Asg are not
principle submatrices of D(G) by Lemma 2.7. Hence, as in Case 1, we may conclude that G[V/] = K, for
i=1,2,3, each vertex of V{ (resp., V) is adjacent to each vertex of V3 but none of V3 (resp., V{) and each
vertex of Vj is adjacent to each vertex of V/ U VJ. Therefore, we have G = P3[Kp,, Kp,, Kp,]-

According to Lemma 2.6, the distance polynomial of G is given by ®g(z) = (x + 1)01T02+03=3p, (),
where ®o(x) is shown in Eq. (2.2). Since ®3(—1) = b1babs > 0, and 91(G) > 0, 9,(G) < —2 (by Lemma
2.1) are two zeros of ®5(x), we conlude that ®o(z) has two zeros in (—1,+00) and one zero in (—oo, —2],
implying that 9,_1(G) is not a zero of ®5(x). Hence, we have 9,_1(G) = —1 due to n > 4, as required.

We complete the proof. 0

From Theorem 2.8, we obtain that 9,—1(G) € (a,—1) if and only if G = P4[K,,, Kuy, Koy, Ko,] with
ay,as,a3,aq > 1 satisfying ®;(a) < 0, where ®;(x) is given in Eq. (2.1). Actually, we can determine all
the parameters ay, az, as, as such that 0,1 (Py[Ka,, Koy, Kag, Kay]) € (a,—1) (or equivalently, @ () < 0)
by using Lemma 2.2 and solving some inequalities. However, the obtained parameters consist of some
infinite families and hundreds of scattered numbers, so we do not list them here, and instead, we just give
some examples. For instance, if aq,as are arbitrary positive integers and a3 = a4 = 1, then ®;(a) =
—(a® + 1402 + 24a + 11)a; — (a® + 602 + 8a + 3)ag + (2a + 3)ajaz + ot + 20 — 2o — 1 ~ —3.9700a; —
1.3626a2 — 0.1418ajae + 0.4784 < 0. Thus, Op—1(Ps[Ka,, Ka,, K1, K1]) € (o, —1). Similarly, it is easy to
check that 0,_1(G) € (a,—1) it G = Py[K,,, K1, Kas, K1), Ps[Ka,, K1, K1, K,,| or Py[K1, Kg,, Ka,, Ki],
where a, as, asg, aq are arbitrary positive integers. Consequently, there are infinitely many graphs satisfying
On-1(G) € (a,—1).

Now we consider whether the graphs with 9,,_1(G) € (a, —1) are determined by their distance spectra.
Let G = Py[Ka,, Koy, Kog, Ka,| With aq,a9,a3,a4 > 1 satistying ®1(a) < 0, and G’ a graph distance
cospectral with G. Then G" must be of the form G’ = Py[K,;, Koy, Koy, Ka| by Theorem 2.8, and from
Lemma 2.5 we deduce that

a; +as +asz +aq = ay + ay + al + aj
(23) 3ajaz + 8ajay + 3azay = 3a)aly + 8ajal + 3aha),
ajasaz + ajasay + ajazay + asazay = ayasay + ajayaly + alayal + abasal
ajasaszay = ayayalal
by comparing the coefficients of distance polynomials of G and G’. If all the possible solutions of Eq. (2.3)
are (a1, as,as,aq) = (a},ah,as,a)) or (a1, az,as,a4) = (a},ak, ab,a}), then G = G’ and so G is determined
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by its distance spectrum. However, it is not the case. Now we give some examples.

EXAMPLE 2.9. Take (a1, az,a3,a4) = (9,3,1,1) and (a},a),a%,a}) = (3,1,9,1), it is easy to check that
these parameters satisfy Eq. (2.3). Thus, Specp(Py[Ky, K3, K1, K1]) = Specp(Py[Ks, Ky, K9, K1]), but
in fact Py4[Ky, K3, K1, K1] % Py[K3, K1, K9, K;] because P4[Ky, K3, K1, K1] contains a vertex of degree 1
while P4[K3, K1, Kg, K] does not. Also note that the second least distance eigenvalue of Py[Ky, K3, K1, K]
belongs to («, —1) by above arguments. Thus, there exists some graph with 9,_1(G) € («,—1) that is not
determined by its distance spectra.

EXAMPLE 2.10. Note that if (a1, az, a3, a4) and (a}, ab, a5, a}) satisfy Eq. (2.3), then sois (may, mag, mas,
may) and (mal, mab, majs, may) for any positive integer m. Hence, for any m > 1, Py[Kom, Ksm, Km, K]
and Py[Ksm, Kim, Kom, Kn]) are a pair of distance cospectral graphs according to Example 2.9. Also, they
are not isomorphic because they have different minimum degrees, i.e., 2m—1 and 4m — 1. Using this method,
one can obtain many other infinite families of non-isomorphic distance cospectral graphs with the help of com-
puter search, such as Py[K,,, Kom, Kom, Kam] and Py[Kop, K, Kam, Kom]), Pa[Km, Kom, Ksm, Kem] and
P4[K2m, Km7 KGma Kgm], P4[Km, KQm, Kgm, Kgm] and .134[}-{27,7,7 Kgm, Km, Kgm]), P4[Km, sz, K4m, Kgm]
and P4[K2m, Km, Kgm, K4mD7 P4[I{m7 Kgm, Ksm, KlOm] and P;l[f(vgm7 Km, KlOm; KSmD7 and SO O1l.

By Theorem 2.8, we also obtain that 0,,—1(G) = —1 (n > 4) if and only if G = P3[Ky,, Ky,, Kp,] or
K,,. Also note that K, is determined by its distance spectrum. Thus, any graph distance cospectral with
P3[Ky, , Ky,, Ki,] must be of the form P3[Ky;, Ky, Ky,| for some by, b5, b3, and from Lemma 2.6 one can
easily deduce that (by, ba, b3) = (b)), b5, b5) or (by,be,b3) = (b, 05, b)), Thus, P3[Ky,, Kp,, Kp,| is determined
by its distance spectrum, which was mentioned by Lin et al. [5]. Moreover, Theorem 2.8 also implies the
following result due to Lin et al. [5].

COROLLARY 2.11 ([5]). Let G be a connected graph on n vertices. If n > 4, then 0,—1(G) < —1 and
the equality holds if and only if G = K, V (Ks U Ky) with r > 1.
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