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LOW RANK PERTURBATIONS OF QUATERNION MATRICES∗
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Abstract. Low rank perturbations of right eigenvalues of quaternion matrices are considered. For real and complex matrices

it is well known that under a generic rank-k perturbation the k largest Jordan blocks of a given eigenvalue will disappear while

additional smaller Jordan blocks will remain. In this paper, it is shown that the same is true for real eigenvalues of quaternion

matrices, but for complex nonreal eigenvalues the situation is different: not only the largest k, but the largest 2k Jordan

blocks of a given eigenvalue will disappear under generic quaternion perturbations of rank k. Special emphasis is also given to

Hermitian and skew-Hermitian quaternion matrices and generic low rank perturbations that are structure-preserving.

Key words. Quaternion matrices, Low rank perturbations, Jordan normal form.

AMS subject classifications. 15B33, 15A18, 15B57, 47S10, 47A55.

1. Introduction. In this paper, we will consider an n × n matrix A with entries from the skew-field

H of the quaternions. Recall from [20] that a number λ ∈ H is called a right eigenvalue if there is a vector

x ∈ Hn \{0} such that Ax = xλ. Since for every α ∈ H we have A(xα) = (xα)(α−1λα), we see that together

with λ also every similar number α−1λα is a right eigenvalue. Restricting oneself to one representative of

each equivalence class of similar right eigenvalues, one can assume without loss of generality that the right

eigenvalues are in fact complex numbers with nonnegative imaginary part. This concept then allows the

computation of a Jordan canonical form for the matrix A, to be precise: There exists an invertible quaternion

matrix S such that

S−1AS = Jm1(λ1)⊕ · · · ⊕ Jmp(λp),

with λ1, . . . , λp ∈ C having nonnegative imaginary part for j = 1, . . . , p. Here, λ1, . . . , λp are not necessarily

pairwise distinct and Jm(λ) stands for the upper triangular complex Jordan block of size m×m associated

with the eigenvalue λ ∈ C.

The question we will consider is the following: What happens to the Jordan canonical form of A when

we apply a generic additive perturbation of rank k, i.e., when we consider the matrix A + UV T for some

(U, V ) from a generic set Ω ⊆ Hn ×Hn ∼= H2n. For the complex case, this problem was studied in [12], and

later in [19, 21, 22]. An alternative treatment for the complex case was given in [14], and also the real case

has been studied, see [16]. Furthermore, also the case of complex matrix pencils has been studied in [8, 9] for

the regular case and in [6] for the singular case, while the case of regular matrix polynomials was treated in

[7]. The related questions for matrices with a symmetry structure have been addressed in a series of papers

starting with [14] and continued in [15, 16, 17, 18] and [11, 13] for many different classes of structures and

the case of structure-preserving rank-one perturbation. A generalization to the case of structure-preserving
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rank-k perturbations was then given in [5]. Also, structure-preserving low-rank perturbations of regular

matrix pencils with symmetry structures have been considered, see [1, 2, 3, 4] for special perturbations of

rank one or two and [10] for the general case.

To be precise about the nature of the term “generic”, we introduce the isomorphism χ : Hn → R4n as a

particular standard representation of Hn seen as a real vector space as follows: If (1, i, j, k) is the canonical

basis for H over R, we define

χ(u) =


u0
u1
u2
u3


for a vector u = u0 + u1i + u2j + u3k ∈ Hn, with ui ∈ Rn, i = 0, 1, 2, 3. Then a set Ω ⊆ Hn is said to be

generic (or more precisely generic with respect to the real components) if the set χ(Ω) is a generic set in

R4n, i.e., its complement is contained in a proper algebraic subset of R4n. (Recall that a subset A ⊆ R4n is

called algebraic if it is the set of common zeros of finitely many real polynomials in 4n variables, and it is

called proper if it is not the full space R4n.) Similarly, a set Ω ⊆ Cn is said to be generic (or more precisely

generic with respect to the real and imaginary parts) if it is generic when viewed as the canonical subspace

of R2n. It is easy to see that if Ω ⊆ Fn is generic and S ∈ Fn,n is invertible, then the sets SΩ and ΩS are

generic as well, where F ∈ {C,H}.

A general result on rank-k perturbations of complex matrices says that the geometric multiplicity of

a fixed eigenvalue can change at most by k if any (not necessarily being generic) rank-k perturbation is

applied, see, e.g., [19] or [14], and the question arises if this remains true for quaternion matrices. As a first

example, consider the quaternion matrices

A =

[
1 0

0 1

]
, B =

[
1 −k
k 1

]
, and A+B =

[
2 −k
k 2

]
.

Then A is actually a real matrix with eigenvalue 1 with algebraic and geometric multiplicity two and B is a

quaternion matrix of rank one. Then one easily checks that

(A+B)

[
1

k

]
=

[
1

k

]
3 and (A+B)

[
1

−k

]
=

[
1

−k

]
1,

so that the eigenvalues of A+B are 3 and 1. This shows that for this example the geometric multiplicity of

the eigenvalue 1 does change by only one from two to one as the reader may have expected.

Surprisingly, however, it needs no longer be the case for quaternion matrices that a rank-k perturbation

can change the geometric multiplicity by at most k. To see this, consider the example

C :=

[
i 0

0 i

]
, B =

[
1 −k
k 1

]
,

where B is the same rank-one matrix as above. Then setting

S :=

[
−1 + 2j 1− k

2 + j −i− j− k

]
a straight forward calculation shows that[

1 + i −k
k 1 + i

]
S =

[
−1 + 2j 2j− k

2 + j 2− i− k

]
= S

[
1 1

0 1

]
,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 514-530, December 2017.

Christian Mehl and André C.M. Ran 516

or equivalently, S−1(C +B)S = J2(1), so the perturbed matrix C +B has the eigenvalue 1 with geometric

multiplicity one and algebraic multiplicity two which means that the geometric multiplicity of the eigenvalue i

of the original matrix C has changed by 2 from two to zero. Although we will see below that the perturbation

B does not show the generic behaviour as it generates a Jordan block of size two of the newly created

eigenvalue 1, this example shows that the effect of quaternion rank one perturbations of quaternion matrices

may be significantly different from the analogous effect observed for complex rank-one perturbations of

complex matrices.

The observant reader may suspect at this moment that the different behavior of the matrices A and

C under a perturbation with B may be caused by the given symmetry-structure and its preservation or

non-preservation, respectively. Indeed, the matrices A and B are Hermitian while C is skew-Hermitian, so

the perturbation with B is structure-preserving for A, but not for C. However, the surprising effect in the

second example remains true even for perturbations preserving the skew-Hermitian structure as our third

example with the matrices

C =

[
i 0

0 i

]
and D :=

[
j −1

1 j

]
will show. Here, D is skew-Hermitian and has rank one. When we consider

C +D =

[
i + j −1

1 i + j

]
,

then a straightforward computation shows that

(C +D)

[
1 +
√

2 + k

−(1 +
√

2)i− j

]
=

[
1 +
√

2 + k

−(1 +
√

2)i− j

]
(1 +

√
2)i,

(C +D)

[
−(1 +

√
2)i− j

1 +
√

2 + k

]
=

[
−(1 +

√
2)i− j

1 +
√

2 + k

]
(
√

2− 1)i.

This shows that the geometric multiplicity of the eigenvalue i of C drops from two to zero even under a

structure-preserving rank-one perturbation.

In this paper, we will show that the different behavior observed in the examples above is due to the

nature of the occurring eigenvalues. Indeed, real eigenvalues behave differently than complex eigenvalues:

If a generic rank-k perturbation is applied to a square quaternion matrix, then the largest k Jordan blocks

associated with any real eigenvalue will disappear from the Jordan canonical form while additional smaller

Jordan blocks will remain. For a given complex eigenvalue, however, it will now be the corresponding

largest 2k Jordan blocks that disappear while again additional smaller ones will remain. This effect can

be observed for both generic rank-one perturbations of general quaternion matrices as well as for generic

structure-preserving rank-one perturbations of Hermitian or skew-Hermitian quaternion matrices.

The remainder of the paper is organized as follows. In the next section, we present one of the main tools

in our investigations by reviewing the well-known connection between quaternion matrices and a subclass of

complex matrices with a special symmetry structure. This class will be denoted by Qn,n, where the symbol

Q has been chosen as a reminder of the quaternions. In Section 3, we generalize some results on low-rank

perturbations from the literature so that they can be applied to structure-preserving low rank perturbations

in Qn,n. In Section 4, we then discuss the changes in the Jordan structure under generic structure-preserving

rank-k perturbations within Qn,n and translate this result in Section 5 to quaternion matrices. In Sections 6
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and 7, we investigate structure-preserving quaternion rank-k perturbations of Hermitian and skew-Hermitian,

respectively, and show that the same behavior as under generic perturbations that ignore the structure can

be observed.

2. Reduction to a structured matrix problem. It is well known that the map ω : H→ ω(H) ⊆ C2,2

with

ω(α1 + iα2 + jα3 + kα4) 7→
[

α1 + iα2 α3 + iα4

−α3 + iα4 α1 − iα2

]
for αi ∈ R, i = 1, 2, 3, 4, is a skew-field isomorphism. Its extension (also denoted by ω) to matrices will be

an important tool in this paper: Given a quaternion matrix A ∈ Hn,m, we can write A = A1 + A2j, where

A1 and A2 are complex matrices. Then

ω(A) =

[
A1 A2

−A2 A1

]
and by [20, Theorem 5.7.1], the Jordan form of the quaternion matrix A is given by

Jm1
(λ1)⊕ · · · ⊕ Jmp(λp)

if and only if the Jordan form of ω(A) is given by

(2.1)

[
Jm1

(λ1) 0

0 Jm1(λ1)

]
⊕ · · · ⊕

[
Jmp(λp) 0

0 Jmp(λp)

]
.

Note that the eigenvalues in (2.1) are allowed to be real. In particular, it follows that each real eigenvalue

has even algebraic and geometric multiplicity, and all partial multiplicities occur an even number of times.

In the following it will be useful to use a slight variant of (2.1) that is itself in the range of ω. Applying a

block permutation the matrix in (2.1) is easily seen to be similar to[
J 0

0 J

]
with J = Jm1

(λ1)⊕ · · · ⊕ Jmp(λp).

The map ω mapping quaternion matrices to complex matrices has the properties that it is linear (with

respect to real scalars), multiplicative, and respects the transpose operation [20, Section 3.4]. In particular,

we have

(2.2) ω(A+ UV T ) = ω(A) + ω(U)ω(V )T

for A ∈ Hn,n and U, V ∈ Hn,k. Thus, to study the effect of rank-k perturbations on the quaternion matrix

A we can study the effect of structure-preserving perturbations of ω(A). However, if U = U1 + U2j and

V = V1 + V2j with Ui, Vi ∈ Cn,k have rank k, then it follows by [20, Proposition 3.2.5 (e)] and the properties

of ω that

ω(U) =

[
U1 U2

−U2 U1

]
and ω(V ) =

[
V1 V2

−V2 V1

]
have rank 2k. Thus, rank-k perturbations of quaternion matrices lead to rank-2k perturbations of complex

matrices that are structured as in the range of ω.

In the following, it will be useful to use an alternative characterization of this particular class of structured

complex matrices. For this, we will introduce the following notation.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 514-530, December 2017.

Christian Mehl and André C.M. Ran 518

Definition 2.1. Let n, k ∈ N and

J := J2n :=

[
0 In
−In 0

]
,

Then we define

Qn,k =
{
X ∈ C2n,2k

∣∣ J2nX = XJ2k
}
.

It is straightforward to check that a 2n× 2k matrix X is in the range of ω if and only if X ∈ Qn,k. In

the following, we will sometimes switch between the sets Hn,m and Qn,m, and in order to make it easier for

the reader to keep track in which set we currently are, we adopt the convention to use “hatted” symbols

for matrices in Qn,m. Thus, if A ∈ Hn,m then we denote Â = ω(A) and similarly, if B̂ ∈ Qn,m, then

B = ω−1(B̂) ∈ Hn,m.

The next proposition shows that the formula in (2.2) gives a parametrization of matrices in Qn,n that

have rank 2k so that we are able to identify and describe generic sets of such matrices.

Proposition 2.2. Let B̂ ∈ Qn,n be a matrix of rank 2k. Then there exist two matrices Û , V̂ ∈ Qn,k of

full rank 2k such that B̂ = Û V̂ T .

Proof. Since B̂ is in the range of ω, there exists a quaternion matrix B ∈ Hn,n such that B̂ = ω(B), and

by the properties of ω B must have rank k. But then there exists matrices U, V ∈ Hn,k of rank k such that

B = UV T by [20, Proposition 3.2.5 (e)], and hence, we obtain B̂ = Û V̂ T with Û = ω(U), V̂ = ω(V ) ∈ Qn,k
having rank 2k.

As a side-note, observe that matrices in the class Qn,n can never have odd rank, so the smallest rank

perturbation of matrices in that class is a perturbation of rank two.

3. Localization results. In this section, we establish a result that allows us to determine the behav-

ior of a possibly structured complex matrix under generic structure-preserving low-rank perturbations by

studying the effect of perturbations that locally perturb an arbitrary, but fixed eigenvalue of the matrix.

The main theorem is a generalization of [5, Theorem 2.6] and in fact contains that result as a special case.

A key ingredient for its proof is Lemma 3.1 which is a generalization of [17, Lemma 8.1]. We highlight that

although the lines of the proofs of the results in this section follow the lines of the proofs of the previously

obtained results, they are not immediate. Therefore, a careful revision of each single step in the proof is nec-

essary to obtain the full generality in the main theorem presented here. In this way, the result will not only

be applicable in the remainder of this paper, but also for any class of structured matrices and corresponding

structure-preserving low-rank perturbations that can be parameterized by polynomial functions.

The next lemma is needed for the proof of the main result and states that newly created eigenvalues of

perturbed matrices will generically have multiplicities that are as small as possible.

Lemma 3.1. Let A ∈ Cn,n have the pairwise distinct eigenvalues λ1, . . . , λm ∈ C with algebraic multi-

plicities a1, . . . , am, and let ε > 0 be such that the discs

Dj :=
{
µ ∈ C

∣∣ |λj − µ| < ε2/n
}
, j = 1, . . . ,m

are pairwise disjoint. Furthermore, let B : Rm → Cn,n be an analytic function with B(0) = A such that the

following conditions are satisfied:

1) For all u ∈ Rm, the algebraic multiplicity of any eigenvalue of B(u) is always a multiple of ` ∈ N\{0}.
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2) There exists a generic set Ω ⊆ Rm such that for all u ∈ Ω the matrix B(u) has the eigenvalues

λ1, . . . , λm with algebraic multiplicities ã1, . . . , ãm, where ãj ≤ aj for j = 1, . . . ,m. (Here, we allow

ãj = 0 in the case that λj no longer is an eigenvalue of B(u).)

3) For each j = 1, . . . ,m there exists uj ∈ Rm with ‖uj‖ < ε such that the matrix B(u) has exactly

(aj − ãj)/` pairwise distinct eigenvalues in Dj different from λj and each with algebraic multiplicity

exactly `.

Then there exists a generic set Ω0 ⊆ Rm such that for all u ∈ Ω0 the eigenvalues of B(u) that are different

from those of A have algebraic multiplicity exactly `.

Proof. First observe that there exists a constant K only depending on A such that for any u ∈ Rm with

‖u‖ < K · min{1, ε} the matrix B(u) has exactly aj eigenvalues in the disc Dj . Indeed, this follows from

the continuity of B and well-known results on matching distance of eigenvalues of nearby matrices, see, e.g.,

[23, Section IV.1] and references therein. In the following, we denote ε′ = K ·min{1, ε}.

Next, we fix λj and denote by χ(λj , u) the characteristic polynomial (in the independent variable t) of

the restriction of B(u) to the spectral invariant subspace corresponding to the eigenvalues of B(u) within

Dj . Then the coefficients of χ(λj , u) are analytic functions of the components of u, see, e.g., [14, Lemma

2.5] for more details.

Let q(λj , u) be the number of distinct eigenvalues of B(u) in the disk Dj . Furthermore, denote by

S(p1, p2) the Sylvester resultant matrix of the two polynomials p1(t), p2(t) and recall that S(p1, p2) is a

square matrix of size deg (p1) + deg (p2) and that the rank deficiency of S(p1, p2) coincides with the degree

of the greatest common divisor of the polynomials p1(t) and p2(t). We have

q(λj , u) =
1

`

(
rank S

(
χ(λj , u),

∂`χ(λj , u)

(∂t)`

)
− aj

)
+ 1.

The entries of S
(
χ(λj , u),

∂`χ(λj ,u)
(∂t)`

)
are scalar multiples (which are independent of u) of the coefficients of

χ(λj , u), and therefore, the set Q(λj) of all u ∈ Rm, ‖u‖ < ε′, for which q(λj , u) is maximal is the complement

of the set of zeros of an analytic function of the entries of u. (In fact, this analytic function can be chosen to

be the product of minors of that order that is equal to the maximal value of q(λj , u).) In particular, Q(λj)

is open and dense in {
u ∈ Rm

∣∣ ‖u‖ < ε′
}
.

By hypothesis, there exists uj ∈ Rm such that B(uj) has exactly 1
` (aj − ãj) eigenvalues with algebraic

multiplicity exactly ` in Dj different from λj . If uj happens not to be in Ω, then we may slightly perturb

uj to obtain a new u′j ∈ Ω such that B(u′j) has the eigenvalues λ1, . . . , λm with algebraic multiplicities

ã1, . . . , ãm and 1
` (aj − ãj) eigenvalues with algebraic multiplicity exactly ` in Dj different from λj . Such

choice of u′j is possible because Ω is generic, the property of eigenvalues having algebraic multiplicity exactly

` persists under small perturbations of B(uj) by assumption 1), and the total number of eigenvalues of B(u)

within Dj , counted with multiplicities, is equal to aj , for every u ∈ Rm with ‖u‖ < ε′. Since Ω is open,

clearly there exists δ > 0 such that for all u ∈ Rm with ‖u− uj‖ < δ the matrix B(uj) has the eigenvalues

λ1, . . . , λm with algebraic multiplicities ã1, . . . , ãm and 1
` (aj − ãj) eigenvalues with algebraic multiplicity

exactly ` in Dj different from λj . Since the set of all such vectors u is open in Rm, it follows from the

properties of the set Q(λj) established above that in fact we have

q(λj , u) =
1

`
(aj − ãj), for all u ∈ Rm, ‖u− uj‖ < δ.
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So, for the open set

Ωj := Q(λj) ∩ Ω

which is dense in
{
u ∈ Rm

∣∣ ‖u‖ < ε′
}

, we have that all eigenvalues of B(u) within Dj different from λj have

algebraic multiplicity exactly `. Now let

Ω′ =

m⋂
j=1

Ωj ⊆ Ω.

Note that Ω′ is nonempty as the intersection of finitely many sets that are open dense in
{
u ∈ Rm

∣∣ ‖u‖ < ε′
}

.

Finally, let χ(u) denote the characteristic polynomial (in the independent variable t) of B(u). Then the

number of distinct roots of χ(u) is given by

rankS

(
χ(u),

∂χ(u)

∂t

)
− n+ 1,

and therefore, the set of all u ∈ Ω on which the number of distinct roots of χ(u) is maximal, is a generic set.

Since Ω′ constructed above is nonempty, this maximal number is equal to
∑m
j=1

1
` (aj − ãj), i.e., generically

all eigenvalues of B(u) that are different from λ1, . . . , λm have algebraic multiplicity exactly `.

Next, we consider the analogue of Theorem 2.6 of [5] which describes the possible changes in the Jordan

structure of a fixed eigenvalue λ of a matrix from Qn,k under low rank perturbations, and also presents

conditions when a generic behavior can be observed.

Theorem 3.2. Let A ∈ Cn,n and let the Jordan canonical form of A be given by

Jn1
(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,

with n1 ≥ · · · ≥ nm and λ 6∈ σ(J̃ ). Furthermore, let P ∈ Rn,n[t1, . . . , tr] be a matrix whose entries are

polynomials in the independent indeterminate variables t1, . . . , tr. Assume that for all u = (u1, . . . , ur) ∈ Rr

we have

(i) rankP (u) ≤ κ;

(ii) the algebraic multiplicity of any eigenvalue of A+ P (u) is always a multiple of ` ∈ N \ {0}.

Then the following statements hold:

1. For each (u1, . . . , ur) ∈ Rr there exist integers η1 ≥ · · · ≥ η` such that

(a) the Jordan canonical form of A+ P (u1, . . . , ur) is given by

Jη1(λ)⊕ · · · ⊕ Jη`(λ)⊕ J̌ ,

where λ 6∈ σ(J̌ ),

(b) (η1, . . . , η`) dominates (nκ+1, . . . , nm); that is, we have l ≥ m − κ and ηj ≥ nj+κ for j =

1, . . . ,m− κ.

2. Assume that for all u = (u1, . . . , ur) ∈ R the algebraic multiplicity au of λ as an eigenvalue of

A+ P (u) satisfies au ≥ a for some a ∈ N. If there exists u0 ∈ Rr such that au0
= a, then the set

Ω = {u ∈ Rr | au = a}

is a generic set.
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3. Assume that for any ε > 0 there exists u0 ∈ Rr with ‖u0‖ < ε such that the Jordan form of A+P (u0)

is described by

(a) Jnκ+1
(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̌ , λ 6∈ σ(J̌ ),

(b) all eigenvalues that are not eigenvalues of A have multiplicity ` precisely.

Then there exists a generic set Ω ⊆ Rr such that the Jordan canonical form of A+P (u) is described

by (a) and (b) for all u ∈ Ω.

Proof. Part (1) is a direct consequence of [9, Lemma 2.1] using the fact that the rank of P (u) is at most

κ for any u ∈ Rr.

For part (2), let Y (u) = (A + P (u) − λIn)n. Then the hypothesis tells us that rankY (u0) = n − a for

some u0 ∈ Rr. Thus, we can apply [14, Lemma 2.1] (or [5, Lemma 2.2]) to see that the set

Ω := {u ∈ Rr | rankY (u) ≥ n− a}

is a generic set. Note that the condition rankY (u) ≥ n − a is equivalent to au ≤ a, and since the reverse

inequality au ≥ a holds by assumption it is equivalent to au = a0. Hence, Ω is the desired generic set.

Concerning part (3) observe that by part (1) of the theorem, the list of partial multiplicities of A+P (u)

corresponding to the eigenvalue λ dominates the list (nκ+1, . . . , nm). Hence, the algebraic multiplicity au of

A+P (u) at λ is at least a := nκ+1 + · · ·+nm. By the hypothesis there exists a particular u0 ∈ Rr such that

au0 = nκ+1 + · · ·+ nm = a. Then by part (2) the set Ω1 of all u ∈ Rr with au = a is generic. Since the only

list of partial multiplicities that both dominates (nκ+1, . . . , nm) and has au = a0 is the list (nκ+1, . . . , nm)

itself, this shows that the Jordan form described in part (a) is attained for all vectors in Ω1. Moreover, since

P is analytic and u0 can be chosen arbitrarily small with A+P (u0) satisfying the condition in (b), it follows

by Lemma 3.1 that the set Ω2 of all u ∈ Rr satisfying (b) is also generic. Then the set Ω = Ω1 ∩ Ω2 is the

desired generic set.

4. Even rank perturbations within Qn,n. We are now ready to state the first main result of this

paper, which basically says that for each eigenvalue of a matrix Â in Qn,n under generic perturbations with

matrices of rank 2k in Qn,n the largest 2k partial multiplicities disappear while the others remain, and that

the eigenvalues of Â+ Û V̂ T which are not already eigenvalues of Â are all simple and non-real.

Theorem 4.1. Let Â ∈ Qn,n, and let the Jordan canonical form of Â be given by A1 ⊕A1, where

A1 =

(
r1⊕
i=1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕
i=1

Jni,p(λp)

)
⊕

(
rp+1⊕
i=1

Jni,p+1
(λp+1)

)
⊕ · · · ⊕

(
rm⊕
i=1

Jni,m(λm)

)
,

where the eigenvalues λ1, . . . , λm are pairwise distinct with λ1, . . . , λp being real and λp+1, . . . , λm having

positive imaginary part, and where the partial multiplicities are ordered in decreasing order: n1,j ≥ · · · ≥ nrj ,j
for all j = 1, . . . ,m.

Then, there exists a generic set Ω ⊆ Qn,k × Qn,k such that for all (Û , V̂ ) ∈ Ω the Jordan form of

Â+ Û V̂ T is given by C1 ⊕ C1, where

C1 =

(
r1⊕

i=k+1

Jni,1(λ1)

)
⊕· · ·⊕

(
rp⊕

i=k+1

Jni,p(λp)

)
⊕

(
rp+1⊕

i=2k+1

Jni,p+1
(λp+1)

)
⊕· · ·⊕

(
rm⊕

i=2k+1

Jni,m(λm)

)
⊕J̃ ,

where J̃ has simple nonreal eigenvalues with positive imaginary part that are different from any of the

eigenvalues of A.
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Proof. Without loss of generality we can assume that A is already equal to its Jordan canonical form

A1 ⊕A1. We then aim to apply Theorem 3.2 for the case κ = 2k and ` = 1, and for the function P̂ = Û V̂ T

which is interpreted as a function of the r = 8nk real and imaginary parts of the entries of U1, U2, V1 and

V2, where

Û =

[
U1 U2

−U2 U1

]
and V̂ =

[
V1 V2

−V2 V1

]
.

Hence, it remains to find for each eigenvalue λj and any ε̃ > 0 a particular choice of matrices Û0, V̂0 ∈ Qn,k
with ‖Û0‖, ‖V̂0‖ < ε̃ such that Â + Û0V̂

T
0 satisfies parts 3a) and 3b) of Theorem 3.2. Then Theorem 3.2

yields the existence of a generic set Ωj ⊆ Qn,k × Qn,k (canonically identified with a subset of R8nk) such

that for all (Û , V̂ ) ∈ Ωj the parts 3a) and 3b) of Theorem 3.2 are satisfied. Taking then the intersection

Ω = Ω1 ∩ · · · ∩ Ωm yields the desired generic set. Concerning the matrix J̃ , note that since Â+ Û V̂ T is in

Qn,n, the set of the new simple eigenvalues that are not eigenvalues of Â does not contain real eigenvalues

(as those would have even multiplicity) and is necessarily symmetric with respect to the real line. We can

thus order the new eigenvalues in the Jordan canonical form in such a way that all eigenvalues with positive

imaginary part are collected in J̃ . In the following we will consider two cases.

Case 1: k = 1. We first consider the subcase that λj is real, that is j ∈ {1, . . . , p}. Let B1 ∈ Cn,n be the

matrix that has zero entries everywhere, except for the position (aj + n1,j , aj + 1) where the entry ε · eiϕ.

Here, ε is a sufficiently small positive number, ϕ satisfies 0 < ϕ < π
n1,j

, and we have

aj =

j−1∑
s=1

rs∑
i=1

ni,s.

Thus, in A1 +B1 only a single Jordan block of partial multiplicity n1,j associated with the eigenvalue λj of

A1 is perturbed by the rank-one perturbation B1 as


λj 1

λj
. . .

. . . 1

ε · eiϕ λj

 .

The characteristic polynomial χ of this block in the independent variable t is given by (t− λj)n1,j − ε · eiϕ,

and thus, its roots are the vertices of a regular polygon on a circle of radius ε1/n1,j with center λj . Since

0 < ϕ < π
n1,j

the set of roots of χ is conjugate-free. In particular, all roots of χ are nonreal. Furthermore,

choosing ε small enough guarantees that all roots of χ are distinct from each of the eigenvalues of A.

Now let B̂ = B1 ⊕ B1. Then B̂ ∈ Qn,n has rank two, so by Proposition 2.2 there exist rank two

matrices Û0, V̂0 ∈ Qn,1 such that B̂ = Û0V̂
T
0 . Then it is easy to check that the Jordan canonical form of

Â+ Û0V̂
T
0 = (A1 +B1)⊕ (A1 +B1) corresponding to λj is as desired. In particular, by the choice of ε and ϕ

above and since the eigenvalues of A1 +B1 are the conjugates of those of A1 +B1, all eigenvalues of Â+ B̂

that are not eigenvalues of Â are simple and nonreal.

Next, consider an eigenvalue λj with j ≥ p. If there is just one Jordan block associated with λj , then

we can proceed as for real eigenvalues, where here we can choose ϕ = 0. Then λj will not be an eigenvalue
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of the perturbed matrix. If the geometric multiplicity of λj is at least 2, then consider the submatrix

S :=


Jn1,j

(λj) 0 0 0

0 Jn2,j (λj) 0 0

0 0 Jn1,j
(λj) 0

0 0 0 Jn2,j
(λj)

 .
We aim to find a rank two perturbation of S such that all eigenvalues of the perturbed matrix are simple

and nonreal. To achieve this, we use an idea from pole-placement in control theory. Consider the submatrix

S1 =

[
Jn1,j

(λj) 0

0 Jn2,j
(λj)

]
of S. Since λj is nonreal, this matrix is nonderogatory and thus similar to the companion form of its

characteristic polynomial, i.e., there exists a nonsingular T such that

S1 = T


0 −β0

1
. . .

...
. . . 0 −βν−2

1 −βν−1

T−1,

where β0, . . . , βν−1 are the coefficients of the polynomial

χ = (t− λj)n1,j (t− λj)n2,j = tν + βν−1t
ν−1 + · · ·+ β1t+ β0,

and where we used the abbreviation ν = n1,j + n2,j . Now choose ν values µ1, . . . , µν such that n1,j of

them are close to λj and the remaining n2,j = ν − n1,j are close to λj , and such that the set {µ1, . . . , µν} is

conjugate-free and does not intersect the spectrum of A. Let γ0, . . . , γν−1 be the coefficients of the polynomial

ν∏
i=1

(t− µi) = tν + γν−1t
ν−1 + · · ·+ γ1t+ γ0.

Then setting

B̃ :=

[
B11 B12

B21 B22

]
:= T


0 β0 − γ0

0
. . .

...
. . . 0 βν−2 − γν−2

0 βν−1 − γν−1

T−1

with Bik ∈ Cni,j ,nk,j , i, k ∈ {1, 2}, we obtain that S1 + B̃ has exactly the eigenvalues µ1, . . . , µν ∈ C+. In

particular, the eigenvalues of S1 + B̃ are conjugate-free (and nonreal). Thus, setting

B̂ =


B11 0 0 B12

0 B22 B21 0

0 −B12 B11 0

−B21 0 0 B22

 ,
we find that B̂ ∈ Qν,ν has rank two and the eigenvalues of S + B̂ are given by µ1, . . . , µν , µ1, . . . , µν . In

particular, the eigenvalues of S+ B̂ are all simple. By choosing the values µ1, . . . , µν sufficiently close to the
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values λj and λj , respectively, we can guarantee that the coefficients γi can be chosen to be arbitrarily close

to the coefficients βi for i = 1, . . . , ν, and thus, B̂ can be chosen to be of arbitrarily small norm.

Case 2: k > 1. By using the result for the already proved case 1, we can find a sequence of k matrices

ÛiV̂
>
i with Ûi, V̂i ∈ Qn,1 being of arbitrarily small norm such that in

Â+ Û1V̂
>
1 + · · ·+ ÛkV̂

>
k

the change in the Jordan canonical form with respect to the eigenvalue λ from the matrix Â+ Û1V̂
>
1 + · · ·+

Ûi−1V̂
>
i−1 to Â+ Û1V̂

>
1 + · · ·+ ÛiV̂

>
i is that the largest two Jordan block associated with λ disappear from

the Jordan canonical form while all smaller ones remain (or λ is no longer an eigenvalue if there were at most

two Jordan blocks left in the previous step), and all newly generated eigenvalues are simple. In particular,

Â+ Û1V̂
>
1 + · · ·+ ÛkV̂

>
k then has the Jordan canonical form as claimed in the theorem. If

Ûi =

[
ui1 ui2
−ui2 ui1

]
and V̂i =

[
vi1 vi2
−vi2 vi1

]
then choosing

Û =

[
u11 · · · uk1 u12 . . . uk2
−u12 · · · −uk2 u11 · · · uk1

]
∈ Qn,k

and

V̂ =

[
v11 · · · vk1 v12 . . . vk2
−v12 · · · −vk2 v11 · · · vk1

]
∈ Qn,k

gives the desired example, because Û V̂ > = Û1V̂
>
1 + · · ·+ ÛkV̂

>
k as one can easily check.

5. Rank-k perturbations of quaternion matrices. As a direct application of the main theorem in

the previous section, we immediately obtain the following theorem that describes the generic change in the

Jordan structure of a given quaternion matrix under a generic rank-k perturbation.

Theorem 5.1. Let A be an n× n quaternion matrix, and let its Jordan canonical form be given by(
r1⊕
i=1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕
i=1

Jni,p(λp)

)
⊕

(
rp+1⊕
i=1

Jni,p+1
(λp+1)

)
⊕ · · · ⊕

(
rm⊕
i=1

Jni,m(λm)

)
,

where λ1, . . . , λp are real, and λp+1, . . . , λm are non-real and in the open upper half plane, and where for

each j = 1, . . . ,m the partial multiplicities are ordered in decreasing order: n1,j ≥ · · · ≥ nrj ,j.

Then there exists a generic set Ω ⊆ Hn,k × Hn,k such that for each (U, V ) ∈ Ω the Jordan canonical

form of A+ UV T is given by(
r1⊕

i=k+1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕

i=k+1

Jni,p(λp)

)
⊕

(
rp+1⊕

i=2k+1

Jni,p+1(λp+1)

)
⊕ · · · ⊕

(
rm⊕

i=2k+1

Jni,m(λm)

)
⊕ J̃ ,

where J̃ has simple non-real eigenvalues not equal to any of the eigenvalues of A.

Proof. The proof is based on reduction to the complex structured case treated in the previous section.

The matrix ω(A) is in the class Qn,n and for U, V ∈ Hn,k we have ω(U), ω(V ) ∈ Qn,k. Moreover, genericity

of subsets Hn,k ×Hn,k with respect to the four real components of each matrix pair means exactly the same
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as genericity of the corresponding subset Qn,k ×Qn,k with respect to the real and imaginary parts of each

matrix pair. Also, we have ω(A+ UV T ) = ω(A) + ω(U)ω(V )T by (2.2).

Observe that the Jordan canonical form given in this theorem leads to the Jordan canonical form of

the matrix ω(A) as given in Theorem 4.1. Applying the results of that theorem, and translating back via

ω−1 we see that for a non-real eigenvalue λ of A the partial multiplicities of A + UV T corresponding to λ

are given by the (2k + 1)st and following partial multiplicities of A corresponding to λ (if any), while for a

real eigenvalue λ of A the partial multiplicities of A + UV T corresponding to λ are given by the (k + 1)st

and following partial multiplicities of A corresponding to λ (if any). So non-real eigenvalues lose the largest

2k partial multiplicities, but real eigenvalues only the largest k ones. In addition, eigenvalues of A + UV T

which are not eigenvalues of A are simple and non-real.

6. Rank-k perturbations of Hermitian quaternion matrices. In this section, we will focus on

Hermitian quaternion matrices, i.e., matrices A ∈ Hn,n satisfying A∗ = A. In that case, the corresponding

matrix ω(A) ∈ Qn,n is a complex Hermitian matrix, and consequently all its eigenvalues are real, and all

its partial multiplicities are equal to one. Since it is a matrix in Qn,n, the geometric multiplicity of each

eigenvalue of ω(A) is even.

While the result on the generic behavior of Hermitian matrices in Hn,n under arbitrary perturbations

still follows from Theorem 5.1, it is a natural question to ask whether this remains true under structure-

preserving transformations. Observe that a rank-k Hermitian quaternion perturbation of A takes the form

A+B with B ∈ Hn,n being Hermitian and of rank k. Thus, in Qn,n we should be considering ω(A) + ω(B)

with ω(B) being Hermitian of rank 2k.

Note that a-priori this is a restriction on the type of rank-2k Hermitian perturbations we are allowed to

make to ω(A), because our perturbation matrix does not only have to be Hermitian, but also to be in the

range of ω. Indeed, for a 2n× 2n Hermitian matrix of rank 2k it is possible that the number of positive (or

the number of negative) eigenvalues is odd, but a matrix in Qn,n always has eigenvalues with even geometric

multiplicities. We therefore start our investigation by characterizing the set of Hermitian matrices of rank

2k that are in the range of ω. We do this by using the following results that generalize the well-known results

on the spectral decomposition and Sylvester’s Law of Inertia to the case of Hermitian quaternion matrices.

Proposition 6.1 ([20, Theorem 5.3.6 (c) and Theorem 4.1.6 (a)]).

Let A ∈ Hn,n be Hermitian. Then the following statements hold.

1. There exists a unitary matrix Q ∈ Hn,n such that

Q∗AQ = diag(α1, . . . , αn),

where α1, . . . , αn ∈ R.

2. There exists an invertible matrix S ∈ Hn,n and uniquely defined integers π, ν such that

(6.3) S∗AS =

 Iπ 0 0

0 −Iν 0

0 0 0

 .
Note that 1) confirms our observation at the beginning of this section that the eigenvalues of a Hermitian

quaternion matrix are all real and semisimple. Part 2) immediately yields a characterization of Hermitian

quaternion matrices of rank k.
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Corollary 6.2. Let A ∈ Hn,n be a Hermitian quaternion matrix of rank k. Then there exists an integer

π and a matrix U ∈ Hn,k of full rank such that

(6.4) A = UΣU∗, where Σ =

[
Iπ 0

0 −Ik−π

]
.

Proof. This follows immediately from part 2) of Proposition 6.1 by noting that A is of rank k if and

only if π + ν = k in (6.3). The result then follows from letting U be the part of S∗ that consists of its first

k columns.

Corollary 6.3. Let Â ∈ Qn,n be Hermitian and of rank 2k. Then there exist a matrix Û ∈ Qn,k of

full rank 2k and a diagonal matrix Σ̂ ∈ Qn,n satisfying Σ̂2 = I2n such that Â = Û Σ̂Û∗.

Proof. The result follows immediately by using Corollary 6.2 on A := ω−1(Â) to obtain a decomposition

A = UΣU∗ as in (6.4). Then applying ω yields the desired decomposition with Û = ω(U) and Σ̂ = ω(Σ) =

Σ⊕ Σ.

We now obtain the following result on generic rank-2k perturbations of Hermitian matrices in Qn,n.

Theorem 6.4. Let Â ∈ Qn,n be Hermitian, and let λ1, . . . , λp be the pairwise distinct (necessarily real)

eigenvalues of Â, with multiplicities 2r1, . . . , 2rp (where necessarily the algebraic multiplicities coincide with

the geometric multiplicities). Furthermore, let Σ̂ ∈ Qk,k be diagonal such that Σ̂2 = I2k. Then there exists

a generic set Ω ⊆ Qn,k such that for all Û ∈ Ω the following statements hold:

1. For all j ∈ {1, . . . , p} the eigenvalue λj of Â + Û Σ̂Û∗ has multiplicity 2rj − 2k if rj > k, and if

rj ≤ k, then λj is not an eigenvalue of Â+ Û Σ̂Û∗.

2. All eigenvalues of Â+ Û Σ̂Û∗ which are not eigenvalues of Â have multiplicity precisely two.

Proof. We will apply Theorem 3.2 for the case κ = 2k and ` = 2, and for the function P = Û Σ̂Û∗ which

is a polynomial in the 4nk real and imaginary part of the entries of U1, U2 ∈ Cn,k when we write

Û =

[
U1 U2

−U2 U1

]
.

Note that we are indeed in the case ` = 2, because each eigenvalue of a Hermitian matrix in Qn,k has

even multiplicity. Thus, it remains to find for each eigenvalue λj a particular matrix Û0 ∈ Qn,k such that

Â + Û0Σ̂Û∗0 satisfies parts 3a) and 3b) of Theorem 3.2 and such that the norm of Û0 can be chosen to be

arbitrarily small.

To this end we may assume that k = 1, because as in the proof of Theorem 4.1 an example in the case

k > 1 can be constructed via k consecutive rank-2 perturbations from Qn,k. Furthermore, we may assume

without loss of generality that Â has the form

Â = diag(α1, . . . , αn, α1, . . . , αn),

where α1 = λj . Then choosing the value c ∈ R \ {0} such that α1 + c and α1 − c are different from all the

other eigenvalues of Â, setting u0 := ce1 + cen+1 ∈ Qn,1, and considering Â+ u0Σ̂u∗0 = Â± u0u∗0 yields the

desired example as c can clearly be chosen such that ‖u0‖ has arbitrarily small norm.

An immediate consequence is the following result on rank-k perturbations of Hermitian quaternion

matrices which will be proved completely analogously to Theorem 5.1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 514-530, December 2017.

527 Low Rank Perturbations of Quaternion Matrices

Theorem 6.5. Let A ∈ Hn,n be a Hermitian matrix and let λ1, . . . , λp its pairwise distinct (necessarily

real) eigenvalues with multiplicities r1, . . . , rp (where algebraic and geometric multiplicities coincide). Fur-

thermore, let Σ = Iπ ⊕ (−Ik−π). Then there exists a generic set Ω ⊆ Hn,k such that for all U ∈ Ω the

following statements hold:

1. For all j ∈ {1, . . . , p} the eigenvalue λj of A+UΣU∗ has multiplicity rj −k if rj > k, and if rj ≤ k,

then λj is not an eigenvalue of A+ UΣU∗.

2. All eigenvalues of A+ UΣU∗ which are not eigenvalues of A are simple.

7. Rank-k perturbations of skew-Hermitian quaternion matrices. In this section, we will focus

on skew-Hermitian quaternion matrices, i.e., quaternion matrices A ∈ Hn,n satisfying A∗ = −A. Again, the

corresponding matrix ω(A) ∈ Qn,n will have the corresponding structure, i.e., it will be skew-Hermitian.

It is important to note that a common trick that is used in complex matrix algebra is no longer available

when dealing with the quaternions: while a complex Hermitian matrix becomes skew-Hermitian when it is

multiplied by the imaginary unit i and vice versa, this need not be the case for a Hermitian matrix A ∈ Hn,n,

because we obtain (iA)∗ = A∗i∗ = −Ai and the matrix Ai may be different from iA as the following example

shows.

Example 7.1. Consider the matrix

A =

[
1 j

−j 1

]
.

Then A∗ = A is Hermitian, but iA is not skew-Hermitian as

(iA)∗ =

[
i k

−k i

]∗
=

[
−i k

−k −i

]
6=
[
−i −k
k −i

]
= −iA.

When Theorem 6.1 is adapted to the skew-Hermitian case one should have in mind that by the previous

example the transition from Hermitian matrices to skew-Hermitian matrices is not a trivial task. Neverthe-

less, observe that part (a) in the following theorem looks exactly like the corresponding results on complex

matrices that can be obtained from the corresponding result on Hermitian matrices via the “multiplying with

i”-trick. On the other hand, comparing the parts (b) we see that in the skew-Hermitian case “Sylvester’s

Law of Inertia” turns out to be substantially different from the corresponding result in the case of Hermitian

quaternion matrices.

Proposition 7.2 ([20, Theorem 5.3.6 (d) and Theorem 4.1.6 (b)]).

Let A ∈ Hn,n be skew-Hermitian. Then the following statements hold.

1. There exists a unitary matrix Q ∈ Hn,n such that

Q∗AQ = diag(iα1, . . . , iαn),

where α1, . . . , αn ∈ R.

2. There exists an invertible matrix S ∈ Hn,n and a uniquely defined integer r such that

(7.5) S∗AS =

[
iIr 0

0 0

]
.

As a corollary of Proposition 7.2, we immediately obtain the following characterizations of skew-

Hermitian matrices of rank k in Hn,n or rank 2k in Qn,n.
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Corollary 7.3. Let A ∈ Hn,n be a skew-Hermitian quaternion matrix of rank k. Then there exists a

matrix U ∈ Hn,k of full rank such that A = U(iIk)U∗.

Corollary 7.4. Let Â ∈ Qn,n be a skew-Hermitian quaternion matrix of rank 2k. Then there exists a

matrix Û ∈ Qn,k of full rank 2k such that

Â = Ûω(iIk)Û∗ = Û

[
iIk 0

0 −iIk

]
Û∗.

It is easily seen that the “multiplying with i”-trick will also not work in the set Qn,n as this set is only

closed under scalar multiplication with real numbers. We therefore need an analogue of Theorem 6.4 for the

case of skew-Hermitian matrices.

Theorem 7.5. Let Â ∈ Qn,n be skew-Hermitian, and let λ1, . . . , λp be the pairwise distinct (necessarily

purely imaginary) eigenvalues of Â, with multiplicities r1, . . . , rp (where necessarily the algebraic multiplicities

coincide with the geometric multiplicities, and rj is even if λj = 0). Then there exists a generic set Ω ⊆ Qn,k
such that for all Û ∈ Ω the following statements hold for all j ∈ {1, . . . , p}:

1. If λj 6= 0, then λj is an eigenvalue of Â+ Û(iIk)Û∗ with multiplicity rj−2k if rj > k, and if rj ≤ k,

then λj is not an eigenvalue of Â+ Û(iIk)Û∗.

2. If λj = 0, then λj is an eigenvalue of Â + Û(iIk)Û∗ with (necessarily even) multiplicity rj − 2k if

rj > 2k, and if rj ≤ 2k, then λj is not an eigenvalue of Â+ Û(iIk)Û∗.

3. All eigenvalues of Â+ Û(iIk)Û∗ which are not eigenvalues of Â are nonzero and simple.

Proof. We will apply Theorem 3.2 for the case κ = 2k and ` = 1, and for the function P = Û(iIk)Û∗

which is a polynomial in the 4nk real and imaginary parts of the entries of U1, U2 ∈ Cn,k when we write

Û =

[
U1 U2

−U2 U1

]
.

Indeed, note that in contrast to the Hermitian case we have ` = 1 instead of ` = 2. The remainder of the

proof uses the same strategy as the proof of Theorem 6.4. Thus, we may again assume that k = 1 and that

A is diagonal, i.e.,

A = diag(iα1, . . . , iαn,−iα1, . . . ,−iαn),

where iα1 = · · · = iαrj = λj if λj 6= 0, or iα1 = · · · = iαrj/2 = 0 if λj = 0. It remains to find one particular

matrix Û ∈ Qn,1 such that its norm can be chosen to be arbitrarily small and such that 3a) and 3b) of

Theorem 3.2 are satisfied. Constructing such an example is the part where the proof of this theorem will

differ substantially from the corresponding part of the proof of Theorem 6.4. We will distinguish two cases.

Case 1: λj = 0. In this case, let

Û =

[
ce1 ice1
ice1 ce1

]
∈ Qn,1,

where c ∈ R. Then we obtain

P̂ := Û

[
i 0

0 −i

]
Û∗ =

[
0 2c2e1e

T
1

−2c2e1e
T
1 0

]
,
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and the eigenvalues of Â+ P̂ are given by the values ±iα2, . . . ,±iαn and in addition by the eigenvalues of

[
0 2c2

−2c2 0

]

which are ±i2c2. Thus, if the sufficiently small c is chosen such that 2c2 is different from ±α2, . . . ,±αn then

we have found our example such that 3a) and 3b) of Theorem 3.2 are satisfied.

Case 2: λj 6= 0. If rj = 1, then choosing the same perturbation as above will produce a perturbed

matrix with the eigenvalues ±iα2, . . . , iαn and ±i
√
α2
1 + 4c4 which shows that λj is not an eigenvalue of the

perturbed matrix. Furthermore, choosing c appropriately guarantees that the newly generated eigenvalues

are all simple. Thus, let rj > 1 which implies iα2 = λj . Now choose c > 0 sufficiently small such that in

particular we have α2
1 − c2 > 0 and set

P̂ =

[
ice1 −ice2 ce2 ce1
−ce2 −ce1 −ice1 ice2

]
.

Then we have P̂ ∈ Qn,n and in addition P̂ is skew-Hermitian and of rank 2. Note that in Â + P̂ only the

4× 4 submatrix is perturbed that consists of the rows and columns with indices 1, 2, n+ 1, n+ 2 and which

is given by 
i(α1 + c) 0 0 c

0 i(α1 − c) c 0

0 −c −i(α1 + c) 0

−c 0 0 −i(α1 − c)

 .

Since the eigenvalues of this submatrix are the four pairwise distinct complex numbers ic ±
√
α2
1 − c2 and

−ic±
√
α2
1 − c2 which are clearly also mutually distinct from the values ±iα3, . . . ,±iαn if c had been chosen

sufficiently small, we have constructed our desired example that can also be constructed to be of arbitrarily

small norm.

Note that the additional statement that the newly generated eigenvalues are nonzero is implied by their

simplicity, since the eigenvalue zero must have even multiplicity as a real eigenvalue.

As a direct consequence of Theorem 7.5, we obtain the following analogue of Theorem 6.5 and its proof

is again analogous to the one of Theorem 5.1.

Theorem 7.6. Let A ∈ Hn,n be a skew-Hermitian quaternion matrix and let λ1, . . . , λp its pairwise

distinct (necessarily purely imaginary) eigenvalues with multiplicities r1, . . . , rp. Then there exists a generic

set Ω ⊆ Hn,k such that for all U ∈ Ω the following statements hold for all j ∈ {1, . . . , p}:

1. If λj 6= 0, then λj is an eigenvalue of A + U(iIk)U∗ with multiplicity rj − 2k if rj > 2k, and if

rj ≤ 2k, then λj is not an eigenvalue of A+ U(iIk)U∗.

2. If λj = 0, then λj is an eigenvalue of A+U(iIk)U∗ with multiplicity rj − k if rj > k, and if rj ≤ k,

then λj is not an eigenvalue of A+ U(iIk)U∗.

3. All eigenvalues of A+ U(iIk)U∗ which are not eigenvalues of A are nonzero and simple.
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