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FROM CONVERGENCE IN MEASURE TO CONVERGENCE OF

MATRIX-SEQUENCES THROUGH CONCAVE FUNCTIONS AND SINGULAR VALUES∗
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Abstract. Sequences of matrices with increasing size naturally arise in several areas of science, such as, for example, the

numerical discretization of differential and integral equations. An approximation theory for sequences of this kind has recently

been developed, with the aim of providing tools for computing their asymptotic singular value and eigenvalue distributions. The

cornerstone of this theory is the notion of approximating classes of sequences (a.c.s.), which is also fundamental to the theory

of generalized locally Toeplitz (GLT) sequences, and hence to the spectral analysis of PDE discretization matrices. Drawing

inspiration from measure theory, here it is introduced a class of functions which are proved to be complete pseudometrics

inducing the a.c.s. convergence. It is also shown that each of these pseudometrics gives rise to a natural isometry between the

spaces of GLT sequences and measurable functions. Furthermore, it is highlighted that the a.c.s. convergence is an asymptotic

matrix version of the convergence in measure, thus suggesting a way to obtain matrix theory results from measure theory

results.
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1. Introduction and main results. Let Cn×n be the space of complex n× n matrices. Throughout

this paper, a matrix-sequence is a sequence of the form {An}n with An ∈ Cn×n. Matrix-sequences naturally

arise in several contexts. For example, when discretizing a linear differential or integral equation by a linear

numerical method (such as the finite difference method, the finite element method, the modern isogeometric

analysis, etc.), the actual computation of the numerical solution reduces to solving a linear system Anun =

gn. The size n of this system diverges to infinity as the mesh discretization parameter tends to 0, and we are

then in the presence of a matrix-sequence {An}n. It is often observed in practice that {An}n belongs to the

class of the so-called generalized locally Toeplitz (GLT) sequences, and in particular it enjoys an asymptotic

singular value and eigenvalue distribution as n → ∞; we refer the reader to [4] for a nice introduction to

this subject and to [2, 10, 11, 13, 14, 20, 21, 23] for more advanced studies. Another noteworthy example

concerns the finite sections of an infinite Toeplitz matrix. An infinite Toeplitz matrix is a matrix of the form

(1.1) [ai−j ]
∞
i,j=1 =



a0 a−1 a−2 · · · · · ·
a1 a0 a−1 a−2 · · ·
a2 a1

. . .
. . .

. . .
... a2

. . .
. . .

. . .
...

...
. . .

. . .
. . .


.
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The nth section of (1.1) is the n × n matrix defined by An = [ai−j ]
n
i,j=1. In the case where the entries ak

are the Fourier coefficients of a function a ∈ L1([−π, π]), the matrix An is denoted by Tn(a) and is referred

to as the nth Toeplitz matrix generated by a. The asymptotic singular value and eigenvalue distribution of

the matrix-sequence {Tn(a)}n has been deeply investigated in recent times, starting from Szegő’s first limit

theorem [5, 16, 27] and the Avram–Parter theorem [1, 5, 17], up to the works by Tyrtyshnikov–Zamarashkin

[25, 26, 28] and Tilli [22, 24].

In the last 20 years, an asymptotic approximation theory for matrix-sequences has been developed. The

aim was to obtain sufficiently powerful tools — which we formally state in Theorems 1.3 and 1.4 — for

computing the asymptotic singular value and eigenvalue distribution of a “difficult” matrix-sequence {An}n
from the asymptotic singular value and eigenvalue distributions of “simpler” matrix-sequences {Bn,m}n that

“converge” to {An}n in a suitable way as m → ∞. The cornerstone of all this approximation theory is

the concept of approximating classes of sequences (a.c.s.), which we report in Definition 1.1 and which is

due to Serra-Capizzano [18], though the underlying idea was already present in previous works of the same

author [19] and in Tilli’s pioneering paper on locally Toeplitz (LT) sequences [23]. After Definition 1.1, we

provide the precise notions of asymptotic singular value and eigenvalue distribution for a matrix-sequence.

It is worth stressing that the a.c.s., along with Theorems 1.3 and 1.4, form the basis of the theory of LT

sequences [10, 23] and GLT sequences [2, 4, 11, 13, 14, 20, 21]. For some of their concrete applications, we

refer the reader to [4, Sections 3–4], [10, Section 5.3], [11, Section 6.2.2], [13, Chapter 10], [14, Chapter 8],

[15, Section 3], and also [8, 9, 12].

In what follows, we use the abbreviation “a.c.s.” for both the singular “approximating class of sequences”

and the plural “approximating classes of sequences”; it will be clear from the context whether “a.c.s.” is

singular or plural. We denote by µk the Lebesgue measure in Rk and by Cc(R) (resp., Cc(C)) the space

of continuous complex-valued functions with bounded support defined on R (resp., C). The composite

function f ◦ g is denoted by f(g). If A ∈ Cn×n, the singular values and the eigenvalues of A are denoted by

σ1(A), . . . , σn(A) and λ1(A), . . . , λn(A), respectively. It is always understood that the singular values are

arranged in non-increasing order: σmax(A) = σ1(A) ≥ · · · ≥ σn(A) = σmin(A). The symbol ‖ · ‖ will denote

both the 2-norm of vectors and the associated operator norm for matrices. We recall that ‖A‖ = σmax(A)

for every matrix A.

Definition 1.1 (Approximating class of sequences). Let {An}n be a matrix-sequence and {{Bn,m}n}m
a sequence of matrix-sequences. We say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for

{An}n if the following condition is met: for every m there exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where the quantities nm, c(m), ω(m) depend only on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large m, the sequence {Bn,m}n
approximates (asymptotically) the sequence {An}n in the sense that An is eventually equal to Bn,m plus a

small-rank matrix (with respect to the matrix size n) plus a small-norm matrix.

Definition 1.2 (Asymptotic singular value and eigenvalue distribution of a matrix-sequence). Let

{An}n be a matrix-sequence and let f : D → C be a measurable function defined on a set D ⊂ Rk with

0 < µk(D) <∞.
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• We say that {An}n has an asymptotic singular value distribution described by f , and we write

{An}n ∼σ f , if, for every F ∈ Cc(R),

lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

F (|f |)dµk.

• We say that {An}n has an asymptotic eigenvalue distribution described by f , and we write {An}n ∼λ
f , if, for every F ∈ Cc(C),

lim
n→∞

1

n

n∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

F (f)dµk.

We are now in the position of stating the fundamental Theorems 1.3 and 1.4, which originally appeared

in [15, 18]. For their proofs, see [13, Section 5.3].

Theorem 1.3. Let {An}n, {Bn,m}n be matrix-sequences and let f , fm : D → C be measurable functions

defined on a set D ⊂ Rk with 0 < µk(D) <∞. Suppose that:

(i) {Bn,m}n ∼σ fm, for every m;

(ii) {{Bn,m}n}m is an a.c.s. for {An}n;

(iii) fm → f in measure.

Then {An}n ∼σ f .

Theorem 1.4. Let {An}n, {Bn,m}n be matrix-sequences formed by Hermitian matrices and let f , fm :

D → C be measurable functions defined on a set D ⊂ Rk with 0 < µk(D) <∞. Suppose that:

(i) {Bn,m}n ∼λ fm, for every m;

(ii) {{Bn,m}n}m is an a.c.s. for {An}n;

(iii) fm → f in measure.

Then {An}n ∼λ f .

In very recent times, it was discovered that the notion of a.c.s. is a notion of convergence in the space

of matrix-sequences

(1.2) E = {{An}n : An ∈ Cn×n}.

To be more precise, for A ∈ Cn×n let

(1.3) p(A) = inf

{
rank(R)

n
+ ‖N‖ : R,N ∈ Cn×n, R+N = A

}
,

and for {An}n, {Bn}n ∈ E , set

pa.c.s.({An}n) = lim sup
n→∞

p(An),(1.4)

da.c.s.({An}n, {Bn}n) = pa.c.s.({An −Bn}n).(1.5)

It was proved in [2, 7] that da.c.s. is a distance on E which turns E into a complete topological (pseudometric)

space (E , τa.c.s.) where the statement “{{Bn,m}n}m converges to {An}n” is equivalent to “{{Bn,m}n}m is
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an a.c.s. for {An}n”. In view of this, we will use the convergence notation {Bn,m}n
a.c.s.−−−→ {An}n to indicate

that {{Bn,m}n}m is an a.c.s. for {An}n. Note that Theorem 1.3 admits a simple topological interpretation:

for any measurable set D ⊂ Rk with 0 < µk(D) <∞, consider the space of measurable functions

(1.6) MD = {f : D → C : f is measurable},

and define τmeasure to be the (pseudometric) topology of convergence in measure over MD; then, Theorem 1.3

is equivalent to saying that the set of pairs ({An}n, f) ∈ E ×MD such that {An}n ∼σ f is closed in E ×MD

equipped with the product (pseudometric) topology τa.c.s. × τmeasure. An analogous interpretation can be

given for Theorem 1.4.

Besides proving the existence and completeness of a pseudometric topology τa.c.s. associated with the

notion of a.c.s., papers [2, 7] highlighted a strong connection between τa.c.s. and τmeasure, a connection which

had somehow already been suggested in [19]. It is worth spending a few words to illustrate this connection

in some detail as it will be the starting point of the analysis carried out in this paper. In what follows, we

use a notation borrowed from probability theory to indicate sets: for a generic function γ : E → C, the set

{τ ∈ E : γ(τ) 6= 0} is denoted by {γ 6= 0}, the set {τ ∈ E : |γ(τ)| > ε} is denoted by {|γ| > ε}, etc. For

f, g ∈MD let

pmeasure(f) = inf

{
µk{fR 6= 0}
µk(D)

+‖fN‖L∞(D) : fR, fN ∈MD, fR+fN = f

}
,(1.7)

dmeasure(f, g) = pmeasure(f−g),(1.8)

where ‖fN‖L∞(D) = ess supD|fN |. It was proved in [7] that dmeasure is a pseudometric on MD inducing

τmeasure. Denote by νn the counting measure on Dn = {1, . . . , n} and by σ(A) = (σ1(A), . . . , σn(A)) the

vector of the singular values of A ∈ Cn×n, considered as a function on Dn defined by the rule i 7→ σi(A).

Then, Eq. (1.3) can be rewritten as

(1.9) p(A) = inf

{
νn{σ(R) 6= 0}

νn(Dn)
+ ‖σ(N)‖L∞(Dn) : R,N ∈ Cn×n, R+N = A

}
,

and we therefore notice an evident connection via singular values between (1.4)–(1.5) and (1.7)–(1.8). It was

also proved in [2] that pa.c.s.({An}n) = pmeasure(f) whenever {An}n ∼σ f .

Other pseudometrics on MD inducing the topology τmeasure can be obtained from the following con-

struction. Let ϕ : [0,∞) → [0,∞) be a concave bounded continuous function such that ϕ(0) = 0 and

ϕ > 0 on (0,∞). It can be proved that any such function ϕ is non-decreasing and subadditive, i.e.,

ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ [0,∞), and if for f, g ∈MD we define

pϕmeasure(f) =
1

µk(D)

∫
D

ϕ(|f |)dµk,(1.10)

dϕmeasure(f, g) = pϕmeasure(f − g),(1.11)

then dϕmeasure is a complete pseudometric on MD inducing τmeasure. In view of the connection between

(1.4)–(1.5) and (1.7)–(1.8) via Eq. (1.9), the analogs of (1.10)–(1.11) are defined for {An}n, {Bn}n ∈ E as

follows:

pϕa.c.s.({An}n) = lim sup
n→∞

pϕ(An),(1.12)
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dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n),(1.13)

where, for A ∈ Cn×n,

(1.14) pϕ(A) =
1

νn(Dn)

∫
Dn

ϕ(σ(A))dνn =
1

n

n∑
i=1

ϕ(σi(A)).

In the present paper we provide a positive answer to a question raised in [7, Section 4] and we show that dϕa.c.s.
is a complete pseudometric on E which induces the a.c.s. topology τa.c.s.. Besides the theoretical interest, this

result can be used to solve a problem that is often encountered in practical applications, namely the problem

of establishing whether a given sequence of matrix-sequences {{Bn,m}n}m is an a.c.s. for another matrix-

sequence {An}n: it suffices to choose a suitable function ϕ and establish if either dϕa.c.s.({Bn,m}n, {An}n)→ 0

or dϕa.c.s.({Bn,m}n, {An}n) 6→ 0 as m → ∞. We also show that pϕa.c.s.({An}n) = pϕmeasure(f) whenever

{An}n ∼σ f . As a consequence, we will see that, if we identify two matrix-sequences {An}n, {Bn}n ∈
E whenever {An − Bn}n ∼σ 0 and two measurable functions κ, ξ ∈ M[0,1]×[−π,π] whenever κ − ξ = 0

almost everywhere (a.e.), then there exists a natural isometry between the (metric) spaces (G , dϕa.c.s.) and

(M[0,1]×[−π,π], d
ϕ
measure), where G is the subset of E consisting of GLT sequences. Here are our main results.

Theorem 1.5. Let ϕ : [0,∞) → [0,∞) be a concave bounded continuous function such that ϕ(0) = 0

and ϕ > 0 on (0,∞), and let E be the space of matrix-sequences (1.2). Then, the function dϕa.c.s. defined in

(1.13) is a complete pseudometric on E inducing the a.c.s. topology τa.c.s..

Theorem 1.6. Let ϕ : [0,∞) → [0,∞) be a bounded continuous function such that ϕ(0) = 0, let E be

the space of matrix-sequences (1.2), and let MD be the space of measurable functions (1.6), with D ⊂ Rk

being a measurable set such that 0 < µk(D) <∞. Then, for every ({An}n, f) ∈ E ×MD,

{An}n ∼σ f =⇒ pϕa.c.s.({An}n) = pϕmeasure(f),

where pϕmeasure and pϕa.c.s. are defined, respectively, in (1.10) and (1.12).

Theorem 1.7. Let ϕ : [0,∞) → [0,∞) be a concave bounded continuous function such that ϕ(0) = 0

and ϕ > 0 on (0,∞), and let {An}n and {Bn}n be GLT sequences with symbols κ and ξ, respectively. Then,

dϕa.c.s.({An}n, {Bn}n) = dϕmeasure(κ, ξ),

where dϕmeasure and dϕa.c.s. are defined, respectively, in (1.11) and (1.13).

Before concluding this introduction, it is important to emphasize that the proofs of Theorems 1.5–1.7

reported in Sections 2–4 will highlight further deep connections — in addition to those appearing in [2, 7] —

between the a.c.s. convergence of matrix-sequences and the convergence in measure of functions. Actually,

the insights one will gain from a careful consideration of Sections 2–4 may be regarded as a further main

contribution of this paper. We refer in particular to Theorem 2.4, Remark 2.5, the proof of Theorem 2.6,

and Section 3. It is not to be excluded that the deep connections between the a.c.s. convergence and

the convergence in measure highlighted in this paper and in [2, 7] may lead to a “bridge”, in the precise

mathematical sense established in [6], between measure theory and the asymptotic linear algebra theory

underlying the notion of a.c.s.
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2. Proof of Theorem 1.5. We begin by reporting the statement of the Rotfel’d theorem [3, Theo-

rem IV.2.14].

Theorem 2.1. Let ϕ : [0,∞) → [0,∞) be a concave function such that ϕ(0) = 0. Then, for all A,B ∈
Cn×n,

n∑
i=1

ϕ(σi(A+B)) ≤
n∑
i=1

ϕ(σi(A)) +

n∑
i=1

ϕ(σi(B)).

To prove that dϕa.c.s. is a complete pseudometric on E , we resort to a more general result. Theorem 2.1

from [2] shows that the pseudometric da.c.s. is complete, and the proof only uses the definition (1.5) and the

properties of the function p in (1.3) which ensure that da.c.s. is a pseudometric. This observation leads to

the following general theorem, which is interesting also in itself and may be considered as a further main

result of this paper in addition to Theorems 1.5–1.7.

Theorem 2.2. Let q :
⋃
n Cn×n → R be a function such that:

1. 0 ≤ q(A) ≤ L, for every A ∈ Cn×n and every n, where L is a constant independent of both A and

n;

2. q(On) = 0, for every n, where On is the n× n zero matrix;

3. q(A) = q(−A), for every A ∈ Cn×n and every n;

4. q(A+B) ≤ q(A) + q(B), for every A,B ∈ Cn×n and every n.

For {An}n, {Bn}n ∈ E , let

p[q]({An}n) = lim sup
n→∞

q(An),(2.15)

d[q]({An}n, {Bn}n) = p[q]({An −Bn}n).(2.16)

Then, d[q] is a complete pseudometric on E .

Proof. The conditions 1–4 on q imply that, for all {An}n, {Bn}n, {Cn}n ∈ E ,

1. 0 ≤ d[q]({An}n, {Bn}) ≤ L,

2. d[q]({An}n, {An}n) = 0,

3. d[q]({An}n, {Bn}n) = d[q]({Bn}n, {An}n),

4. d[q]({An}n, {Cn}n) ≤ d[q]({An}n, {Bn}n) + d[q]({Bn}n, {Cn}n).

Consequently, the function d[q] is a pseudometric on E .

Let {{Bn,m}n}m be a Cauchy sequence for the pseudometric d[q]. We recall that the convergence of the

sequence is equivalent to the convergence of any subsequence, with the same limit. Extract from {{Bn,m}n}m
a subsequence, which we call again {{Bn,m}n}m, such that, for every pair of indices s, t,

d[q]({Bn,s}n, {Bn,t}n) ≤ 2−min{s,t}

or, equivalently,

lim sup
n→∞

q(Bn,s −Bn,t) ≤ 2−min{s,t}.

If we consider any two consecutive indices m and m+ 1, we have

lim sup
n→∞

q(Bn,m −Bn,m+1) ≤ 2−m.
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Given ε > 0, the argument of the limsup is eventually less then 2−m + ε. We choose ε = 2−m and we find a

strictly increasing sequence of indices Nm such that

q(Bn,m −Bn,m+1) ≤ 2−m+1, ∀n ≥ Nm.

We can now define the matrix-sequence {An}n that will turn out to be the limit of {{Bn,m}n}m. Let

An = Bn,m whenever Nm+1 > n ≥ Nm.

For any m and n ≥ Nm, the q-distance between An and Bn,m can be estimated as follows: let M ≥ m be

such that NM+1 > n ≥ NM , then

q(Bn,m −An) = q(Bn,m −Bn,M ) ≤
M−1∑
k=m

q(Bn,k −Bn,k+1).

Considering that n ≥ NM > Nk for all indices k in the summation, we obtain

M−1∑
k=m

q(Bn,k −Bn,k+1) ≤
M−1∑
k=m

2−k+1 ≤ 2−m+1
M−m−1∑
k=0

2−k ≤ 2−m+1
∞∑
k=0

2−k = 2−m+2.

We conclude that, for any m and n ≥ Nm,

q(Bn,m −An) ≤ 2−m+2.

Thus, for any m,

d[q]({Bn,m}n, {An}n) = lim sup
n→∞

q(Bn,m −An) ≤ 2−m+2

and d[q]({Bn,m}n, {An}n)→ 0 as m→∞.

As a corollary of Theorems 2.1 and 2.2, we obtain that dϕa.c.s. is a complete pseudometric on E .

Corollary 2.3. Let ϕ : [0,∞) → [0,∞) be a concave bounded function such that ϕ(0) = 0. Then,

dϕa.c.s. is a complete pseudometric on E .

Proof. We want to apply Theorem 2.2 with

q(A) = pϕ(A) =
1

n

n∑
i=1

ϕ(σi(A)),

so let us check the four conditions. Since ϕ is nonnegative and bounded, we have 0 ≤ pϕ(A) ≤ L for some

constant L. Since ϕ(0) = 0 and the singular values of the zero matrix On are all zeros, we have pϕ(On) = 0.

Since the singular values of −A are the same as the singular values of A, we have pϕ(−A) = pϕ(A). Finally,

the inequality pϕ(A+B) ≤ pϕ(A) + pϕ(B) follows from Theorem 2.1. We conclude that q = pϕ satisfies the

four conditions of Theorem 2.2 and the thesis follows.

To conclude the proof of Theorem 1.5 we still have to show that dϕa.c.s. induces on E the a.c.s. topology

τa.c.s.. To this end, we will make use of the following characterization theorem for a.c.s., which may certainly

be regarded as another main result of this paper, especially if we consider it in the light of Remark 2.5.

Recall that νn denotes the counting measure on Dn = {1, . . . , n}, so νn(E) is just the cardinality of E for

all E ⊆ Dn.
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Theorem 2.4. Let {An}n be a matrix-sequence and let {{Bn,m}n}m be a sequence of matrix-sequences.

The following conditions are equivalent:

1. {Bn,m}n
a.c.s.−−−→ {An}n;

2. lim
m→∞

lim sup
n→∞

νn{i ∈ Dn : σi(An −Bn,m) > ε}
n

= 0, for all ε > 0.

Proof. (1 =⇒ 2) Suppose that {Bn,m}n
a.c.s.−−−→ {An}n. By definition, for every m there exists nm such

that, for n ≥ nm,

An −Bn,m = Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m)

with

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Let V ⊆sp. Cn mean that V is a subspace of Cn. By the minimax principle for singular values [3, Prob-

lem III.6.1],

σi(An −Bn,m) = max
V⊆sp.Cn

dimV=i

min
x∈V
‖x‖=1

‖(An −Bn,m)x‖

= max
V⊆sp.Cn

dimV=i

min
x∈V
‖x‖=1

‖(Rn,m +Nn,m)x‖

≤ ‖Nn,m‖+ max
V⊆sp.Cn

dimV=i

min
x∈V
‖x‖=1

‖Rn,mx‖ ≤ ω(m) + σi(Rn,m).

If n ≥ nm then rank(Rn,m) ≤ c(m)n, so for every i > c(m)n we have σi(Rn,m) = 0 and σi(An − Bn,m) ≤
ω(m). We conclude that, for every m,

lim sup
n→∞

νn{i ∈ Dn : σi(An −Bn,m) > ω(m)}
n

≤ c(m).

Considering that c(m) and ω(m) tend to 0 as m → ∞, for each fixed ε > 0 and δ > 0, we can find

M = M(ε, δ) such that, for m ≥M ,

ω(m) < ε and c(m) < δ.

Hence, for m ≥M ,

lim sup
n→∞

νn{i ∈ Dn : σi(An −Bn,m) > ε}
n

≤ lim sup
n→∞

νn{i ∈ Dn : σi(An −Bn,m) > ω(m)}
n

≤ c(m) < δ,

and the thesis is proved.

(2 =⇒ 1) Suppose now that, for every ε > 0,

lim
m→∞

fm(ε) = 0,

where

fm(ε) = lim sup
n→∞

νn{i ∈ Dn : σi(An −Bn,m) > ε}
n

.

Then, we can find a sequence of positive numbers εm such that

lim
m→∞

εm = lim
m→∞

fm(εm) = 0;
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see, e.g., [13, Exercise 3.3]. By definition of limsup, for every m there exists nm such that, for n ≥ nm,

νn{i ∈ Dn : σi(An −Bn,m) > εm}
n

≤ fm(εm) +
1

m
.

Let

An −Bn,m = Un,mΣn,mV
∗
n,m

be a singular value decomposition of An −Bn,m. Let Σ̂n,m (resp., Σ̃n,m) be the matrix obtained from Σn,m
by setting to zeros all the singular values of An − Bn,m that are less than or equal to (resp., greater than)

εm. If we define

Rn,m = Un,mΣ̂n,mV
∗
n,m, Nn,m = Un,mΣ̃n,mV

∗
n,m,

then

An = Bn,m +Nn,m +Rn,m, rank(Rn,m) ≤
(
fm(εm) +

1

m

)
n, ‖Nn,m‖ ≤ εm,

and so {Bn,m}n
a.c.s.−−−→ {An}n.

Remark 2.5 (Connections between convergence in measure and a.c.s. convergence). Let D ⊂ Rk be a

measurable set with 0 < µk(D) <∞, and let f, fm ∈MD. It is well-known that the following two conditions

are equivalent:

1′. fm → f in measure;

2′. lim
m→∞

µk{|f − fm| > ε}
µk(D)

= 0, for all ε > 0.

This is actually the definition of convergence in measure, up to the inessential normalization constant µk(D).

Considering that condition 2 of Theorem 2.4 can be rewritten as

lim
m→∞

lim sup
n→∞

νn{σ(An −Bn,m) > ε}
νn(Dn)

= 0, for all ε > 0,

it is clear that the equivalence (1⇐⇒ 2) in the world of matrix-sequences E is the analog of the equivalence

(1′ ⇐⇒ 2′) in the world of measurable functions MD. Note also that the function

p(ε)(A) =
νn{σ(A) > ε}

νn(Dn)
, A ∈ Cn×n,

is obtained from the function

p(ε)measure(f) =
µk{|f | > ε}
µk(D)

, f ∈MD,

by the same rule which allows one to obtain (1.9) from (1.7) and (1.14) from (1.10).

The next theorem concludes the proof of Theorem 1.5.

Theorem 2.6. Let ϕ : [0,∞) → [0,∞) be a concave bounded continuous function such that ϕ(0) = 0

and ϕ > 0 on (0,∞). Then, dϕa.c.s. induces on E the a.c.s. topology τa.c.s..

Proof. Considering that τa.c.s. is the pseudometric topology induced by the distance da.c.s. in (1.5), in

order to show that dϕa.c.s. induces τa.c.s. it is enough to show that da.c.s. and dϕa.c.s. have the same convergent

sequences, i.e., that {Bn,m}n
a.c.s.−−−→ {An}n if and only if dϕa.c.s.({An}n, {Bn,m}n)→ 0 as m→∞. In view of

Theorem 2.4, this is the same as proving the equivalence between the following conditions:
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i. lim
m→∞

lim sup
n→∞

νn{σ(An −Bn,m) > ε}
n

= 0, for all ε > 0;

ii. lim
m→∞

lim sup
n→∞

1

n

∫
Dn

ϕ(σ(An −Bn,m))dνn = 0.

Note that we are using the integral expression of dϕa.c.s. because this will highlight further connections between

the a.c.s. convergence and the convergence in measure. Indeed, a careful comparison between the proof we

are going to see and a possible proof, appearing, e.g., in [13, p. 257], that the distance dϕmeasure in (1.11)

induces on MD the topology of convergence in measure reveals that the two proofs are essentially the same(!)

(i =⇒ ii) Considering that ϕ is non-decreasing and bounded, for every m,n and ε > 0 we have

1

n

∫
Dn

ϕ(σ(An −Bn,m))dνn =
1

n

∫
{σ(An−Bn,m)>ε}

ϕ(σ(An −Bn,m))dνn

+
1

n

∫
{σ(An−Bn,m)≤ε}

ϕ(σ(An −Bn,m))dνn

≤ ‖ϕ‖∞
νn{σ(An −Bn,m) > ε}

n
+ ϕ(ε).

Thus, if condition i is satisfied, then for every ε > 0 we have

lim sup
m→∞

lim sup
n→∞

1

n

∫
Dn

ϕ(σ(An −Bn,m))dνn ≤ ϕ(ε),

i.e.,

lim sup
m→∞

lim sup
n→∞

1

n

∫
Dn

ϕ(σ(An −Bn,m))dνn = 0,

because ϕ is continuous and ϕ(0) = 0. We conclude that condition ii is satisfied.

(ii =⇒ i) Considering that ϕ is non-decreasing, for every m,n and ε > 0 we have

1

n

∫
Dn

ϕ(σ(An −Bn,m))dνn ≥
1

n

∫
{σ(An−Bn,m)>ε}

ϕ(σ(An −Bn,m))dνn ≥ ϕ(ε)
νn{σ(An −Bn,m) > ε}

n
.

Thus, if condition ii is satisfied, then for every ε > 0 we have

lim sup
m→∞

lim sup
n→∞

νn{σ(An −Bn,m) > ε}
n

≤ lim
m→∞

lim sup
n→∞

1

ϕ(ε)

1

n

∫
Dn

ϕ(σ(An −Bn,m))dνn = 0,

and condition i is satisfied; note that we could divide by ϕ(ε) because ϕ > 0 on (0,∞).

Remark 2.7 (The case of zero-distributed sequences). A zero-distributed sequence is a matrix-sequence

{Zn}n such that {Zn}n ∼σ 0, where 0 here denotes the identically zero function (defined on some measurable

subset D of some Rk with 0 < µk(D) <∞). In other words, {Zn}n is zero-distributed if and only if

lim
n→∞

1

n

n∑
i=1

F (σi(Zn)) = F (0)

for all F ∈ Cc(R). We know from [7, Theorem 4] that the “standard” pseudometric da.c.s. inducing τa.c.s.
satisfies

da.c.s.({An}n, {Bn}n) = 0 ⇐⇒ {An −Bn}n ∼σ 0.

Since, by Theorem 1.5, dϕa.c.s. is another pseudometric inducing τa.c.s., we have

dϕa.c.s.({An}n, {Bn}n) = 0 ⇐⇒ da.c.s.({An}n, {Bn}n) = 0 ⇐⇒ {An −Bn}n ∼σ 0.
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Remark 2.8 (New tools for testing the a.c.s. convergence). A problem that is often encountered in

practice, especially in the applications of the theory of GLT sequences, is the problem of establishing whether

a given sequence of matrix-sequences {{Bn,m}n}m is an a.c.s. for another matrix-sequence {An}n; see, for

example, [13, Chapter 10]. Such a problem arises whenever it is necessary to derive the asymptotic singular

value or eigenvalue distribution of a “difficult” matrix-sequence {An}n from the asymptotic singular value or

eigenvalue distribution of “simpler” matrix-sequences {Bn,m}n by means of the fundamental Theorems 1.3

and 1.4. Theorem 1.5 offers new tools for solving this problem. Indeed, it suffices to choose a simple function

ϕ with the properties expressed in Theorem 1.5 and to check if either dϕa.c.s.({Bn,m}n, {An}n)→ 0 (in which

case {{Bn,m}n}m is an a.c.s. for {An}) or dϕa.c.s.({Bn,m}n, {An}n) 6→ 0 (in which case {{Bn,m}n}m is not

an a.c.s. for {An}). For instance, we may choose one of the two very simple functions

ϕ1(x) = min(x, 1),

ϕ2(x) =
x

x+ 1
,

and test the a.c.s. convergence by means of one of the two corresponding distances

dϕ1
a.c.s.({An}n, {Bn,m}n) = lim sup

n→∞

1

n

n∑
i=1

min(σi(An −Bn,m), 1),

dϕ2
a.c.s.({An}n, {Bn,m}n) = lim sup

n→∞

1

n

n∑
i=1

σi(An −Bn,m)

σi(An −Bn,m) + 1
.

3. Proof of Theorem 1.6. Since {An}n ∼σ f , by definition we have

(3.17) lim
n→∞

1

n

∫
Dn

F (σ(An))dνn =
1

µk(D)

∫
D

F (|f |)dµk

for every F ∈ Cc(R). The sequence {An}n, just like any other matrix-sequence possessing a singular value

distribution, is sparsely unbounded (s.u.), which means that for every ε > 0 there exist M,N > 0 such that,

for n ≥ N ,
νn{σ(An) > M}

n
≤ ε;

see [13, Section 5.4]. On the other hand, the function f is measurable, so for any ε > 0 there exists M > 0

such that
µk{|f | > M}

µk(D)
≤ ε.

Fix a real-valued function F ∈ Cc(R) such that χ[0,M ]ϕ ≤ F ≤ ϕ over [0,∞), with χ[0,M ] being the charac-

teristic (indicator) function of the set [0,M ]. Note that such a function F exists because ϕ is continuous.

Considering that ϕ is also bounded, we obtain four inequalities. On the one hand,

lim
n→∞

1

n

∫
Dn

F (σ(An))dνn ≥ lim sup
n→∞

1

n

∫
{σ(An)≤M}

ϕ(σ(An))dνn

= lim sup
n→∞

1

n

[∫
Dn

ϕ(σ(An))dνn −
∫
{σ(An)>M}

ϕ(σ(An))dνn

]

≥ lim sup
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn − ε‖ϕ‖∞,
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lim
n→∞

1

n

∫
Dn

F (σ(An))dνn ≤ lim inf
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn.

On the other hand,

1

µk(D)

∫
D

F (|f |)dµk ≥
1

µk(D)

∫
{|f |≤M}

ϕ(|f |)dµk

=
1

µk(D)

[∫
D

ϕ(|f |)dµk −
∫
{|f |>M}

ϕ(|f |)dµk

]

≥ 1

µk(D)

∫
D

ϕ(|f |)dµk − ε‖ϕ‖∞,

1

µk(D)

∫
D

F (|f |)dµk ≤
1

µk(D)

∫
D

ϕ(|f |)dµk.

Recalling (3.17), we arrive at the following inequalities:

lim inf
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn ≥
1

µk(D)

∫
D

ϕ(|f |)dµk − ε‖ϕ‖∞,

lim sup
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn − ε‖ϕ‖∞ ≤
1

µk(D)

∫
D

ϕ(|f |)dµk.

In the limit where ε→ 0, we obtain

lim inf
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn ≥
1

µk(D)

∫
D

ϕ(|f |)dµk ≥ lim sup
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn,

which implies

pϕa.c.s.({An}n) = lim
n→∞

1

n

∫
Dn

ϕ(σ(An))dνn =
1

µk(D)

∫
D

ϕ(|f |)dµk = pϕmeasure(f).

This completes the proof of Theorem 1.6.

4. Proof of Theorem 1.7: Isometry between GLT sequences and measurable functions. We

first recall from [2, 13] everything that we need to know about GLT sequences for the purposes of this

section. We refer the reader to [4] for a more extended introduction to the theory of GLT sequences and to

[2, 10, 11, 13, 14, 20, 21, 23] for advanced studies.

A GLT sequence {An}n is a special matrix-sequence equipped with a function κ ∈ M[0,1]×[−π,π], the

so-called symbol. We use the notation {An}n ∼GLT κ to indicate that {An}n is a GLT sequence with

symbol κ. The symbol of a GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ξ

then κ = ξ a.e. in [0, 1] × [−π, π]. Conversely, if {An}n ∼GLT κ and κ = ξ a.e. in [0, 1] × [−π, π] then

{An}n ∼GLT ξ. For any measurable function κ ∈ M[0,1]×[−π,π] there exists a matrix-sequence {An}n such

that {An}n ∼GLT κ. If {An}n ∼GLT κ then {An}n ∼σ κ. Any linear combination of GLT sequences is again

a GLT sequence with symbol given by the same linear combination of the symbols. Thus, if {An}n ∼GLT κ

and {Bn}n ∼GLT ξ, then {αAn+βBn}n ∼GLT ακ+βξ for all α, β ∈ C. This shows in particular that the set

of GLT sequences G is a subspace of E with respect to the natural (componentwise) operations of addition

and scalar multiplication of matrix-sequences.
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Proof of Theorem 1.7. Suppose that {An}n ∼GLT κ and {Bn}n ∼GLT ξ. Then {An −Bn}n ∼GLT κ− ξ
and, consequently, {An −Bn}n ∼σ κ− ξ. By applying Theorem 1.6, we obtain

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n) = pϕmeasure(κ− ξ) = dϕmeasure(κ, ξ),

which concludes the proof.

Theorem 1.7 yields a natural isometry between the spaces (G , dϕa.c.s.) and (M[0,1]×[−π,π], d
ϕ
measure), which

is completely analogous to the isometry identified in [2] between (G , da.c.s.) and (M[0,1]×[−π,π], dmeasure). To

be more precise, suppose we identify two matrix-sequences {An}n, {Bn}n ∈ E if and only if {An−Bn}n ∼σ 0,

i.e., by Remark 2.7, if and only if dϕa.c.s.({An}n, {Bn}n) = 0. Then, we are introducing in G an equivalence

relation, with respect to which (G , dϕa.c.s.) becomes a metric space. Similarly, suppose we identify two

functions κ, ξ ∈ M[0,1]×[−π,π] if and only if κ − ξ = 0 a.e., i.e., if and only if dϕmeasure(κ, ξ) = 0 a.e. Then,

we are introducing in M[0,1]×[−π,π] an equivalence relation, with respect to which (M[0,1]×[−π,π], d
ϕ
measure)

becomes a metric space. Consider the map which associates to (the equivalence class of) a GLT sequence

{An}n (the equivalence class of) its symbol κ. This map is well-defined, as long as we keep in mind the

equivalence relations introduced in G and M[0,1]×[−π,π], and it is a sujective isometry by Theorem 1.7 and

the fact that any κ ∈M[0,1]×[−π,π] is the symbol of some GLT sequence {An}n.
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