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LIGHTS OUT! ON CARTESIAN PRODUCTS∗

TRAVIS PETERS† , JOHN GOLDWASSER‡ , AND MICHAEL YOUNG†

Abstract. The game LIGHTS OUT! is played on a 5× 5 square grid of buttons; each button may be on or off. Pressing a

button changes the on/off state of the light of the button pressed and of all its vertical and horizontal neighbors. Given an initial

configuration of buttons that are on, the object of the game is to turn all the lights out. The game can be generalized to arbitrary

graphs. In this paper, Cartesian Product graphs (that is, graphs of the form G�H, where G and H are arbitrary finite, simple

graphs) are investigated. In particular, conditions for which G�H is universally solvable (every initial configuration of lights

can be turned out by a finite sequence of button presses), using both closed neighborhood switching and open neighborhood

switching, are provided.
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1. Introduction. The popular electronic game LIGHTS OUT! was released by Tiger Electronics in

1995. The game is played on a 5 × 5 square grid of buttons, where each button is either on or off (lit or

unlit). When you start the game, it generates a random puzzle or configuration of lit and unlit buttons. The

object of the game is simple - turn the lights out. When you press a button, not only does it change the

state of that light (from on to off or vice versa), but it also changes the state of the adjacent lights (those

that are directly above, below, or next to the pressed button).

We represent the state of each light by an element of GF (2), the field of integers modulo 2; 1 means on,

0 means off. Throughout this paper, all calculations are done modulo 2.

The traditional game is played on a square grid but can be generalized to arbitrary graphs. Recall that

the Cartesian Product of G with H, denoted G�H, is the graph with vertex set V (G) × V (H) such that

(u, v) is adjacent to (u′, v′) if and only if (1) u = u′ and v ∼ v′ in H, or (2) v = v′ and u ∼ u′ in G. In

this paper, we consider the game applied to graphs of the form G�H, where G and H are arbitrary finite,

simple graphs. In particular, we address the question of whether or not G�H is universally solvable, i. e.

whether or not every initial configuration on G�H is solvable (all of the lights can be turned off by a finite

sequence of button presses).

Let G = (V,E) be a simple graph of order n. For each v ∈ V , the open neighborhood N(v) of v is the

set of vertices adjacent to v, N(v) = {u ∈ V : (u, v) ∈ E}. The closed neighborhood N [v] of v is the open

neighborhood along with v itself, N [v] = N(v) ∪ {v}. In the traditional game, pressing a vertex v changes

the state of v as well as that of the vertices adjacent to v. This is called closed neighborhood switching. In a

variation of the game, pressing a vertex v does not change the state of v, only that of the vertices adjacent

to v. This is called open neighborhood switching.

We say G is closed universally solvable if every initial configuration is solvable using closed neighbor-
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hood switching. We say G is open universally solvable if every initial configuration is solvable using open

neighborhood switching. Throughout the paper, we denote by A(G) the adjacency matrix of G. Then A(G)

is the open neighborhood matrix of G, and A(G) + In, where In is the n × n identity matrix, is the closed

neighborhood matrix of G.

Theorem 1.1. [6, 9, 10] A graph is universally solvable if and only if its adjacency matrix is invertible

over GF (2).

Consequently, G is closed universally solvable if and only if A(G) + In is invertible, and G is open

universally solvable if and only if A(G) is invertible. Since a matrix A is invertible if and only if det(A) 6= 0,

we approach the problem of determining whether or not a graph G is open (closed) universally solvable by

studying the determinant of the adjacency matrix A(G) (the closed neighborhood matrix A(G) + In).

For an extensive survey of the work that has been done on the game, see [4]. Sutner [9, 10] was the

first to study the game, and he did so in the context of cellular automata. He showed that for any graph,

it is possible to turn all the lights off if initially all the lights are on. Amin et al. [1, 2, 3] concentrated on

universally solvable graphs. Goldwasser et al. [5, 6] used Fibonacci polynomials to determine for which pairs

(m,n) the grid graph Gm,n is closed universally solvable and for which pairs it is open universally solvable.

We note that Gm,n is the Cartesian Product Pm�Pn, where Pi is a path with i vertices. In this paper, we

generalize the game to graphs of the form G�H, where G and H are arbitrary finite, simple graphs.

2. Cartesian Products. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and let

n = mp. Let B = [bij ] = A(G), the adjacency matrix of G, and let C = A(H), the adjacency matrix of H.

We make the following observation.

Observation 2.1. The adjacency matrix of G�H is

A(G�H) =


C b12Ip . . . b1mIp

b21Ip C
...

...
. . . b(m−1)mIp

bm1Ip . . . bm(m−1)Ip C

 ,

where bijIp is either the p×p identity matrix or the p×p matrix of zeros as bij ∈ GF (2) for all 1 ≤ i, j ≤ m.

Note that bii = 0 for all 1 ≤ i ≤ m as B is the adjacency matrix of G. The rows and columns could be

permuted to get an adjacency matrix with p m×m blocks with B on the main diagonal.

The following result on the determinant of a block matrix will play a key role in our computations.

Theorem 2.2. [8] Let R be a commutative subring of Mn(F ), where F is a field (or a commutative

ring), and let M ∈Mm(R). Then

detFM = detF (detRM).

For example, if M =

[
A B

C D

]
, where A,B,C,D are n× n matrices over F that mutually commute,

then Theorem 2.2 says

detFM = detF (AD−BC).
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By Observation 2.1, A(G�H) is a block matrix consisting of the blocks C = A(H), the p × p identity

matrix Ip, and the p×p matrix of zeros Op. These three blocks are pairwise commutative, so the next result

follows from Theorem 2.2. We let pA(x) denote the characteristic polynomial of the n× n matrix A.

Theorem 2.3. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and n = mp. Let B = A(G)

and C = A(H). Then

det[A(G�H)] = det[pB(C)]

and

det[A(G�H) + In] = det[pB(C + Ip)].

We will also need the following result.

Theorem 2.4. Let f(x) be a polynomial and let A be an n × n matrix. Then f(A) is singular if and

only if gcd(f(x), pA(x)) 6= 1.

Proof. Suppose q(x) = gcd(f(x), pA(x)) = 1. We can express q(x) as a linear combination of two

polynomials p1(x) and p2(x). So 1 = q(x) = p1(x)f(x) + p2(x)pA(x). Then In = q(A) = p1(A)f(A) as

pA(A) = 0. Hence, f(A) is nonsingular.

Conversely, suppose gcd(f(x), pA(x)) 6= 1. Then r(x) = gcd(f(x),mA(x)) 6= 1, where mA(x) is the

minimal polynomial of A. Since r(x) 6= 1 divides mA(x), r(A) is singular. To see this, observe that

mA(x) = r(x)s(x) for some s(x). So mA(A) = r(A)s(A) = 0, with s(A) 6= 0 as mA(x) is the minimal

polynomial of A. Since r(A)s(A)~x = ~0 for every ~x, there exists a vector ~x such that ~y = s(A)~x 6= ~0. Hence,

r(A)~y = ~0 and r(A) is singular. Since f(x) = r(x)t(x) for some t(x), it follows that f(A) is singular.

We now provide conditions for which G�H is closed universally solvable and open universally solvable,

and illustrate with an example.

Theorem 2.5. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and n = mp. Let B = A(G)

and C = A(H). Then G�H is closed universally solvable if and only if gcd(pB(x + 1), pC(x)) = 1.

Proof. Suppose q(x) = gcd(pB(x + 1), pC(x)) 6= 1. Since q(x) 6= 1 divides pC(x), q(C) is singular.

Suppose pB(x+ 1) = s(x)q(x) for some s(x). Then pB(C + Ip) = s(C)q(C) is singular since q(C) is singular.

By Theorem 2.3, det[A(G�H) + In] = det[pB(C + Ip)] = 0. Hence, A(G�H) + In is singular, and G�H is

not closed universally solvable.

Conversely, suppose A(G�H)+In is singular. Then pB(C+Ip) is singular. By Theorem 2.4, gcd(pB(x+

1), pC(x)) 6= 1.

Theorem 2.6. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and n = mp. Let B = A(G)

and C = A(H). Then G�H is open universally solvable if and only if gcd(pB(x), pC(x)) = 1.

Proof. Suppose r(x) = gcd(pB(x), pC(x)) 6= 1. Since r(x) 6= 1 divides pC(x), r(C) is singular. Suppose

pB(x) = t(x)q(x) for some t(x). Then pB(C) = t(C)q(C) is singular since q(C) is singular. By Theorem 2.3,

det[A(G�H)] = det[pB(C)]. Hence, A(G�H) is singular, and G�H is not open universally solvable.

Conversely, suppose A(G�H) is singular. Then pB(C) is singular. So by Theorem 2.4, gcd(pB(x), pC(x))

6= 1.
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Example 2.7. Let G = K4, the complete graph on four vertices, and let H = C4, the cycle graph of

order 4. Then

B = A(K4) =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 ,

C = A(C4) =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 ,

and

A(K4�C4) =


C I4 I4 I4
I4 C I4 I4
I4 I4 C I4
I4 I4 I4 C

 .

Observe that pB(x) = (x + 1)4 and pC(x) = x4. By Theorem 2.3, det[A(K4�C4)] = det[pB(C)] = det[(C +

I4)4] = [det(C + I4)]4 = 1, and det[A(K4�C4) + I4] = det[pB(C + I4)] = det[C4] = [det(C)]4 = 0. Hence,

K4�C4 is open universally solvable but not closed universally solvable.

Alternatively, gcd(pB(x), pC(x)) = gcd((x + 1)4, x4) = 1, so K4�C4 is open universally solvable by

Theorem 2.6. In addition, gcd(pB(x + 1), pC(x)) = gcd(x4, x4) = x4, so K4�C4 is not closed universally

solvable by Theorem 2.5.

If f(x) is any polynomial over GF (2), we define the conjugate of f(x) by f(x + 1). Interestingly, if

pB(x) = pB(x + 1) (so pB(x) is self-conjugate) for some graph G with B = A(G), then G�H will be

both closed universally solvable and open universally solvable if gcd(pB(x), pC(x)) = 1, where C = A(H).

Goldwasser et al. [7] showed that the only self-conjugate Fibonacci polynomials are f0(x) = 0, f1(x) = 1,

and f5(x) = x4 + x2 + 1 = (x2 + x + 1)2. Let Bn = A(Pn), the adjacency matrix of the path on n vertices.

Goldwasser et al. [6] observed that

pBn(x) = xpBn−1(x) + pBn−2(x),

where pB1
(x) = x and pB0

(x) = 1. The sequence {pBi
(x)} satisfies the Fibonacci recurrence with initial

conditions shifted by one, so pBi
= fi+1 (i = 0, 1, 2, . . . ). This relationship allows us to find an explicit

formula for the characteristic polynomial of A(Pn). In particular, if G = P4, then pB4
(x) = f5(x) =

pB4(x + 1). So if gcd(pB4(x), pC(x)) = 1 for some graph H with C = A(H), then P4�H will be both closed

universally solvable and open universally solvable. This is the case for P4�Kn (the characteristic polynomial

for A(Kn) is given in the proof of Proposition 3.1).

As an immediate consequence of Theorem 2.6, G�G is not open universally solvable for any graph G.

Corollary 2.8. Let G be a finite, simple graph, and let B = A(G). Then G�G is not open universally

solvable.

Proof. Since gcd(pB(x), pB(x)) = pB(x) 6= 1, the result follows immediately from Theorem 2.6.
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While G�G is not open universally solvable for any graph G, G�G may or may not be closed universally

solvable. For example, P3�P3 is closed universally solvable and K3�K3 is not closed universally solvable.

In fact, G�G is closed universally solvable if and only if the characteristic polynomial of G is not divisible

by both f(x) and the conjugate of f(x) for any polynomial f(x) of degree at least one, and the result follows

immediately from Theorem 2.5.

Corollary 2.9. Let G be a finite, simple graph, and let B = A(G). Then G�G is closed universally

solvable if and only if pB(x) is not divisible by both f(x) and g(x) = f(x + 1) for any polynomial f(x) of

degree at least one.

3. Cartesian Products of common graph families. We now investigate Cartesian Products in-

volving some common graph families and decide whether or not they are closed universally solvable and

open universally solvable. The results are summarized in Tables 1, 2, and 3.

Proposition 3.1. If n and m are even, then Kn�Km is closed universally solvable but not open uni-

versally solvable. If m is odd and n is either even or odd, then Kn�Km is not closed universally solvable

and not open universally solvable.

Proof. Let G = Kn, H = Km, B = A(Kn), and C = A(Km). If n is even, pB(x) =
(
pA(K2)(x)

)n/2
=(

(x+ 1)2
)n/2

= (x+ 1)n. Moreover, pB(x+ 1) =
(
(x+ 1) + 1

)n
= xn. Hence, if both n and m are even, then

x+ 1 divides both pB(x) and pC(x). In addition, gcd(pB(x+ 1), pC(x)) = gcd(xn, (x+ 1)m) = 1. Therefore,

Kn�Km is closed universally solvable but not open universally solvable if n and m are even by Theorems

2.5 and 2.6, respectively (see the entries in red text in Table 1).

If m is odd, pC(x) = x
(
pA(K2)(x)

)m−1
2 = x

(
(x + 1)2

)m−1
2 = x(x + 1)m−1. Moreover, pC(x + 1) =

(x + 1)
(
(x + 1) + 1

)m−1
= (x + 1)(xm−1). Hence, if n is even and m is odd, then x + 1 divides both pB(x)

and pC(x). In addition, x divides both pB(x+ 1) and pC(x). If n and m are both odd, then x(x+ 1) divides

both pB(x) and pC(x). In addition, x divides both pB(x + 1) and pC(x). Therefore, Kn�Km is not closed

universally solvable and not open universally solvable if m is odd and n is either even or odd by Theorems

2.5 and 2.6, respectively.

Let Bn = A(Pn), the adjacency matrix of the path on n vertices, and let An = A(Cn), the adjacency

matrix of the cycle of order n. Then by expansion on the first row we get

pAn
(x) = det



x 1 0 0 . . . 0 1

1 x 1 0 . . . 0 0

0 1 x 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 1 x 1

1 0 . . . 0 0 1 x


= xpBn−1

(x)

= xfn(x),

where fn(x) is the nth Fibonacci polynomial. We use a result on the divisibility of polynomials by Goldwasser

et al. [6] in the proof of the next proposition.
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Proposition 3.2. If n and m are any positive integers, then Cn�Km is not closed universally solvable.

If n is any positive integer and m is odd, then Cn�Km is not open universally solvable. If m is even, then

Cn�Km is open universally solvable if and only if n is not a multiple of 3.

Proof. Let An = A(Cn) and let C = A(Km). As seen in the proof of Proposition 3.1, x + 1 is a

factor of pC(x) for both m even and m odd. Since pAn(x) = xfn(x), pAn(x + 1) = (x + 1)fn(x + 1) and

gcd(pAn(x+1), pC(x)) 6= 1. Hence, Cn�Km is not closed universally solvable for any positive integers n and

m.

If m is odd, then pC(x) = x(x+ 1)m−1. So gcd(pAn(x), pC(x)) 6= 1, and Cn�Km is not open universally

solvable.

If m is even, then pC(x) = (x + 1)m. Since t = 3 is the minimal integer for which (x + 1)|ft(x),

(x+ 1)|fr(x) if and only if t|r. Hence, Cn�Km is open universally solvable if and only if n is not a multiple

of 3 (see the entries in blue text in Table 1).

Proposition 3.3. If n is odd, then Kn�Pm−1 is closed universally solvable and open universally solvable

if and only if m is not a multiple of 2 or 3. If n is even, then Kn�Pm−1 is closed universally solvable if and

only if m is not a multiple of 2. If n is even, then Kn�Pm−1 is open universally solvable if and only if m

is not a multiple of 3.

Proof. Let B = A(Kn) and let Bm−1 = A(Pm−1). If n is odd, then pB(x + 1) = (x + 1)xn−1 and

pB(x) = x(x + 1)n−1. Since pBm−1
(x) = fm(x), x is a factor of pBm−1

(x) if and only if m is a multiple of 2

and x + 1 is a factor of pBm−1
(x) if and only if m is a multiple of 3. Hence, Kn�Pm−1 is closed universally

solvable and open universally solvable if and only if m is not a multiple of 2 or 3 (see the entries in magenta

text in Table 1).

If n is even, then pB(x + 1) = xn. Since pBm−1(x) = fm(x), x is a factor of pBm−1(x) if and only if m is

a multiple of 2. Hence, Kn�Pm−1 is closed universally solvable if and only if m is not a multiple of 2 (see

the entries in brown text in Table 1).

If n is even, then pB(x) = (x + 1)n. Since pBm−1
(x) = fm(x), x + 1 is a factor of pBm−1

(x) if and only

if m is a multiple of 3. Hence, Kn�Pm−1 is open universally solvable if and only if m is not a multiple of 3

(see the entries in violet text in Table 1).

Proposition 3.4. If n and m are any positive integers, then Cn�Cm is not open universally solvable.

In addition, Cn�Cm is closed universally solvable if and only if n and m are not multiplies of 3 (provided n

and m are not both 5).

Proof. Let Ak = A(Ck). Then pAk
(x) = xfk(x). Hence, x is a factor of pAn(x) and pAm(x), and so

Cn�Cm is not open universally solvable.

We have pAn(x + 1) = (x + 1)fn(x + 1) and pAm(x) = xfm(x). Then x + 1 is a factor of fm(x) if and

only if m is a multiple of 3. Moreover, x is a factor of fn(x + 1) if and only if n is a multiple of 3. Hence,

Cn�Cm is closed universally solvable if and only if n and m are not multiplies of 3 (see the entries in blue

text in Table 2). There is one exception to this rule. If n = m = 5, then f5(x) = f5(x + 1) as f5(x) is the

only self-conjugate Fibonacci polynomial, and so C5�C5 is not closed universally solvable (see the entry in

orange text in Table 2).

Proposition 3.5. The graph Cn�Pm−1 is open universally solvable if and only if m is not a multiple

of 2 and m and n are not multiples of each other. In addition, Cn�Pm−1 is closed universally solvable if

and only if m is not a multiple of 3 and Pn−1�Pm−1 is closed universally solvable.
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Proof. Let An = A(Cn) and let Bm−1 = A(Pm−1). Then pAn(x) = xfn(x) and pBm−1(x) = fm(x).

Observe that x is a factor of fm(x) if and only if m is even. In addition, fn(x) and fm(x) have common

divisors if and only if m and n are multiples of each other. Hence, Cn�Pm−1 is open universally solvable if

and only if m is not a multiple of 2 and m and n are not multiples of each other (see the entries in red text

in Table 2).

We have pAn
(x+ 1) = (x+ 1)fn(x+ 1). Since x+ 1 is a factor of fm(x) if and only if m is a multiple of

3, Cn�Pm−1 is not closed universally solvable if m is a multiple of 3 (see the entries in brown text in Table

2). Moreover, Cn�Pm−1 is not closed universally solvable if gcd(fn(x + 1), fm(x)) 6= 1 (i.e., Pn−1�Pm−1 is

not closed universally solvable).

Goldwasser et al. [5, 6] used Fibonacci polynomials to determine for which pairs (m,n) the grid graph

Pm�Pn is closed universally solvable and for which pairs it is open universally solvable. For certain values of

n, we can easily determine when Pn�Pn is closed universally solvable, as illustrated in the following example.

We utilize several of the properties of Fibonacci polynomials over GF (2).

Example 3.6. If n = 2k for some positive integer k, then pBn−1
(x) = fn(x) = xf2

k (x). In addition, if

n = 3j for some positive integer j, then pBn−1
(x) = fn(x) = f3(x)fj(xf3(x)) = (x+1)2fj(x(x+1)2). Finally,

if n = 6l for some positive integer l, then pBn−1(x) = fn(x) = f2(3l)(x) = xf2
3l(x) = x

(
(x+1)2fl(x(x+1)2)

)2
.

In other words, pBn−1(x) = fn(x) is divisible by x and x + 1 if n is a multiple of 6, and so Pn−1�Pn−1 is

not closed universally solvable by Corollary 2.9 (see the entries in green text in Table 3).

If n = 2k for some positive integer k, then fn(x) = pBn−1(x) = xn−1. Since fn(x) is a power of x and the

conjugate of x is x + 1, fn(x) is not divisible by both a polynomial and its conjugate. Hence, Pn−1�Pn−1
is closed universally solvable by Corollary 2.9 (see the entries in orange text in Table 3).

Recall that f5(x) is self-conjugate; that is, f5(x) = f5(x + 1). Moreover, if n = 5k for some positive

integer k, then pBn−1
(x) = fn(x) = f5(x)fk(xf5(x)). Since f5(x) is self-conjugate, pBn−1

(x+1) = fn(x+1) =

f5(x+ 1)fk((x+ 1)f5(x+ 1)) = f5(x)fk((x+ 1)f5(x)). Hence, f5(x) divides both pBn−1(x) and pBn−1(x+ 1).

Therefore, Pn−1�Pn−1 is not closed universally solvable by Corollary 2.9 (see the entries in purple text in

Table 3).

If fm(x) is divisible by a self-conjugate polynomial g(x), then fn(x) is also divisible by g(x), where

n = mk for some positive integer k. Observe that f17(x) is divisible by the self-conjugate polynomial

g(x) = x4 + x + 1. So if n = 17k where k is a positive integer, then fn(x) is also divisible by g(x). Hence,

g(x) divides both pBn−1(x) and pBn−1(x + 1). Therefore, Pn−1�Pn−1 is not closed universally solvable by

Corollary 2.9.

The n-cube Qn, n ≥ 1, is defined as the repeated Cartesian product of n paths of length two. That

is, Q1 = P2 and Qn = Qn−1�P2 for n ≥ 2. The n-cube is often referred to as the nth hypercube. If

V (P2) = {0, 1}, then the vertex set of Qn can be viewed as the set of n-tuples (v1, v2, . . . , vn), where

vi ∈ {0, 1}. Moreover, two n-tuples share an edge if they differ in exactly one coordinate. The hypercubes

Q3 and Q4 are shown in Figure 1.

Definition 3.7. Let C1 = [x], where x ∈ GF (2). For each positive integer k, define C2k recursively by

C2k =

[
C2k−1 I2k−1

I2k−1 C2k−1

]
,

where I2k−1 is the (2k−1)× (2k−1) identity matrix.
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010

0000 0001
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Figure 1. The hypercubes Q3 and Q4.

Lemma 3.8. For each nonnegative integer k, det(C2k) = (x+ 1)2
k

if k is odd and det(C2k) = x2k if k is

even.

Proof. The proof is by induction. Note that det(C1) = det([x]) = x and det(C2) =

det
([x 1

1 x

])
= x2 + 1 = (x + 1)2. Suppose det(C2k) = (x + 1)2

k

for some odd integer k > 1 and

det(C2k) = x2k for some even integer k > 0. Then

det(C2k+2) = det
([ C2k+1 I2k+1

I2k+1 C2k+1

])
= det

(
(C2k+1)2 − (I2k+1)2

)
(by Theorem 2.2)

=
[

det(C2k+1 + I2k+1)
]2

=
[

det
([ C2k + I2k I2k

I2k C2k + I2k

])]2
=
[

det
(

(C2k + I2k)2 − (I2k)2
)]2

=
[

det(C2k)2
]2

=
[

det(C2k)
]4

=

{
((x + 1)2

k

)4 if k is odd

(x2k)4 if k is even

=

{
(x + 1)2

k+2

if k is odd

x2k+2

if k is even

by the induction hypothesis.

Observe that for each positive integer k, the characteristic polynomial of the adjacency matrix of the

k-cube Qk is pA(Qk)(x) = det(C2k), where C2k is defined as in Definition 3.7. We can determine which

hypercubes are closed universally solvable and open universally solvable.

Theorem 3.9. For each positive integer k, the k-cube Qk is not closed universally solvable but is open

universally solvable if k is odd, and the k-cube Qk is closed universally solvable but not open universally

solvable if k is even.
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Proof. We have Qk = Qk−1�P2 for each positive integer k. Let B = A(Qk−1) and let C = A(P2). Then

pC(x) = x2 + 1 = (x + 1)2. If k is odd (so k − 1 is even), pB(x) = x2k−1

by Lemma 3.8. Then gcd(pB(x +

1), pC(x)) = gcd((x+1)2
k−1

, (x+1)2) = (x+1)2 6= 1 and gcd(pB(x), pC(x)) = gcd(x2k−1

, (x+1)2) = 1. Thus,

Qk is not closed universally solvable but is open universally solvable for k odd by Theorems 2.5 and 2.6,

respectively. If k is even (so k−1 is odd), pB(x) = (x+1)2
k−1

by Lemma 3.8. Then gcd(pB(x+1), pC(x)) =

gcd(x2k−1

, (x+1)2) = 1 and gcd(pB(x), pC(x)) = gcd((x+1)2
k−1

, (x+1)2) = (x+1)2 6= 1. Thus, Qk is closed

universally solvable but not open universally solvable for k even by Theorems 2.5 and 2.6, respectively.

4. Conclusion. We conclude by stating two conjectures concerning the nullity of the adjacency matrix

of a Cartesian Product.

Conjecture 4.1. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and n = mp. Let

B = A(G), C = A(H), and q(x) = gcd(pB(x + 1), pC(x)). Then the nullity of A(G�H) + In is at least

deg q(x).

Conjecture 4.2. Let G and H be finite, simple graphs, with |G| = m, |H| = p, and n = mp. Let

B = A(G), C = A(H), and r(x) = gcd(pB(x), pC(x)). Then the nullity of A(G�H) is at least deg r(x).

Acknowledgment. The idea for this paper emerged during a senior seminar course taught by Dr.

Travis Peters in the spring of 2015. Dr. Peters mentored Jacob Schuster, a senior mathematics major at

Culver-Stockton College. The authors would like to thank the anonymous referee for a careful review of the

paper.

REFERENCES

[1] A. Amin, L. Clark, and P. Slater. Parity dimension for graphs. Discrete Mathematics, 187:1–17, 1998.

[2] A.T. Amin and P.J. Slater. All parity realizable trees. Journal of Combinatorial Mathematics and Combinatorial Com-

puting, 20:53–63, 1996.

[3] A. Amin, P. Slater, and G.-H. Zhang. Parity dimension for graphs - a linear algebraic approach. Linear and Multilinear

Algebra, 50(4):327–342, 2002.

[4] R. Fleischer and J. Yu. A survey of the game “Lights Out!”. Space-Efficient Data Structures, Streams, and Algorithms,

Springer, Berlin, 176–198, 2013.

[5] J. Goldwasser and W. Klostermeyer. Odd and even dominating sets with open neighborhoods. Ars Combinatoria, 83:229–

247, 2007.

[6] J. Goldwasser, W. Klostermeyer, and G. Trapp. Characterizing switch-setting problems. Linear and Multilinear Algebra,

43:121–135, 1997.

[7] J. Goldwasser, W. Klostermeyer, and H. Ware. Fibonacci polynomials and parity domination in grid graphs. Graphs and

Combinatorics, 18:271–283, 2002.

[8] J.R. Silvester. Determinants of block matrices. The Mathematical Gazette, 84(501):460–467, 2000.

[9] K. Sutner. Linear cellular automata and the Garden-of-Eden. The Mathematical Intelligencer, 11(2):49–53, 1989.

[10] K. Sutner. The σ-game and cellular automata. American Mathematical Monthly, 97(1):24–34, 1990.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 464-474, December 2017.

473 Lights Out! on Cartesian Products

Table 1

Summary of solvable graph families.

� K2 K3 K4 K5 K6 K7

K2 C, nO nC, nO C, nO nC, nO C, nO nC, nO

K3 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

K4 C, nO nC, nO C, nO nC, nO C, nO nC, nO

K5 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

K6 C, nO nC, nO C, nO nC, nO C, nO nC, nO

K7 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

C3 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

C4 nC, O nC, nO nC, O nC, nO nC, O nC, nO

C5 nC, O nC, nO nC, O nC, nO nC, O nC, nO

C6 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

C7 nC, O nC, nO nC, O nC, nO nC, O nC, nO

C8 nC, O nC, nO nC, O nC, nO nC, O nC, nO

C9 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

P2 C, nO nC, nO C, nO nC, nO C, nO nC, nO

P3 nC, O nC, nO nC, O nC, nO nC, O nC, nO

P4 C, O C, O C, O C, O C, O C, O

P5 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

P6 C, O C, O C, O C, O C, O C, O

P7 nC, O nC, nO nC, O nC, nO nC, O nC, nO

P8 C, nO nC, nO C, nO nC, nO C, nO nC, nO

C = closed universally solvable, nC = not closed universally solv-

able, O = open universally solvable, nO = not open universally

solvable.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 464-474, December 2017.

Travis Peters, John Goldwasser, and Michael Young 474

Table 2

Summary of solvable graph families.

� C3 C4 C5 C6 C7 C8 C9

C3 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

C4 nC, nO C, nO C, nO nC, nO C, nO C, nO nC, nO

C5 nC, nO C, nO nC, nO nC, nO C, nO C, nO nC, nO

C6 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

C7 nC, nO C, nO C, nO nC, nO C, nO C, nO nC, nO

C8 nC, nO C, nO C, nO nC, nO C, nO C, nO nC, nO

C9 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

P2 nC, nO nC, O nC, O nC, nO nC, O nC, O nC, nO

P3 nC, nO C, nO C, nO nC, nO C, nO C, nO nC, nO

P4 C, O C, O nC, nO C, O C, O C, O C, O

P5 nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO nC, nO

P6 C, O C, O C, O C, O C, nO C, O nC, O

P7 nC, nO C, nO C, nO nC, nO C, nO C, nO nC, nO

P8 nC, nO nC, O nC, O nC, nO nC, O nC, O nC, nO

P9 nC, nO C, nO nC, nO nC, nO C, nO C, nO nC, nO

C = closed universally solvable, nC = not closed universally solvable, O =

open universally solvable, nO = not open universally solvable.

Table 3

Summary of solvable graph families.

� P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P2 C, nO nC, O C, O nC, nO C, O nC, O C, nO nC, O C, O nC, nO

P3 nC, O C, nO C, O nC, nO C, O C, nO nC, O C, nO C, O nC, nO

P4 C, O C, O nC, nO C, O C, O C, O C, O nC, nO C, O C, O

P5 nC, nO nC, nO C, O nC, nO C, O nC, nO nC, nO nC, nO C, O nC, nO

P6 C, O C, O C, O C, O C, nO C, O nC, O C, O C, O C, O

P7 nC, O C, nO C, O nC, nO C, O C, nO nC, O C, nO C, O nC, nO

P8 C, nO nC, O C, O nC, nO nC, O nC, O C, nO nC, O C, O nC, nO

P9 nC, O C, nO nC, nO nC, nO C, O C, nO nC, O nC, nO C, O nC, nO

P10 C, O C, O C, O C, O C, O C, O C, O C, O C, nO C, O

P11 nC, nO nC, nO C, O nC, nO C, O nC, nO nC, nO nC, nO C, O nC, nO

C = closed universally solvable, nC = not closed universally solvable, O = open universally solvable, nO =

not open universally solvable.


