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SPECTRAL DYNAMICS OF GRAPH SEQUENCES GENERATED

BY SUBDIVISION AND TRIANGLE EXTENSION∗

HAIYAN CHEN† AND FUJI ZHANG‡

Abstract. For a graph G and a unary graph operation X, there is a graph sequence {Gk} generated by G0 = G and

Gk+1 = X(Gk). Let Sp(Gk) denote the set of normalized Laplacian eigenvalues of Gk. The set of limit points of
⋃∞

k=0 Sp(Gk),

lim infk→∞ Sp(Gk) and lim supk→∞ Sp(Gk) are considered in this paper for graph sequences generated by two operations:

subdivision and triangle extension. It is obtained that the spectral dynamic of graph sequence generated by subdivision is

determined by a quadratic function, which is closely related to the the well-known logistic map; while that generated by

triangle extension is determined by a linear function. By using the knowledge of dynamic system, the spectral dynamics of

graph sequences generated by these two operations are characterized. For example, it is found that, for any initial non-trivial

graph G, chaos takes place in the spectral dynamics of iterated subdivision graphs, and the set of limit points is the entire

closed interval [0, 2].
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1. Introduction. Let X be a unary operation of graphs. Starting from any graph G, we may iterate

the operation X to obtain a graph sequence

X0(G) = G, X1(G) = X(G), X2(G) = X(X(G)), . . . , Xk(G) = X(Xk−1(G)), . . .

Statistical physics motivated recent research on the limit behavior of some parameters related to graphs,

such as the number of spanning trees, the number of perfect matchings, Kirchhoff index, energy [27, 32–35].

The spectra of a graph is a fruitful topic in algebraic graph theory. The roots of characteristic polynomial

of adjacency, Laplacian and normalized Laplacian are called adjacency, Laplacian and normalized Laplacian

spectrum, respectively. Many papers and books have been published on spectra of graphs (see for example

[14, 15] and the references cited therein). The adjacency spectral dynamics of graph sequences were first

studied in [35] by Chen, Chen and one of the present authors, where the graph sequence in consideration is

generated by the graph operation of clique-inserting (or called para-line in [28]). It is showed in [35] that for

any initial r-regular graph G with r > 2, the set of limit points of the adjacency eigenvalues of all graphs in

the sequence is a fractal with the maximum r and the minimum −2, and that the fractal is independent of

the structure of the G as long as the degree r of G is fixed. In view of the rich and colorful phenomena in

dynamical systems, one naturally wants to investigate spectral dynamics of graph sequences generated by

other unary operations. In this paper, we shall study the normalized Laplacian spectral dynamics of graph

sequences generated by subdivision and triangle extension, respectively. Now we first give the definitions of

subdivision and triangle extension.
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Let G = (V,E) be a graph with vertex set V and edge set E.

The subdivision operation for an edge {u, v} ∈ E is the deletion of {u, v} from G and the addition of two

edges {u,w} and {w, v} along with the new vertex w (so, the three edges {u, v}, {u,w} and {w, v} consist

of a triangle). The subdivision graph S(G) of G is the graph obtained from G by doing subdivision for every

edge of G.

The triangle extension operation for an edge {u, v} ∈ E is the addition of two edges {u,w} and {w, v}
along with the new vertex w. The triangle extension graph R(G) of G is the graph obtained from G by

doing triangle extension for every edge of G.

Note that the only difference between S(G) and R(G) is whether we keep the original edges in G (for

triangle extension) or not (for subdivision). But we shall see that the normalized Laplacian spectral dynamics

of graph sequences generated by these two operations are very different. The set of limit points is the entire

internal [0, 2] for the subdivision, while the set of limit points is {0} for the triangle extension.

The normalized Laplacian matrix is closely related to random walks on graphs and discrete geometric

analysis [4, 9, 24, 29–31]. Now many mathematical results have been obtained (see [5–7, 10–13, 19, 21, 22,

26], for example). By the way normalized Laplacian spectrum provided a powerful weapon in applications

such as machine learning, ratio cut partitioning and clustering, see for example [1, 17, 20, 25].

In this paper, all graphs are assumed to be simple and connected. Let G be a graph with vertex set

V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Its adjacency matrix is defined to be the

n×n matrix A(G) = (aij), where aij = 1 if vi is adjacent to vj ; and aij = 0, otherwise. Its incidence matrix

is defined to be the n×m matrix B(G) = (bij), where bij = 1 if vi is incident with ej ; and bij = 0, otherwise.

Let di denote the degree of vertex vi, D(G) − A(G) is called the (combinatorial) Laplacian matrix of G,

where D(G) = diag(d1, d2, . . . , dn) is the degree diagonal matrix of G. The normalized Laplacian matrix of

G is defined as [14]:

L(G) = (lij) = D(G)−1/2(D(G)−A(G))D(G)−1/2, that is

lij =


1, if i = j;

−1/
√
didj , if vi is adjacent to vj ;

0, otherwise.

In the following, for simplicity, when we say eigenvalues and the characteristic polynomial of G, we

always mean eigenvalues and the characteristic polynomial of L(G). The following theorem gives some basic

properties of the spectrum of L(G). More related results can be seen in [2, 8, 14].

Theorem 1.1. For a connected graph G, we have:

(i) all eigenvalues of L(G) lie in the interval [0, 2];

(ii) 0 is always an eigenvalue of L(G);

(iii) 2 is an eigenvalue of L(G) if and only if G is bipartite.

Given a graph G and a unary operation X, let Sp(Xk(G)) denote the set of eigenvalues of Xk(G),

k = 0, 1, 2, . . . Let also

SpX(G) =

∞⋃
k=0

Sp(Xk(G))
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denote the union of the eigenvalue sets of all graphs in the sequence {Xk(G)}k≥0. Then in this paper, on

the one hand, we concern the set of limit points of the set SpX(G), which is denoted by ΛX(G); on the other

hand, we concern the supremun and infimum limits of the sequence of sets Sp(Xk(G)), that is,

lim sup
k→∞

Sp(Xk(G)) =

∞⋂
k=1

∞⋃
l=k

Sp(X l(G));

lim inf
k→∞

Sp(Xk(G)) =

∞⋃
k=1

∞⋂
l=k

Sp(X l(G)).

These three sets ΛX(G), lim supk→∞ Sp(Xk(G)) and lim infk→∞ Sp(Xk(G)) can be very different. Note that

x ∈ ΛX(G) if and only if there exists a point sequence {xk}, xk ∈ SpX(G) such that xk → x. Also note

that x ∈ lim supk→∞ Sp(Xk(G)) if and only if there exists a subsequence {Sp(Xki(G))} of {Sp(Xk(G))}
such that x ∈ Sp(Xki(G)) for all i; and x ∈ lim infk→∞ Sp(Xk(G)) if and only if there exists some h > 0

such that x ∈ Sp(X l(G)) for all l > h. So, x ∈ ΛX(G) may not be an eigenvalue of any graph in the graph

sequence {Xk(G)}, while if x ∈ lim supk→∞ Sp(Xk(G)) or x ∈ lim supk→∞ Sp(Xk(G)), then x must be an

eigenvalue of infinite many graphs in this sequence.

The rest of the paper is organized as follows. In Section 2, we focus on the spectral dynamics of the graph

sequences {Sk(G)}k≥0 generated by the subdivision S. We first use algebraic method to establish an explicit

relation between the characteristic polynomial of S(G) and that of G. Then by connecting this relation with

the well-known logistic map, we not only show that ΛS(G) = [0, 2] for any initial non-trivial graph G, but

also give an explicit characteristic of lim supk→∞ Sp(Sk(G)) and lim infk→∞ Sp(Sk(G)) in terms of period

points of the logistic map. In Section 3, we give explicit results for the iterated-triangle-extension graph

sequences {Rk(G)}k≥0 for any initial graph G. In Section 4, as a conclusion, we first summarize the results

that we have obtained, then point out problems which need further study.

In this paper, we follow standard notation and terminology. The reader may refer to [3, 15] for graph

theory, and [16] for dynamical systems.

2. Spectral dynamics of iterated subdivision graphs. Let G be a graph with n vertices and m

edges, the characteristic polynomial of G will be denoted by Φ(G, x), that is Φ(G, x) = det(xI − L(G)). In

this section, we first give an explicit expression for the characteristic polynomials of S(G) in terms of that

of G. Then based on the expression, we study the spectral dynamics of graph sequence {Sk(G)}k≥0.

For simplicity, L(G) is often written L when the graph G is implied. This abbreviation applies to

A(G), B(G) and D(G) as well. We also write |M | for det(M). First note that

(2.1)
Φ(G;x) =

∣∣∣xI −D−1/2(D −A)D−1/2
∣∣∣ =

∣∣∣(x− 1)I +D−1/2AD−1/2
∣∣∣

=
∣∣∣D1/2

∣∣∣ ∣∣(x− 1)I +D−1A
∣∣ ∣∣∣D−1/2∣∣∣ =

∣∣(x− 1)I +D−1A
∣∣ ,

and

(2.2) BBT = A+D.

we also will use the following known result.

Lemma 2.1. [18] Let N be a non-singular square matrix. Then∣∣∣∣ P Q

M N

∣∣∣∣ = |N |
∣∣P −QN−1M ∣∣ .
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Now we are ready to obtain the relation between Φ(S(G);x) and Φ(G;x).

Theorem 2.2. Let G be a graph with n vertices and m edges. Then

Φ(S(G);x) =
(−1)n(x− 1)m−n

2n
Φ(G; 2x(2− x)).

Proof. By the definition of S(G), we have

A(S(G)) =

(
0 B

BT 0

)
and D(S(G)) =

(
D 0

0 2Im

)
.

Thus,

D(S(G))−1A(S(G)) =

(
0 D−1B

1
2B

T 0

)
.

So, by Lemma 2.1, (2.1) and (2.2), we have

Φ(S(G);x) =

∣∣∣∣ (x− 1)In D−1B
1
2B

T (x− 1)Im

∣∣∣∣ = (x− 1)m
∣∣∣∣(x− 1)In −

D−1BBT

2(x− 1)

∣∣∣∣
=(x− 1)m

∣∣∣∣(x− 1)In −
D−1(A+D)

2(x− 1)

∣∣∣∣
=

(−1)n(x− 1)m−n

2n
∣∣(1− 2(x− 1)2)In +D−1A

∣∣
=

(−1)n(x− 1)m−n

2n
Φ
(
G; 2(1− (x− 1)2)

)
=

(−1)n(x− 1)m−n

2n
Φ(G; 2x(2− x)).

Let f(x) = 2x(2 − x) and let f−1(x) =
{

1±
√

2−x
2

}
represent the pre-image of x under f , i.e.,

f(f−1(x)) = x. Then from the above theorem, we can immediately derive the following result.

Corollary 2.3. Let G be a connected graph with n vertices and m(m > 0) edges. If Sp(G) =

{λ1, λ2, . . . , λs} with 0 = λ1 < λ2 < · · · < λs, then

Sp(S(G)) =


{

1; 1±
√

2−λi

2 , i = 1, 2, . . . , s

}
, if m > n and G is non-bipartite;{

1±
√

2−λi

2 , i = 1, 2, . . . , s

}
, otherwise.

Proof. First note that m ≥ n− 1 since G is connected and λs = 2 if G is bipartite by Theorem 1.1 (iii).

Now if m = n − 1, then G is bipartite. In this case, the result can be checked directly from Theorem 2.2.

If m ≥ n, from Theorem 2.2, we see that µ is an eigenvalue of S(G) if and only if µ ∈ f−1(λi) for some

i ∈ {1, 2, . . . , s} or µ = 1. Since 1 ∈ f−1(λs) if G is bipartite, we have the result.

Note that for any graph G, S(G) must be bipartite. So, to study the asymptotic properties of the

sequence {Sk(G)}k≥0, without loss of generality, we may suppose that G itself is bipartite. Thus, by

Corollary 2.3, to obtain the set Sp(Sk(G)) for general k, we only need to consider the backwards and

forwards iterations of the quadratic map

f : x→ 2x(2− x).
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From Corollary 2.3, µ is an eigenvalue of Sk(G) if and only if µ ∈ f−k(λi) for some i ∈ {1, 2, . . . , s}
where f−k(x) = f−1(f−k+1(x)). Now we define the following affine transformation:

h : x→ x

2

and consider the well studied logistic map with parameter b = 4:

g : x→ 4x(1− x).

Obviously, h is a homeomorphism. It is easy to check the fact that

h ◦ f(x) = g ◦ h(x).

This fact indicates that g and f are topologically conjugate to each other via the homeomorphism h. Note

that for the logistic map g(x) = 4x(1 − x), the k-th iterated function gk(x) can be expressed explicitly as

follows [23]:

gk(x) = sin2(2k arcsin
√
x).

So, we have

fk(x) = (h−1 ◦ g ◦ h)k(x) = h−1 ◦ gk ◦ h(x) = 2 sin2(2k arcsin
√
x/2).

Hence, for any x ∈ [0, 2], we have

(2.3) f−k(x) =

{
2 sin2

(
arccos(1− x) + 2lπ

2k+1

)
, l = 0, 1, . . . , 2k − 1

}
.

Now we are ready to give the set Sp(Sk(G)) explicitly for any k.

Theorem 2.4. Let G be a bipartite graph with at least one edge. If Sp(G) = {λ1 = 0, λ2, . . . λs}, then

Sp(Sk(G)) =

s⋃
i=1

{
2 sin2

(
arccos(1− λi) + 2lπ

2k+1

)
, l = 0, 1, . . . , 2k − 1

}
.

Proof. First by Corollary 2.3, µ is an eigenvalue of Sk(G) if and only if µ ∈ f−k(λi) for some i ∈
{1, 2, . . . , s}. So, by (2.3), the result follows immediately.

Now recalling that, for a function ψ, a point x is called a period point of ψ with period k if ψk(x) = x.

It is known that the logistic map g(x) = 4x(1− x) has exactly 2k period points with period k listed below:{
sin2 lπ

2k − 1
, sin2 (l + 1)π

2k + 1
, l = 0, 1, . . . , 2k−1 − 1.

}
Since f and g are topologically conjugate to each other via the homeomorphism h, we deduce that f(x) =

2x(2− x) has exactly 2k period points with period k, and they are{
2 sin2 lπ

2k − 1
, 2 sin2 (l + 1)π

2k + 1
, l = 0, 1, . . . , 2k−1 − 1.

}
Let P (f) denote the set of all period points of f , and let orbf (x) denote the orbit of x under f . Then we

have the following results about supremum limit and infimum limit of {Sp(Sk(G))}k≥0.
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Theorem 2.5. Let G be a bipartite graph with at least one edge, and let Y = Sp(G)
⋂
P (f) and Z =

{λ|orbf (λ) ⊆ Sp(G)}. Then

(i) lim supk→∞ Sp(Sk(G)) =
⋃
λ∈Y

⋃∞
k=0 f

−k(λ);

(ii) lim infk→∞ Sp(Sk(G)) =
⋃
λ∈Z

⋃∞
k=0 f

−k(λ).

Proof. First for (i), given any λ ∈ Y and any k, we may suppose that f l(λ) = λ for some positive integer

l. Then f tl(λ) = λ, t = 1, 2, . . . That is, λ ∈ f−tl(λ), t = 1, 2, . . . This implies that f−k(λ) ⊆ f−tl−k(λ) ⊆
Sp(Stl+k(G)) for all t = 1, 2, . . . , so we have f−k(λ) ⊆ lim supk→∞ Sp(Sk(G)). Hence,⋃

λ∈Y

∞⋃
k=0

f−k(λ) ⊆ lim sup
k→∞

Sp(Sk(G)).

Conversely, suppose x ∈ lim supk→∞ Sp(Sk(G)). Then there exists a subsequence {Ski(G)} such that

x ∈ Sp(Ski(G)) for each i. That is, x ∈ f−ki(λki) for some λki ∈ Sp(G). Since Sp(G) is a finite set, there

must be some ki 6= kj such that λki = λkj = λ. Assume that ki < kj . Then from fkj (x) = fki(x) = λ, we

deduce fkj−ki(λ) = fkj−ki(fki(x)) = fkj (x) = λ, which means λ is a period point of f and x ∈ f−ki(λ).

Hence,

lim sup
k→∞

Sp(Sk(G)) ⊆
⋃
λ∈Y

∞⋃
k=0

f−k(λ).

Now we prove (i).

For (ii), suppose λ ∈ Z with the least period l. Then

orbf (λ) = {λ, f1(λ) = λ1, . . . , f
l−1(λ) = λl−1} ⊆ Sp(G).

Hence, λ belongs to each set below:

{λ}, f−1(λ1), . . . , f−l+1(λl−1), f−l(λ), f−l−1(λ1), . . . , f−2l−1(λl−1), . . .

This implies that, for any k, f−k(λ) is contained in each set listed below:

f−k(λ), f−k−1(λ1), . . . , f−k−l+1(λl−1), f−k−l(λ), f−k−l−1(λ1), . . . , f−k−2l−1(λl−1), . . .

So, f−k(λ) ⊆ Sp(St+k(G)), t = 0, 1, 2, . . . By the definition of infimum limit, we have⋃
λ∈Z

∞⋃
k=0

f−k(λ) ⊆ lim inf
k→∞

Sp(Sk(G)).

Conversely, suppose x ∈ lim infk→∞ Sp(Sk(G)), there exists an integer t such that x ∈ Sp(St+i(G)) for all

i ≥ 1. This means that x ∈ f−t−i(λi) for some λi ∈ Sp(G). Since Sp(G) is a finite set, there must be some

i 6= j such that λi = λj . Without loss of generality, we assume λ1, λ2, . . . , λq are all distinct, but λq+1 = λ1.

Since x ∈ f−t−i(λi) for all i, that is, f t+i(x) = λi, we have

λ2 = f(λ1), λ3 = f2(λ1), . . . , λq = fq−1(λ1), λ1 = fq(λ1).

It follows that orbf (λ1) ⊆ Sp(G) and x ∈ f−t−1(λ1). Thus, we have

lim inf
k→∞

Sp(Xk(G)) ⊆
⋃
λ∈Z

∞⋃
k=0

f−k(λ).

Now the proof is completed.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 454-463, December 2017.

H.Y. Chen and F.J. Zhang 460

Recalling that 0 ∈ Sp(G) for any graph G, at the same time 0 is a fixed point of f . So, 0 ∈ Y and 0 ∈ Z,

thus by Theorem 2.5, we have

∞⋃
k=0

f−k(0) ⊆ lim inf
k→∞

Sp(Ck(G)) ⊆ lim sup
k→∞

Sp(Ck(G)).

Furthermore, by (2.3), we have

f−k(0) =

{
2 sin2(

lπ

2k
), l = 0, 1, . . . , 2k − 1

}
.

From this expression, it is easy to see that
⋃∞
k=0 f

−k(0) is dense in [0, 2]. So, we derive the following results

immediately.

Theorem 2.6. Let G be a connected graph with at leat one edge. Then

(i) lim infk→∞ Sp(Sk(G)) = [0, 2];

(ii) lim supk→∞ Sp(Sk(G)) = [0, 2];

(iii) ΛS(G) = [0, 2].

3. Spectral dynamics of iterated triangle extension graphs.

Theorem 3.1. Let G be a graph with n vertices and m edges. Then

Φ(R(G);x) = (x− 1)m−n
(

2x− 3

4

)n
Φ(G; 2x).

Proof. By the definition of R(G), we have

A(R(G)) =

(
A B

BT 0

)
and D(R(G)) =

(
2D 0

0 2Im

)
.

Thus,

D(R(G))−1A(R(G)) =

(
1
2D
−1A 1

2D
−1B

1
2B

T 0

)
.

So, by Lemma 2.1, (2.1) and (2.2) again, we have

Φ(R(G);x) =

∣∣∣∣ (x− 1)In + 1
2D
−1A 1

2D
−1B

1
2B

T (x− 1)Im

∣∣∣∣
=(x− 1)m

∣∣∣∣(x− 1)In +
1

2
D−1A− D−1BBT

4(x− 1)

∣∣∣∣
=(x− 1)m

∣∣∣∣(x− 1)In +
1

2
D−1A− D−1(A+D)

4(x− 1)

∣∣∣∣
=

(x− 1)m−n

4n
∣∣(4(x− 1)2 − 1)In + (2(x− 1)− 1)D−1A

∣∣
=(x− 1)m−n

(
2x− 3

4

)n ∣∣(2(x− 1) + 1)In +D−1A
∣∣

=(x− 1)m−n
(

2x− 3

4

)n
Φ(G; 2x).
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From Theorem 3.1, we immediately have the following results.

Theorem 3.2. Let G be a connected graph with n vertices and m(m > 0) edges. If Sp(G) = {λ1, λ2,
. . . , λs} with 0 = λ1 < λ2 < · · · < λs, then

Sp(R(G)) =


{

0, λ2

2 , . . . ,
λs−1

2

}⋃{
3
2

}
, if m = n− 1;{

0, λ2

2 , . . . ,
λs−1

2 , λs

2

}⋃{
3
2

}
, if m = n;{

0, λ2

2 , . . . ,
λs−1

2 , λs

2

}⋃{
1, 32
}
, if m > n.

Corollary 3.3. Let G be a connected graph with n vertices and m edges. If m > n and Sp(G) = {λ1 =

0, λ2, . . . , λs}, then

Sp(Rk(G)) =

{
0,
λ2
2k
, . . . ,

λs
2k

}⋃{
1

2i
,

3

2i+1
, i = 0, 1, . . . , k − 1

}
.

Theorem 3.4. Let G be a connected graph with at least one edge. Then

(i) lim infk→∞ Sp(Rk(G)) = lim supk→∞ Sp(Rk(G)) =
{

0, 1
2i ,

3
2i+1 , i = 0, 1, . . .

}
;

(ii) ΛR(G) = {0}.

Proof. By the definition of the triangle extension operation, for any k ≥ 3, the number of edges of Rk(G)

is greater than the number of its vertices, so the results follow directly from Corollary 3.3.

4. Concluding remarks. From the above results, we see that the spectral dynamics of graph sequences

generated by the subdivision and the triangle extension are very different. For the triangle extension, the

dynamic properties are determined by linear function f(x) = x
2 . While for the subdivision, the dynamic

properties are determined by quadratic function f(x) = 2x(2 − x), which is topologically conjugate to the

logistic map g(x) = 4x(1 − x) via the homeomorphism h(x) = x
2 . Since g(x) = 4x(1 − x) is chaotic on the

interval [0, 1], f(x) = 2x(2 − x) is chaotic on the interval [0, 2]. So, although ΛS(G) = [0, 2] is independent

of the initial graph G; lim supk→∞ Sp(Sk(G)) and lim infk→∞ Sp(Sk(G)) are indeed depend on the initial

graph G. Thus, the first problem pops up:

Problem 1. Characterize lim infk→∞ Sp(Sk(G)) and lim supk→∞ Sp(Sk(G)) for some special graphs G,

such as the complete graph, the complete bipartite graph, etc.

Furthermore, by the relation between the spectra of the adjacency matrix and the normalized Laplacian

matrix of a regular graph, the result obtained in [35] for the adjacency matrix can be translated in terms of

the normalized Laplacian matrix as follows:

Let G be an r-regular graph with r > 2, and let C denote the clique-inserting. Then the dynamic

properties of {Ck(G)} are determined by quadratic function

f ′(x) = (r + 2)x− rx2,

which is topologically conjugate to the logistic map g′(x) = (r+ 2)x(1− x) via the homeomorphism h′(x) =
r
r+2x. Since g′(x) is chaotic on a Cantor set, f ′(x) is chaotic on a Cantor set. More clearly, we have the

following results:

(i) the set of the limit points of the normalized Laplacian eigenvalues of all graphs in the sequence

generated by clique-inserting is a fractal independent of the structure of G as long as the degree of G is

fixed. Moreover, the minimum of the limit points is 0, while the maximum is r+2
r .
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(ii)

lim sup
k→∞

Sp(Ck(G)) =
⋃
λ∈Y

∞⋃
k=0

f ′−k(λ)

∞⋃
k=0

f ′−k(1)

and

lim inf
k→∞

Sp(Ck(G)) =
⋃
λ∈Z

∞⋃
k=0

f ′−k(λ)

∞⋃
k=0

f ′−k(1),

where Y = Sp(G)
⋂
P (f ′) and Z = {λ|orbf ′(λ) ⊆ Sp(G)}.

Note that g(x) and g′(x) are logistic maps with parameter b = 4 and b > 4, respectively. Now we have

the second problem.

Problem 2. If there exists some graph sequence such that its spectral dynamic is determined by the

logistic map with parameter b < 4.
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[15] D. Cvetković, P. Rowlinson, and S. Simić. An Introduction to the Theory of Graph Spectra. Cambridge University Press,

Cambridge, 2010.

[16] R.L. Devaney. An Introduction to Chaotic Dynamical Systems, second edition. Addison-Wesley, New York, 1989.

[17] L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on

Computer-Aided Design, 11:1074–1085, 1992.

[18] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 454-463, December 2017.

463 Spectral Dynamics of Graph Sequences Generated by Subdivision and Triangle Extension

[19] J. Huang and S.C. Li. On the normalized Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs. Bull.

Aust. Math. Soc., 91:353–367, 2015.

[20] R. Johnson and T. Zhang. On the effectiveness of Laplacian normalization for graph semi-supervised learning. J. Mach.

Learn. Res., 8:1489–1517, 2007.

[21] C.-K. Li. A short proof of interlacing inequalities on normalized Laplacians. Linear Algebra Appl., 414:425–427, 2006.

[22] H.H. Li, J.S. Li, and Y.Z. Fan. The effect on the second smallest eigenvalue of the normalized Laplacian of a graph by

grafting edges. Linear Multilinear Algebra, 56:627–638, 2008.

[23] E. Lorenz. The problem of deducing the climate from the governing equations. Tellus, 16:1–11, 1964.

[24] L. Lovasz. Discrete Analytic Functions: An Exposition. Surveys in Differential Geometry, Vol. IX, Surv. Differ. Geom.,

Int. Press, Somerville, 241–273, 2004.

[25] U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. Adv. Neural Inf. Process. Syst., 17:857–864,

2005.

[26] R. Merris. Laplacian matrices of graphs: a survey. Linear Algebra Appl., 197/198:143–176, 1994.

[27] H.S. Ramane, H.B. Walikar, et al. Spectra and energies of iterated line graphs of regular graphs. Appl. Math. Lett.,

18:679–682, 2005.

[28] T. Shirai. The spectrum of infinite regular line graphs. Trans. Amer. Math. Soc., 352:115–132, 1999.

[29] A. Singer. From graph to manifold Laplacian: The convergence rate. Appl. Comput. Harmon. Anal., 1:123–134, 2006.

[30] S. Smirnov. Discrete Complex Analysis and Probability. Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010.

[31] O. Smolyanov, H. Weizsacker, and O. Wittich. Brownian motion on a manifold as limit of stepwise conditioned standard

brownian motions. Stochastic Processes, Physics and Geometry: New Interplays, 29:589–602, 2000.

[32] W.G. Yan, Y.N. Yeh, and F.J. Zhang. The asymptotic behavior of some indices of iterated line graphs of regular graphs.

Discrete Appl. Math., 160:1232–1239, 2012.

[33] W.G. Yan and Z.H. Zhang. Asymptotic energy of lattices. Phys. A., 388:1463–1471, 2009.

[34] Z.H. Zhang. Some physical and chemical indices of clique-inserted-lattices. J. Stat. Mech. Theory Exp., 10:162–172, 2013.

[35] F.J. Zhang, Y.C. Chen, and Z.B. Chen. Clique-inserted-graphs and spectral dynamics of clique-inserting. J. Math. Anal.

Appl., 349:211–225, 2009.


