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UPPER BOUNDS ON THE Q-SPECTRAL RADIUS OF BOOK-FREE

AND/OR KS,T -FREE GRAPHS∗

QI KONG† AND LIGONG WANG†

Abstract. In this paper, two results about the signless Laplacian spectral radius q(G) of a graph G of order n with

maximum degree ∆ are proved. Let Bn = K2 + Kn denote a book, i.e., the graph Bn consists of n triangles sharing an edge.

The results are the following:

(1) Let 1 < k ≤ l < ∆ < n and G be a connected {Bk+1,K2,l+1}-free graph of order n with maximum degree ∆. Then

q(G) ≤
1

4

[
3∆ + k − 2l + 1 +

√
(3∆ + k − 2l + 1)2 + 16l(∆ + n− 1)

]
with equality if and only if G is a strongly regular graph with parameters (∆, k, l).

(2) Let s ≥ t ≥ 3, and let G be a connected Ks,t-free graph of order n (n ≥ s + t). Then

q(G) ≤ n + (s− t + 1)1/tn1−1/t + (t− 1)(n− 1)1−3/t + t− 3.
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1. Introduction. Our graph notation follows Bollobás [1]. In particular, let G = (V (G), E(G)) be a

simple graph. Denote by v(G) the order of G and e(G) the size of G, that is to say, v(G) = |V (G)|, and

e(G) = |E(G)|. Set ΓG(u) = {v|uv ∈ E(G)}, and dG(u) = |ΓG(u)|, or simply Γ(u) and d(u), respectively.

Let δ = δ(G) and ∆ = ∆(G) denote the minimal degree and maximal degree of graph G, respectively.

For a simple graph G of order n, let D(G) = diag(d1, d2, . . . , dn), and A(G) = (aij)n×n be the adjacency

matrix of G with aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. The matrix Q(G) = D(G) + A(G)

is called the signless Laplacian matrix of G. The largest eigenvalue of A(G) and Q(G) are called spectral

radius and signless Laplacian spectral radius (or Q-spectral radius) of G and denoted by ρ(G) and q(G),

respectively.

Let X be a set of vertices of G. Then G[X] is the graph induced by X, and e(X) = e(G[X]). Let Pk,

Ck and Kk be the path, cycle, and complete graph of order k, respectively. If all vertices of G have the same

degree k, then G is k-regular. A k-regular graph is called strongly regular with parameters (k, a, c) whenever

each pair of adjacent vertices have a ≥ 0 common neighbors, and each pair of non-adjacent vertices have

c ≥ 1 common neighbors.

The main results of this paper are in the spirit of the trend in the famous Zarankiewicz problem [9]:
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Problem A. How many edges can a graph of order n have if it does not contain a complete bipartite

subgraph Ks,t?

In 1996, Füredi [4] gave an upper bound on the above Zarankiewicz problem. In 2010, Nikiforov [6]

improved his result. That is, if G is a Ks,t -free graph of order n, then

e(G) ≤ 1

2
(s− t+ 1)1/tn2−1/t +

1

2
(t− 1)n2−2/t +

1

2
(t− 2)n.

The spectral version of the Zarankiewicz problem is the following one:

Problem B. How large can be the spectral radius ρ(G) of a graph G of order n that does not contain

Ks,t?

There are some results for some value of s and t.

In 2007, the upper bound on the signless Laplacian spectral radius of K2,l+1-free graph as the corollary

of the following Lemma 1.1 was proved in [9] by Shi and Song.

Lemma 1.1. Let 0 ≤ k ≤ l ≤ ∆ < n and G be a connected {Bk+1,K2,l+1}-free graph of order n with

maximum degree ∆. Then

ρ(G) ≤ 1

2

[
k − l +

√
(k − l)2 + 4∆ + 4l(n− l)

]
with equality if and only if G is a stongly regular with parameters (∆, k, l).

In 2007, Nikiforov [7] improved the above bound showing that:

Lemma 1.2. Let l ≥ k ≥ 0. If G is a {Bk+1,K2,l+1}-free graph of order n with maximum degree ∆.

Then

ρ(G) ≤ min

{
∆,

1

2

[
k − 1 + 1 +

√
(k − l + 1)2 + 4l(n− 1)

]}
.

If G is connected, equality holds if and only if one of the following conditions holds:

(1) ∆2 −∆(k − l + 1) ≤ l(n− 1) and G is ∆-regular;

(2) ∆2 − ∆(k − l + 1) > l(n − 1) and every two vertices of G have k common neighbors if they are

adjacent, and l common neighbors, otherwise.

Setting l = ∆ or k = l, Lemma 1.2 strengthens Corollaries 1 and 2 of [8].

In 2010, Nikiforov [6] also gave a bound as the following lemma.

Lemma 1.3. Let s ≥ t ≥ 2, and let G be a Ks,t-free graph of order n. If t = 2, then

ρ(G) ≤ 1

2
+
√

(s− 1)(n− 1) + 1/4.

If t ≥ 3, then

ρ(G) ≤ (s− t+ 1)1/tn1−1/t + (t− 1)n1−2/t + t− 2

and

e(G) <
1

2
(s− t+ 1)1/tn2−1/t +

1

2
(t− 1)n2−2/t +

1

2
(t− 2)n.
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A newer trend in extremal graph theory is the Zarankiewicz problem for the signless Laplacian spectral

radius of graphs:

Problem C How large can the signless Laplacian spectral radious of a graph of order G be, if it does

not contain Ks,t as a subgraph?

When s = t = 2, we notice that the K2,2-free graph is the same as C4-free graph. Also in 2013, de

Freitus et al. [2] have proved that if G contains no C4, then

q(G) < q(Fn),

unless G = Fn, where Fn is the friendship graph of order n. For n odd, Fn is a union of bn/2c triangles

sharing a single common vertex, and for n even, Fn is obtained by hanging an edge to the common vertex

of Fn−1.

In Section 2, we will prove the following results which give upper bounds on the signless Laplacian

spectral radius of Book-free and/or K2,l+1-free (l > 1) graphs of order n with maximum degree ∆.

Theorem 1.4. Let 1 < k ≤ l < ∆ < n and G be a connected {Bk+1,K2,l+1}-free graph of order n with

maximum degree ∆. Then

(1.1) q(G) ≤ 1

4

[
3∆ + k − 2l + 1 +

√
(3∆ + k − 2l + 1)2 + 16l(∆ + n− 1)

]
with equality if and only if G is a strongly regular graph with parameters (∆, k, l).

Because every graph is obviously K2,∆+1-free, Theorem 1.4 readily implies a sharp upper bound for

book-free graph.

Corollary 1.5. Let 1 < k < ∆ < n and G be a connected Bk+1-free graph of order n with maximum

degree ∆. Then

q(G) ≤ 1

4

[
∆ + k + 1 +

√
(∆ + k + 1)2 + 32∆(n− 1)

]
with equality if and only if G is a strongly regular graph with parameters(∆, k,∆).

Because a K2,l-free graph is also Bl-free. Theorem 1.4 with k = l also implies a sharp upper bound for

K2,l-free graphs.

Corollary 1.6. Let 1 < l < ∆ and G be a connected K2,l+1-free graph of order n with maximum degree

∆. Then

q(G) ≤ 1

4

[
3∆− l + 1 +

√
(3∆− l + 1)2 + 32l(n− 1)

]
with equality if and only if G is a strongly regular graph with parameters (∆, l, l).

Furthermore, we will discuss s ≥ t ≥ 3. Let G be a connected graph of order n. Since G contains no

Ks,t when n < s+ t, we only discuss the case n ≥ s+ t.

Theorem 1.7. Let s ≥ t ≥ 3, and let G be a connected Ks,t-free graph of order n (n ≥ s+ t). Then

q(G) ≤ n+ (s− t+ 1)1/tn1−1/t + (t− 1)(n− 1)1−3/t + t− 3.
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2. Some known lemmas. In this section, we state two known results that will be used in this paper.

Lemma 2.1. Let s ≥ 2, t ≥ 2, 0 ≤ k ≤ s− 2, and let G(A,B) be a bipartite graph with parts A and B.

Suppose that G contains no copy of Ks,t with a vertex class of size s in A and a vertex class of size t in B.

Then G(A,B) has at most

(s− k − 1)1/t|B||A|1−1/t + (t− 1)|A|1+k/t + k|B|

edges.

Lemma 2.2. ([3, 5]) For every graph G, we have

q(G) ≤ max
u∈V (G)

d(u) +
1

d(u)

∑
v∈Γ(u)

d(v)

 .

3. Proofs.

Proof of Theorem 1.4. Let Qi denote the ith row vector of Q = Q(G) and let x = (x1, x2, . . . , xn)T be the

Perron-eigenvector of Q corresponding to q(G). Then xi > 0 for 1 ≤ i ≤ n. Since G is {Bk+1, K2,l+1}-free,

each pair of adjacent vertices has at most k common neighbors and each pair of non-adjacent vertices has

at most l common neighbors. Thus,

(3.2)

n∑
i=1

∑
vp,vq∈Γ(vi)

xpxq ≤ k
∑

vpvq∈E(G)

xpxq + l
∑

vpvq /∈E(G)

xpxq.

Note that xTA(Kn)x ≤ ρ(Kn) = n− 1. Thus,

q(G) = xTQx = xTDx + xTAx =

n∑
i=1

dix
2
i + 2

∑
vivp∈E(G)

xixp

≤ ∆ + xTA(Kn)x− 2
∑

vivp /∈E(G)

xixp

≤ ∆ + n− 1− 2
∑

vivp /∈E(G)

xixp.

Also we can obtain

q(G) = xTQx =

n∑
i=1

n∑
j=1,i<j

2qi,jxixj +

n∑
i=1

dix
2
i

≤
n∑

i=1

n∑
j=1,i<j

qi,j(x
2
i + x2

j ) +

n∑
i=1

dix
2
i

=

n∑
i=1

n∑
j=1,i<j

qi,jx
2
i +

n∑
i=1

dix
2
i

= 2
n∑

i=1

dix
2
i .

So
n∑

i=1

dix
2
i ≥

q

2
.
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Then

q2(G) = ‖Qx‖2 =

n∑
i=1

(Qix)2 =

n∑
i=1

dixi +
∑

vivp∈E(G)

xp

2

=

n∑
i=1

d2
ix

2
i + 2dixi

∑
vivp∈E(G)

xp +

 ∑
vivp∈E(G)

xp

2


=

n∑
i=1

d2
ix

2
i + 2

n∑
i=1

di
∑

vivp∈E(G)

xixp +

n∑
i=1

dix
2
i + 2

n∑
i=1

∑
vp,vq∈Γ(vi)

xpxq

≤ (∆ + 1)

n∑
i=1

dix
2
i + 2∆

n∑
i=1

∑
vivp∈E(G)

xixp + 2k
∑

vpvq∈E(G)

xpxq + 2l
∑

vpvq /∈E(G)

xpxq(3.3)

= (∆ + 1)

n∑
i=1

dix
2
i + (4∆ + 2k)

∑
vivp∈E(G)

xixp + 2l
∑

vpvq /∈E(G)

xpxq

≤ (2∆ + k)(

n∑
i=1

dix
2
i + 2

∑
vivp∈E(G)

xixp)

(∆ + k − 1)

n∑
i=1

dix
2
i + 2l

∑
vpvq /∈E(G)

xpxq

≤ (2∆ + k)q − ∆ + k − 1

2
q + l(∆ + n− 1− q)

=
1

2
(3∆ + k − 2l + 1)q + l(∆ + n− 1).

Solving the inequality gives the upper bound

q(G) ≤ 1

4

[
3∆ + k − 2l + 1 +

√
(3∆ + k − 2l + 1)2 + 16l(∆ + n− 1)

]
.

If the upper bound of (1.1) is attained then all inequalities in the above argument must be equalities. In

particular, from (3.2) and xi > 0 for 1 ≤ i ≤ n, we have that each pair of adjacent vertices in G has exactly

k common neighbors and each pair of non-adjacent vertices in G has exactly l common neighbors. Moreover,

by (3.3), G must be ∆-regular. Thus, G must be a strongly regular graph with parameters (∆, k, l).

Proof of Theorem 1.7. By Lemma 2.2, let w be a vertex of G such that

d(w) +
1

d(w)

∑
i∈Γ(w)

d(i) = max
u∈V (G)

{d(u) +
1

d(u)

∑
v∈Γ(u)

d(v)}.

Then

q(G) ≤ d(w) +
1

d(w)

∑
i∈Γ(w)

d(i).
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Note first that if d(w) ≤ s+ t− 1, then

q(G) ≤ d(w) +
1

d(w)

∑
i∈Γ(w)

d(i) ≤ d(w) + ∆(G)

≤ s+ t− 1 + n− 1 = s+ t+ n− 2

≤ n+ (s− t+ 1)1/tn1−1/t + (t− 1)(n− 1)1−3/t + t− 3.

Therefore, we shall assume that s+ t−1 ≤ d(w) ≤ n−1. Let U and W be disjoint sets satisfying |U | = d(w)

and |W | = n− 1, and let ϕU and ϕW be bijections

ϕU : U → Γ(w), ϕW : W → V (G)\{w}.

Define a bipartite graph H with vertex classes U and W by joining u ∈ U and v ∈ W whenever

{ϕU (u), ϕW (v)} ∈ E(G).

Then we can get that H does not contain a copy of Ks−1,t with s− 1 vertices in W and t vertices in U .

Indeed, the map ψ : V (H)→ V (G) defined as

ψ(x) =

{
ϕU (x), if x ∈ U,
ϕW (x), if x ∈W.

is a homomorphism of H into G−w. Suppose to the contrary that F ⊂ H is a copy of Ks−1,t with a set of

S of s− 1 vertices in W and a set of T of t vertices in U . Clearly S and T are the vertex classes of F . Note

that ψ(F ) is a copy of Ks−1,t in G − w, and ψ(S) = ϕW (S) ⊂ V (G) \ {w} and ψ(T ) = ϕU (T ) ⊂ ΓG(w)

are the vertex classes of ψ(F ) of size s − 1 and size t, respectively. Now, adding w to ψ(F ), we see that G

contains a Ks,t, a contradiction proving the clain.

Suppose that 0 ≤ k ≤ min{s, t} − 2. Setting k′ = k − 1, s′ = s − 1, t′ = t, A = W,B = U , then from

Lemma 2.1, we have

e(H) ≤ (s− k − 1)1/t|U ||W |1−1/t + (k − 1)|U |+ (t− 1)|W |1+(k−1)/t

= (s− k − 1)1/td(w)n1−1/t + (k − 1)d(w) + (t− 1)(n− 1)1+(k−1)/t.

On the other hand, we have that

e(H) =
∑

v∈Γ(w)

d(v)− d(w),

and so, ∑
v∈Γ(w)

d(v) ≤ ((s− k − 1)1/tn1−1/t + k)d(w) + (t− 1)(n− 1)1+(k−1)/t.

From Lemma 2.2, we have

q(G) ≤ d(w) +
1

d(w)

∑
i∈Γ(w)

d(i)

≤ d(w) +
(t− 1)(n− 1)1+(k−1)/t

d(w)
+ (s− k − 1)1/tn1−1/t + k.

Since the function

f(x) = x+
(t− 1)(n− 1)1+(k−1)/t

x
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is convex for x > 0, its maximum in any closed interval is attained at one of the endpoints of the interval.

In the case s+ t− 1 ≤ d(w) ≤ n− 1, then,

q(G) ≤ d(w) +
1

d(w)

∑
i∈Γ(w)

d(i)

≤ max

{
s+ t− 1 +

(t− 1)(n− 1)1+(k−1)/t

s+ t− 1
, n− 1 +

(t− 1)(n− 1)1+(k−1)/t

n− 1

}
+ (s− k − 1)1/tn1−1/t + k

≤ (s− k − 1)1/tn1−1/t + k +
(t− 1)(n− 1)1+(k−1)/t

n− 1
+ n− 1

= (s− k − 1)1/tn1−1/t + k + (t− 1)(n− 1)(k−1)/t + n− 1.

Now, if s ≥ t ≥ 3, setting k = t− 2, we obtain

q(G) ≤ n+ (s− t+ 1)1/tn1−1/t + (t− 1)(n− 1)1−3/t + t− 3.
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