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PERMUTATIVE NONNEGATIVE MATRICES WITH PRESCRIBED SPECTRUM∗

RICARDO L. SOTO†

Abstract. An n × n permutative matrix is a matrix in which every row is a permutation of the first row. In this paper,

the result given by Paparella in [P. Paparella. Realizing Suleimanova spectra via permutative matrices. Electron. J. Linear

Algebra, 31:306–312, 2016.] is extended to a more general lists of real and complex numbers, and a negative partial answer to

a question posed by him is given.
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1. Introduction. The nonnegative inverse eigenvalue problem (NIEP) is the problem of characterizing

all posible spectra of entrywise nonnegative matrices. This problem remains unsolved. A complete solution

is known only for n ≤ 4. A list Λ = {λ1, λ2, . . . , λn} of complex numbers is it realizable if Λ is the spectrum

of an n × n nonnegative matrix A. In this case, A is said to be a realizing matrix. From the Perron-

Frobenius theory, we have that if {λ1, λ2, . . . , λn} is the spectrum of an n × n nonnegative matrix A then

ρ(A) = max
1≤i≤n

|λi| is an eigenvalue of A. This eigenvalue is called the Perron eigenvalue of A and we shall

assume, in this paper, that ρ(A) = λ1. A matrix A = [aij ] is said to have constant row sums if each of its

row sums is equal to the same constant, say α, i.e.,
n∑
j=1

aij = α, i = 1, . . . , n. The set of all matrices with

constant row sums equal to α will be denoted by CSα. It is clear that any matrix in CSα has the eigenvector

e = (1, 1, . . . , 1)T corresponding to the eigenvalue α. We shall denote by ek the n-dimensional vector with

one in the k − th position and zeros elsewhere. The real matrices with constant row sums are important

because it is known that the problem of finding a nonnegative matrix with spectrum Λ = {λ1, . . . , λn} is

equivalent to the problem of finding a nonnegative matrix in CSλ1
with spectrum Λ.

The following definition, given in [5], is due to Charles Johnson:

Definition 1.1. Let x ∈ Cn and let P2, . . . , Pn be n× n permutation matrices. A permutative matrix

is any matrix of the form

P =


xT

(P2x)T

...

(Pnx)T

 .

It is clear that P ∈ CSS , where S is the sum of the entries of the vector x. A list of real numbers

Λ = {λ1, . . . , λn} with λ1 > 0 ≥ λ2 ≥ · · · ≥ λn is called list of Suleimanova type. The following result was

announced by Suleimanova [12] and proved by Perfect [6]:
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Theorem 1.2. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λi < 0, i = 2, . . . , n. Then Λ is

the spectrum of an n× n nonnegative matrix if and only if
n∑
i=1

λi ≥ 0.

In [5], the author proves that each list Λ = {λ1, . . . , λn} of real numbers of Suleimanova type [12] is

realizable by a permutative nonnegative matrix. The author in [5] also poses the question: can all realizable

lists of real numbers be realized by a permutative nonnegative matrix? The following two results, which we

give here for completeness, have been shown to be very useful, not only to derive sufficient conditions for

the realizability of the NIEP, but for constructing a realizing matrix as well. The first result, due to Brauer

[2], shows how to modify a single eigenvalue of a matrix, via a rank-one perturbation, without changing any

of its remaining eigenvalues (see [6, 8, 11] and the references therein to see how Brauer’s result has been

applied to the NIEP). The second result, due to Rado and introduced by Perfect in [7] is an extension of

Brauer’s result and it shows how to change r eigenvalues of an n× n matrix (r < n), via a perturbation of

rank r, without changing any of its remaining n− r eigenvalues (see [7, 9] to see how Rado’s result has been

applied to the NIEP). Both results will be employed here to obtain conditions for lists of real and complex

numbers to be the spectrum of a permutative nonnegative matrix.

Theorem 1.3. (Brauer, [2]) Let A be an n × n arbitrary matrix with eigenvalues λ1, λ2, . . . , λn. Let

v = (v1, . . . , vn)T be an eigenvector of A corresponding to the eigenvalue λk and let q be any n−dimensional

vector. Then the matrix A+ vqT has eigenvalues λ1, . . . , λk−1, λk + vTq,λk+1, . . . , λn.

Theorem 1.4. (Rado, [7]) Let A be an n × n arbitrary matrix with spectrum Λ = {λ1, . . . , λn}. Let
X = [x1 | · · · | xr] be such that rank(X) = r and Axi = λixi, i = 1, . . . , r, r ≤ n. Let C be an r × n

arbitrary matrix. Then A + XC has eigenvalues µ1, . . . , µr, λr+1, . . . , λn, where µ1, . . . , µr are eigenvalues

of the matrix Ω + CX with Ω = diag{λ1, . . . , λr}.

A simple proof of Theorem 1.2 was given in [8] by applying Brauer’s result. The following result in [10],

is a symmetric version of the Rado’s result, which we shall use to obtain some of the results in this paper:

Theorem 1.5. [10] Let A be an n × n real symmetric matrix with spectrum Λ = {λ1, λ2, . . . , λn},
and for some r ≤ n, let {x1,x2, . . . ,xr} be an orthonormal set of eigenvectors of A spanning the in-

variant subspace associated with λ1, λ2, . . . , λr. Let X be the n × r matrix with i − th column xi, let

Ω = diag{λ1, . . . , λr}, and let C be any r × r symmetric matrix. Then the symmetric matrix A + XCXT

has eigenvalues µ1, . . . , µr, λr+1, . . . , λn, where µ1, . . . , µr are eigenvalues of the matrix Ω + C.

In this paper, we give very simple, short proofs to show that both, a list of real numbers of Suleimanova

type and a list of complex numbers of Suleimanova type, that is, Λ = Λ, Reλk ≤ 0, |Reλk| ≥ |Imλk| ,
k = 2, . . . , n, are realizable by a permutative nonnegative matrix. We use Theorems 1.4 and 1.5 to obtain

sufficient conditions for more general lists to be the spectrum of a permutative nonnegative matrix and the

spectrum of a symmetric permutative nonnegative matrix. Our results generate an algorithmic procedure

to compute a realizing matrix. The paper is organized as follows: In Section 2, we show that a list of real

numbers of Suleimanova type is always the spectrum of a permutative nonnegative matrix, and we give

sufficient conditions for the problem to have a solution in the case of more general lists of real numbers. We

also explore the existence and construction of symmetric permutative nonnegative matrices with prescribed

spectrum. We show that the question in [5] has a negative answer, that is, there are realizable lists of

real numbers which are not the spectrum of a permutative nonnegative matrix. In Section 3, we consider

the case of realizable lists of complex numbers Λ = {λ1, . . . , λn} of Suleimanova type, with the condition

λn−j+2 = λj , j = 2, 3, . . . ,
[
n+1
2

]
, and we show that they are also realizable by permutative nonnegative
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matrices. We also give some examples to illustrate the results.

2. Permutative matrices with prescribed real spectrum. In this section, we give a simple, short

proof of Theorem 3.3 in [5], and we prove sufficient conditions for the existence of a (symmetric) permutative

nonnegative matrix with prescribed real spectrum. We also give a response to the question in [5].

Theorem 2.1. Let Λ = {λ1, λ2, . . . , λn} be a a list of real numbers with λ1 > 0, λi < 0, i = 2, . . . , n.

Then Λ is the spectrum of an n× n permutative nonnegative matrix if and only if
n∑
i=1

λi ≥ 0.

Proof. The necessity is clear. Suppose that α =
n∑
i=1

λi ≥ 0. Then we take the list Λα = {λ1 −

α, λ2, . . . , λn} and consider the matrix

C =



λ1 − α 0 · · · · · · 0

λ1 − α− λ2 λ2
. . .

...

λ1 − α− λ3 0 λ3
. . .

...
...

...
. . .

. . . 0

λ1 − α− λn 0 · · · 0 λn


∈ CSλ1−α.

From Brauer’s result, for q = [α− λ1,−λ2,−λ3, . . . ,−λn] , we have that B = C + eqT is a permutative

nonnegative matrix with spectrum Λα, and B ∈ CSλ1−α. Now, A = B + erT , where r =
[
α
n ,

α
n , . . . ,

α
n

]
, is

the desired permutative nonnegative matrix with spectrum Λ (we may also take A = C + e(q
T

+ rT )).

Now we give sufficient conditions for more general lists of real numbers:

Lemma 2.2. The matrix

(2.1) A =


a11 a12 a13 · · · a1n

a11 − λ2 a12 + λ2 a13 · · · a1n
a11 − λ3 a12 a13 + λ3 · · · a1n

...
... a13

. . .
...

a11 − λn a12 · · · · · · a1n + λn


has eigenvalues λ1 =

n∑
j=1

a1j , λ2, . . . , λn.

Proof. Since A has constant row sums equal to
n∑
j=1

a1j , it follows λ1 =
n∑
j=1

a1j . Moreover, it is clear that

det(λI −A) = 0 for λ = λi, i = 2, . . . , n.

We point out that Lemma 2.2 can also be easily proved from Brauer’s result Theorem 1.3.

Theorem 2.3. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers and let a11, a12, . . . , a1n be real non-

negative numbers. If

a11 =
1

n

n∑
k=1

λk, a11 − λk ≥ 0, k = 2, . . . , n,
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then the matrix A in (2.1) is permutative nonnegative. If
n∑
k=1

λk > 0 and a11 − λk > 0, then A in (2.1)

becomes permutative positive.

Proof. It is enough to take a1k = a11 − λk, k = 2, 3, . . . , n. Then
n∑
k=1

a1k = na11 −
n∑
k=2

λk = λ1 and

a11 = 1
n

n∑
k=1

λk. Thus, the k-th row of A, k = 2, . . . , n, is a permutation of the first row and A is an n × n

permutative nonnegative matrix with spectrum Λ. It is clear that if
n∑
k=1

λk > 0 and a11 − λk > 0, then A in

(2.1) is positive.

Theorem 2.4. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers. Suppose that:

(i) There exist a partition Λ = Λ0 ∪ Λ1 ∪ · · · ∪ Λ1︸ ︷︷ ︸
r times

, where

Λ0 = {λ01, λ02, . . . , λ0r}, Λ1 = {λ11, λ12, . . . , λ1p},

such that Γ1 = {λ, λ11, λ12, . . . , λ1p}, 0 ≤ λ ≤ λ1, is the spectrum of a (p+1)×(p+1) permutative nonnegative

matrix.

(ii) There exists an r × r permutative nonnegative matrix with spectrum Λ0 and diagonal entries λ, λ,

. . . , λ (r times).

Then, there exists a permutative nonnegative matrix P with spectrum Λ.

Proof. From (i), there exists a (p+ 1)× (p+ 1) permutative nonnegative matrix P1 with spectrum Γ1.

Let

A =


P1

P1

. . .

P1

 ,

with r blocks P1. Then P1x = λx with x = 1√
p+1

e (that is, ‖x‖ = 1), where λ and x are the Perron

eigenvalue and the Perron eigenvector of P1, respectively.

From (ii), there exists an r×r permutative nonnegative matrix B with spectrum Λ0 and diagonal entries

λ, λ, . . . , λ (r times). Let Ω be the r × r diagonal matrix Ω = diag{λ, λ, . . . , λ}. Then for

C = B − Ω, X =


x 0 · · · 0

0 x
. . .

...
...

. . .
. . . 0

0 . . . 0 x

 ,

where X is the r(p+ 1)× r matrix of eigenvectors of A, it follows that XCXT is a permutative nonnegative

matrix, and from Theorem 1.4, with C = CXT , P = A+XCXT is a permutative nonnegative matrix with

spectrum Λ. Observe that P is also an r × r block permutative nonnegative matrix.
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Example 2.5. Let Λ = {10, 4, 2, 0,−1,−1,−1,−1,−3,−3,−3,−3}. We take the partition

Λ = Λ0 ∪ Λ1 ∪ Λ1 ∪ Λ1 ∪ Λ

with

Λ0 = {10, 4, 2, 0}, Λ1 = {−1,−3}, Γ1 = {4,−1,−3}.

Then we look for a permutative nonnegative matrix P1 with spectrum Γ1, and a permutative nonnegative

matrix B with spectrum Λ0 and diagonal entries 4, 4, 4, 4. Such matrices are

P1 =

 0 1 3

1 0 3

3 1 0

 and B =


4 0 2 4

0 4 2 4

2 0 4 4

4 0 2 4

 ,

obtained from Theorem 1.3 and Theorem 2.3, respectively. Observe that B cannot be obtained from Theorem

2.1. Let

A =


P1

P1

P1

P1

 , X =


x 0 0 0

0 x 0 0

0 0 x 0

0 0 0 x

 , with x =
1√
3
e.

Then for C = B − diag{4, 4, 4, 4}, we have that

P = A+XCXT =



0 1 3 0 0 0 2
3

2
3

2
3

4
3

4
3

4
3

1 0 3 0 0 0 2
3

2
3

2
3

4
3

4
3

4
3

3 1 0 0 0 0 2
3

2
3

2
3

4
3

4
3

4
3

0 0 0 0 1 3 2
3

2
3

2
3

4
3

4
3

4
3

0 0 0 1 0 3 2
3

2
3

2
3

4
3

4
3

4
3

0 0 0 3 1 0 2
3

2
3

2
3

4
3

4
3

4
3

2
3

2
3

2
3 0 0 0 0 1 3 4

3
4
3

4
3

2
3

2
3

2
3 0 0 0 1 0 3 4

3
4
3

4
3

2
3

2
3

2
3 0 0 0 3 1 0 4

3
4
3

4
3

4
3

4
3

4
3 0 0 0 2

3
2
3

2
3 0 1 3

4
3

4
3

4
3 0 0 0 2

3
2
3

2
3 1 0 3

4
3

4
3

4
3 0 0 0 2

3
2
3

2
3 3 1 0


is a permutative nonnegative matrix with spectrum Λ. Observe that P is also a 4 × 4 block permutative

nonnegative matrix with permutative blocks.

Remark 2.6. If, in the proof of Theorem 2.4, the matrices P1 and B can be chosen as symmetric

permutative nonnegative, then A+XCXT becomes symmetric permutative nonnegative. In fact, if r = 3,
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for instance, we have that

 P1

P1

P1

+

 x 0 0

0 x 0

0 0 x

 0 c c

c 0 c

c c 0

 xT 0 0

0 xT 0

0 0 xT


=

 P1

P1

P1

+

 0 cxxT cxxT

cxxT 0 cxxT

cxxT cxxT 0


=

 P1 cxxT cxxT

cxxT P1 cxxT

cxxT cxxT P1



is symmetric permutative nonnegative.

In particular, for n = 3, we have the following pattern of symmetric permutative nonnegative matrices

B :

i)

 a b c

b c a

c a b

 , ii)

 a a b

a b a

b a a

 , iii)

 a b b

b a b

b b a

 ,
with eigenvalues of the form λ1, λ2,−λ2, and λ1, λ2, λ2.

Conditions for cases ii) and iii) are

ii) a =
1

3
(λ1 + λ2), b =

1

3
(λ1 − 2λ2),

iii) a =
1

3
(λ1 + 2λ2), b =

1

3
(λ1 − λ2).

However, except for the case iii), C = B − diagB need not to be permutative. Consider the following

example:

Example 2.7. Let Λ = {8, 6, 3, 3,−5,−5,−5,−5} with the partition

Λ0 = {8, 6, 3, 3}, Λ1 = {−5}, Γ1 = {5,−5}.

We compute the matrices

P1 =

[
0 5

5 0

]
, B =


5 2 1

2
1
2

2 5 1
2

1
2

1
2

1
2 5 2

1
2

1
2 2 5

 ,
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with spectrum Γ1 and spectrum Λ0 and diagonal entries 5, 5, 5, 5, respectively. Then

A =


P1

P1

P1

P1

+XCXT =



0 5 1 1 1
4

1
4

1
4

1
4

5 0 1 1 1
4

1
4

1
4

1
4

1 1 0 5 1
4

1
4

1
4

1
4

1 1 5 0 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 5 1 1

1
4

1
4

1
4

1
4 5 0 1 1

1
4

1
4

1
4

1
4 1 1 0 5

1
4

1
4

1
4

1
4 1 1 5 0


is symmetric permutative nonnegative with spectrum Λ.

We finish this section by given a negative answer the question in [5], that is, we show that there are lists

of real numbers which are the spectrum of a nonnegative matrix, but not the spectrum of a permutative

nonnegative matrix. We shall need the following result, due to Perfect [7]:

Theorem 2.8. (Perfect, [7]) The real numbers λ1, λ2, λ3 and ω1, ω2, ω3, are respectively, the eigenvalues

and the diagonal entries of a 3× 3 nonnegative matrix with Perron eigenvalue λ1, if and only if

i) 0 ≤ ωi ≤ λ1, i = 1, 2, 3,

ii) λ1 + λ2 + λ3 = ω1 + ω2 + ω3,

iii) λ1λ2 + λ1λ3 + λ2λ3 ≤ ω1ω2 + ω1ω3 + ω2ω3,

iv) max
1≤i≤3

ωi ≥ λ2.

Perfect proposes the following matrix with the required properties ω1 0 λ1 − ω1

λ1 − ω2 − p ω2 p

0 λ1 − ω3 ω3

 ,
where p = 1

λ1−ω3
(ω1ω2 + ω1ω3 + ω2ω3 − λ1λ2 − λ1λ3 − λ2λ3) .

Lemma 2.9. There is no permutative nonnegative matrix with spectrum Λ = {6, 5, 1}.

Proof. It is clear that Λ = {6, 5, 1} is realizable (trivially by A = diag{6, 5, 1}). Suppose P is a

permutative nonnegative matrix with spectrum Λ and first row (a, b, c) . Then a + b + c = 6, P ∈ CS6,
tr(P ) = 12. We have three cases:

i) The entries of the main diagonal of P are of the form x, x, x. Then x = 4 and the condition iv) in

Theorem 2.8 is not satisfied.

ii) The entries of the main diagonal of P are of the form x, x, y. Then 2x + y = 12, and from Perfect

conditions of Theorem 2.8, x ≥ 5, y ≤ 2 or y ≥ 5, x ≤ 7
2 , which contradicts x+ y + z = 6, except for x = 6,

y = z = 0. In this last case however, the conditions in Theorem 2.8 are not satisfied either.

iii) The main diagonal entries of P are distinct. Then x+ y + z = 12 contradicts x+ y + z = 6.

Thus, Λ cannot be the spectrum of a permutative nonnegative matrix.
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Observe, however that Λ = {6, 5, 1} is the spectrum of the direct sum of permutative nonnegative

matrices

A =

 3 2 0

2 3 0

0 0 6

 .
After this paper was submitted, R. Loewy [4] showed that a realizable list of real numbers need not

to be the spectrum of a permutative nonnegative matrix nor the spectrum of a direct sum of permutative

nonnegative matrices.

3. Permutative matrices with prescribed complex spectrum. In this section, we show that

certain lists of complex numbers are realizable by permutative nonnegative matrices. First we recall some

basic facts about circulant matrices. An n× n circulant matrix is a matrix of the form

C =



c0 c1 c2 · · · cn−1

cn−1 c0 c1
. . .

...
... cn−1

. . .
. . . c2

c2
...

. . .
. . . c1

c1 c2 · · · cn−1 c0


,

and it is uniquely determined by the entries of its first row, which we denoted by c = (c0, c1, . . . , cn−1) . It

is clear that C is also permutative. Let λ = (λ1, λ2, . . . , λn) with

λ1 = c0 + c1 + · · ·+ cn−1,

λj = c0 + c1ω
j−1 + c2ω

2(j−1) + · · ·+ cn−1ω
(n−1)(j−1), j = 2, . . . , n,

ω = exp

(
2πi

n

)
,

being the eigenvalues of the circulant matrix C = circ (c0, c1, . . . , cn−1) . Then

(3.2) λn−j+2 = λj , j = 2, 3, . . . ,

[
n+ 1

2

]
.

Let

F = (fkj) = [1 | v2 | · · · | vn]

with

1 = (1, 1, . . . , 1)
T
, vj =

(
1, ωj−1, ω2(j−1), . . . , ω(n−1)(j−1)

)T
, j = 2, . . . , n.

Then

fkj = ω(k−1)(j−1), 1 ≤ k, j ≤ n, FF = FF = nI,

and

(3.3) Fc = λ and c =
1

n
Fλ.

We also recall a result of Loewy and London [3], which solves the NIEP for n = 3 :
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Theorem 3.1. Let Λ = {λ1, λ2, λ3} be a list of complex numbers. Then Λ is the spectrum of a nonneg-

ative matrix if and only if

Λ = Λ, λ1 ≥ |λj | , j = 2, 3, λ1 + λ2 + λ3 ≥ 0, (λ1 + λ2 + λ3)2 ≤ 3(λ21 + λ22 + λ23).

Then, we have the following:

Corollary 3.2. Every realizable list Λ = {λ1, a+bi, a−bi} of complex numbers is in particular realizable

by a permutative nonnegative matrix.

Proof. The realizing matrix in the proof of Theorem 3.1 is circulant. Since circulant matrices are

permutative the result follows.

Remark 3.3. Theorem 2.4 can also be applied to a list of complex numbers, as the following example

shows:

Example 3.4. Let Λ = {3, 2, 1,−1± i,−1± i,−1± i} with

Λ0 = {3, 2, 1}, Γ1 = {2,−1 + i,−1− i}.

The matrices

P1 =

 0 1−
√
3
3 1 +

√
3
3

1 +
√
3
3 0 1−

√
3
3

1−
√
3
3 1 +

√
3
3 0

 , B =

 2 0 1

0 2 1

0 1 2


are permutative with spectrum Γ1 and Λ0, respectively, with B being computed from Theorem 2.3. Moreover,

B has the required diagonal entries. Then

P =

 P1

P1

P1

+XCXT =

 P1 0 1
3ee

T

0 P1
1
3ee

T

0 1
3ee

T P1


is permutative nonnegative with spectrum Λ.

In [1], the authors proved that a list of complex numbers of Suleimanova type, that is, a list Λ =

{λ1, . . . , λn} with λ1 > 0, λ1 ≥ |λi| , i = 2, . . . , n, and

λj ∈ {z ∈ C : Rez ≤ 0, |Rez| ≥ |Imz|} , j = 2, 3, . . . , n,

is realizable by a nonnegative matrix if and only if
n∑
i=1

λi ≥ 0.

The following result shows that a list of complex numbers of Suleimanova type, with the property (3.2),

is also realizable by a permutative nonnegative matrix, indeed by a circulant nonnegative matrix.

Theorem 3.5. Let Λ = {λ1, λ2, . . . , λn} be a list of complex numbers with Λ = Λ, and

λj ∈ {z ∈ C : Rez ≤ 0, |Rez| ≥ |Imz|} , j = 2, 3, . . . , n,

satisfying λn−j+2 = λj , j = 2, 3, . . . ,
[
n+1
2

]
. Then Λ is the spectrum of a permutative nonnegative matrix if

and only if
n∑
j=1

λj ≥ 0.
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Proof. The condition is necessary. Suppose
n∑
j=1

λj ≥ 0. We shall prove that Λ is the spectrum of a

nonnegative circulant matrix, and therefore Λ is the spectrum of a nonnegative permutative matrix. From

(3.3) the explicit formulas for the ck are

(3.4) ck =
1

2m+ 1

λ1 + 2

m+1∑
j=2

Reλj cos
2k(j − 1)π

2m+ 1
+ 2

m+1∑
j=2

Imλj sin
2k(j − 1)π

2m+ 1

 ,

k = 0, 1, . . . , 2m, if n = 2m+ 1, and

ck =
1

2m+ 2

λ1 + 2

m+1∑
j=2

Reλj cos
k(j − 1)π

m+ 1
+ (−1)kλm+2 + 2

m+1∑
j=2

Imλj sin
k(j − 1)π

m+ 1

 ,

k = 0, 1, . . . , 2m + 1, if n = 2m + 2. Now, in order to show the nonnegativity of ck we take µ = −
n∑
j=2

λj .

Then the list Λµ = {µ, λ2, . . . , λn}, with µ+
n∑
j=2

λj = 0 is realizable. Then, for n = 2m+ 1, we have

(3.5) ck =
1

2m+ 1

µ+ 2

m+1∑
j=2

Reλj cos
2k(j − 1)π

2m+ 1
+ 2

m+1∑
j=2

Imλj sin
2k(j − 1)π

2m+ 1


and

(3.6) ck =
1

2m+ 1

2

m+1∑
j=2

(
cos

2k(j − 1)π

2m+ 1
− 1

)
Reλj + 2

m+1∑
j=2

Imλj sin
2k(j − 1)π

2m+ 1

 ,

k = 0, 1, . . . , 2m. Since Reλj ≤ 0,
(

cos 2k(j−1)π
2m+1 − 1

)
Reλj ≥ 0, j = 2, . . . ,m+ 1. Moreover, if the angle θ is

located in quadrant I or quadrant II, then sin θ ≥ 0 and the sum in (3.6) is nonnegative. If θ is located in

quadrant III, then sin θ, cos θ ≤ 0. However, |cos θ − 1| ≥ 1 ≥ |sin θ| and since |Reλj | ≥ |Imλj | , we have

(cos θ − 1)Reλj ≥ |Imλj sin θ| .

Then the sum in (3.6) is also nonnegative. In quadrant IV , the negativity of sin θ in some terms in the

sum
m+1∑
j=2

Imλj sin 2k(j−1)π
2m+1 is compensated by the positivity of

m+1∑
j=2

(
cos 2k(j−1)π

2m+1 − 1
)

Reλj . Thus, ck ≥ 0,

k = 0, 1, . . . , 2m, and C = circ (c0, c1, . . . , cn−1) is a circulant nonnegative matrix with spectrum Λµ, which

is also permutative nonnegative. The proof is similar for n = 2m + 2. If
n∑
j=1

λj = α > 0, then α = λ1 − µ,

and the matrix C ′ = C + α
nee

T is circulant nonnegative (permutative nonnegative) with spectrum Λ.

Remark 3.6. We observe that circulant matrices are permutative, but permutative matrices are not

circulant. Moreover, if Λ = {λ1, . . . , λn} is the spectrum of a circulant matrix, then λ1, . . . , λn must satisfy

(3.2), that is, the vector λ = (λ1, . . . , λn) must be conjugate pair. This condition is not necessary for the

spectrum of a permutative matrix. Thus, both problems, the realizability by circulant matrices and the

realizability by permutative matrices, are different.
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