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ON THE CONSTRUCTION OF Q-CONTROLLABLE GRAPHS∗

ZHENZHEN LOU† , QIONGXIANG HUANG† , AND XUEYI HUANG†

Abstract. A connected graph is called Q-controllable if its signless Laplacian eigenvalues are mutually distinct and main.

Two graphs G and H are said to be Q-cospectral if they share the same signless Laplacian spectrum. In this paper, infinite

families of Q-controllable graphs are constructed, by using the operator of rooted product introduced by Godsil and McKay. In

the process, infinitely many non-isomorphic Q-cospectral graphs are also constructed, especially, including those graphs whose

signless Laplacian eigenvalues are mutually distinct.
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1. Introduction. All graphs considered here are simple and undirected. For a graph G = (V (G), E(G))

of order n with vertex set V (G) = {1, 2, . . . , n}, we denote by A(G) and D(G) = diag(d1, d2, . . . , dn) the

adjacency matrix and diagonal degree matrix of G, respectively, where di is the degree of the vertex i. Then

the matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix (Q-matrix for short) of the graph

G. Since Q(G) is positive semidefinite, all its eigenvalues are nonnegative. These eigenvalues are called the

signless Laplacian eigenvalues (Q-eigenvalues for short) of G. Let ξ1 > ξ2 > · · · > ξs ≥ 0 be all the distinct

Q-eigenvalues of G with multiplicities m1,m2, . . . ,ms (
∑s

i=1mi = n), respectively. The signless Laplacian

spectrum (Q-spectrum for short) of G is defined to be SpecQ(G) = {ξm1
1 , ξm2

2 , . . . , ξms
s }. Two graphs G and

H are called Q-cospectral if SpecQ(G) = SpecQ(H), and a graph G is said to be determined by its Q-spectrum

(DQS for short) if G ∼= H whenever SpecQ(G) = SpecQ(H) for any graph H.

Given a graph G of order n and a graph H with root vertex u, the rooted product graph G ◦H is defined

as the graph obtained from G and H by taking one copy of G and n copies of H and identifying the vertex

vi of G with the vertex u in the i-th copy of H for every 1 ≤ i ≤ n (Godsil and McKay [5]). Let Ps be the

path of order s. If we take H = Ps (s ≥ 1), and the root vertex u = u1 one of pendant vertices of H, then

the rooted product graph G ◦ Ps is shown in Fig. 1 (see Section 3).

A Q-eigenvalue of G is called a main Q-eigenvalue if it has an eigenvector x such that jTx 6= 0 (j is the

n× 1 all-ones vector), and a non-main Q-eigenvalue otherwise. Connected graphs whose Q-eigenvalues are

mutually distinct and main are called Q-controllable graphs. Throughout the paper, we denote by GQ (resp.,

GQn ) the set of connected graphs (resp., with n vertices) whose eigenvalues are mutually distinct, and GQ∗

(resp., GQ∗

n ) the set of Q-controllable graphs (resp., with n vertices).

For a graph G on n vertices with adjacency matrix A and diagonal degree matrix D, a universal adjacency

matrix associated with G is defined to be U = γAA+γDD+γII+γJJ , where I denotes the identity matrix,

J denotes the all-ones matrix, and γA 6= 0, γD, γI and γJ are constants [6]. Note that U = Q(G) if we take

γA = γD = 1 and γI = γJ = 0. The name “Q-controllable graph” arised from the concept of U -controllable
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graph adopted by A. Farrugia and I. Sciriha [4]. In control theory, a standard system model determined by

the differential equation ẋ(t) = (γAA+ γDD+ γII + γJJ)x(t) = Ux(t) + ju(t) (here the n× 1 vector x(t) is

called the state vector, with given x(0), and the scalar u(t) is the control input) is controllable if and only

if all eigenvalues of U are simple and main [4]. The applications of U -controllable graphs (especially, when

U = A) in specific control theory problems are considered in [2, 3, 10].

In [4], A. Farrugia and I. Sciriha also proved that each U -controllable graph has trivial automorphism

group. However, a graph with trivial automorphism group may not be U -controllable. So they asked which

classes of non-regular, asymmetric graphs are U -controllable graphs. In this paper, we give an answer to this

question for U = Q(G) by constructing some infinite families of Q-controllable graphs. Concretely, given a

graph G in GQ∗
, the infinite families in GQ∗

are constructed from G by using the operation of rooted product

recursively, and the spectra of such graphs are also determined by that of G. By the way, we use this method

to construct some infinite families of non-isomorphic Q-cospectral graphs, especially, including the graphs

in GQ. Moreover, the DQS-property of rooted product graphs is also considered.

2. Elementary observations. In this section, we list some basic results that will be useful in the

subsequent sections. First of all, we recursively define two sequences of polynomials {at(q)}t≥0, {bt(q)}t≥0 ⊆
Z[q]:

(2.1) a0(q) = −1, a1(q) = 1− q and at(q) = (q − 2)at−1(q)− at−2(q) for t ≥ 2.

(2.2) b0(q) = −1, b1(q) = 2− q and bt(q) = (q − 2)bt−1(q)− bt−2(q) for t ≥ 2.

By direct computation, a2(q) = −q2 + 3q − 1, b2(q) = −q2 + 4q − 3, and so on. Clearly, at(q) and bt(q) can

be viewed as an integral coefficient polynomial of q with degree t, respectively. For any s ≥ 1, we denote by

(2.3) fs(q) =

s−1∑
t=0

at(q).

First we give the relation of at(q) and bt(q) for later use.

Lemma 2.1. For t ≥ 2, we have

at(q) = (q − 1)bt−1(q)− bt−2(q),(2.4)

q · bt(q) = (q − 1)at(q)− at−1(q).(2.5)

Proof. First, we will show (2.4) by the way of induction. It is easy to verify that the result holds for

t = 2, 3. Suppose that the result holds for t ≤ k, where k ≥ 3. Then

ak−1(q) = (q − 1)bk−2(q)− bk−3(q) and ak(q) = (q − 1)bk−1(q)− bk−2(q).

For t = k + 1, then we have

ak+1(q) = (q − 2)ak(q)− ak−1(q)

= (q − 2)[(q − 1)bk−1(q)− bk−2(q)]− [(q − 1)bk−2(q)− bk−3(q)]

= (q − 1)[(q − 2)bk−1(q)− bk−2(q)]− [(q − 2)bk−2(q)− bk−3(q)]

= (q − 1)bk(q)− bk−1(q).

Hence, (2.4) holds for any t ≥ 2.

Similarly, (2.5) holds. It completes the proof.
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Now we define two (s− 1)× s matrices C and D with respect to q:

C =



1 2− q 1 0 · · · 0 0

0 1 2− q 1 · · · 0 0

0 0 1 2− q · · · 0 0
...

...
...

. . .
. . .

. . .
...

0 0 0 0 · · · 2− q 1

0 0 0 0 · · · 1 1− q


,

D =



1 0 0 0 · · · 0 0 as−1(q)

0 1 0 0 · · · 0 0 as−2(q)

0 0 1 0 · · · 0 0 as−3(q)
...

...
...

. . .
. . .

. . .
...

...

0 0 0 0 · · · 0 0 a3(q)

0 0 0 0 · · · 1 0 a2(q)

0 0 0 0 · · · 0 1 a1(q)


.

Then we have the following result.

Lemma 2.2. Let x be a column vector in Rs. Then Cx = 0 if and only if Dx = 0.

Proof. Let us define a matrix as below:

P =



1 −b1(q) −b2(q) −b3(q) · · · bs−3(q) −bs−2(q)

0 1 −b1(q) −b2(q) · · · −bs−4(q) −bs−3(q)

0 0 1 −b1(q) · · · −bs−5(q) −bs−4(q)
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · −b1(q) −b2(q),

0 0 0 0 · · · 1 −b1(q)

0 0 0 0 · · · 0 1


,

where {bt(q)}t≥0 is defined in (2.2). Combining Lemma 2.1, one can directly verify that

PC =



1 0 0 0 · · · 0 0 (q − 1)bs−2(q)− bs−3(q)

0 1 0 0 · · · 0 0 (q − 1)bs−3(q)− bs−4(q)

0 0 1 0 · · · 0 0 (q − 1)bs−4(q)− bs−5(q)
...

...
...

. . .
. . .

. . .
...

...

0 0 0 0 · · · 0 0 (q − 1)b2(q)− b1(q)

0 0 0 0 · · · 1 0 (q − 1)b1(q)− b0(q)

0 0 0 0 · · · 0 1 1− q


= D,

and our result follows because P is invertible.

The following lemma simplifies the expression of fs(q).

Lemma 2.3. Let {at(q)}t≥0 and {bt(q)}t≥0 be defined in (2.1) and (2.2). Then

fs(q) = a0(q) + a1(q) + · · ·+ as−1(q) =

{
−q · b2k−1(q) if s = 2k, k ≥ 1;

−a2k(q) if s = 2k + 1, k ≥ 0.
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Proof. First, we have f1(q) = a0(q) = −1 = −a20(q), f2(q) = a0(q) + a1(q) = −q = −q · b20(q) and

f3(q) = a0(q) + a1(q) + a2(q) = −(q − 1)2 = −a21(q). Thus, the result holds for s = 1, 2, 3.

Suppose that our result holds for s = 2k − 1, 2k, 2k + 1 (k ≥ 1), i.e.,

f2k−1(q) = a0(q) + a1(q) + · · ·+ a2k−2(q) = −a2k−1(q),(2.6)

f2k(q) = a0(q) + a1(q) + · · ·+ a2k−1(q) = −qb2k−1(q),(2.7)

f2k+1(q) = a0(q) + a1(q) + · · ·+ a2k(q) = −a2k(q).(2.8)

It needs to show that the result holds for s = 2k + 2, 2k + 3, i.e.,

f2k+2(q) = a0(q) + a1(q) + · · ·+ a2k+1(q) = −q · b2k(q),(2.9)

f2k+3(q) = a0(q) + a1(q) + · · ·+ a2k+2(q) = −a2k+1(q).(2.10)

From (2.6)–(2.8), we get

(2.11) a2k−1(q) = a2k−1(q)− q · b2k−1(q) and a2k(q) = q · b2k−1(q)− a2k(q).

Thus, from (2.8), (2.11) and Lemma 2.1, we have

a0(q) + a1(q) + · · ·+ a2k(q) + a2k+1(q)

= −a2k(q) + a2k+1(q)

= −a2k(q) + (q − 2)a2k(q)− a2k−1(q)

= −a2k(q) + (q − 2)[q · b2k−1(q)− a2k(q)]− [a2k−1(q)− q · b2k−1(q)]

= −(q − 1)a2k(q) + q(q − 1)b2k−1(q)− a2k−1(q)

= −(q − 1)[bk(q) + bk−1(q)]2 + q(q − 1)b2k−1(q)− [bk−1(q) + bk−2(q)]2

= −(q − 1)b2k(q)− 2(q − 1)bk(q)bk−1(q) + (qbk−1(q) + bk−2(q)) · bk(q)

= −(q − 1)b2k(q)− bk(q) · [(q − 2)bk−1(q)− bk−2(q)]

= −(q − 1)b2k(q)− b2k(q)

= −q · b2k(q).

It follows that (2.9) holds. Furthermore, by (2.8) and (2.9), we know that

(2.12) a2k+1(q) = a2k(q)− q · b2k(q).

Then, from (2.9), (2.12) and Lemma 2.1, we get

a0(q) + a1(q) + · · ·+ a2k+2(q)

= −q · b2k(q) + a2k+2(q)

= −q · b2k(q) + (q − 2)a2k+1(q)− a2k(q)

= −q · b2k(q) + (q − 2)[a2k(q)− q · b2k(q)]− [q · b2k−1(q)− a2k(q)]

= −q(q − 1)b2k(q) + (q − 1)a2k(q)− q · b2k−1(q)

= −q(q − 1)[ (q−1)ak(q)−ak−1(q)
q ]2 + (q − 1)a2k(q)− q · [ (q−1)ak−1(q)−ak−2(q)

q ]2

= −q(q − 1)[ak+1(q)+ak(q)
q ]2 + (q − 1)a2k(q)− q · [ak(q)+ak−1(q)

q ]2

= 1
q [−(q − 1)a2k+1(q)− 2(q − 1)ak+1(q)ak(q) + (qak(q) + ak−1(q)) · ak+1(q)]

= 1
q [−(q − 1)a2k+1(q)− ak+1(q) · [(q − 2)ak(q)− ak−1(q)]]

= 1
q [−(q − 1)a2k+1(q)− a2k+1(q)]

= −a2k+1(q).

It follows that (2.10) holds. We complete the proof.
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3. The graphs with distinct Q-eigenvalues. Let G be a connected graph with vertex set V (G) =

{v1, v2, . . . , vn} and Ps = u1u2 · · ·us a path of length s−1. The rooted product graph of G and Ps, denoted by

Ĝs = G◦Ps (s ≥ 1), is the graph described in Fig. 1 with vertex set V (Ĝs) = {(vi, uj) | 1 ≤ i ≤ n, 1 ≤ j ≤ s},
and edge set E(Ĝs) = {(vi, u1) ∼ (vj , u1) | vivj ∈ E(G)} ∪ {(vi, uk) ∼ (vi, uk+1) | 1 ≤ i ≤ n, 1 ≤ k ≤ s− 1} .

t t t
t t t
t
t
t
t
t
t

�
�

�
�· · ·

· · ·

u1

u2

us−1

us

v1 v2 vn
G

Ĝs = G ◦ Ps

Figure 1. The rooted product graph Ĝs = G ◦ Ps.

If we put Vj = {(vi, uj) | 1 ≤ i ≤ n} for 1 ≤ j ≤ s, then V (Ĝs) = V1 ∪ V2 ∪ · · · ∪ Vs is a partition, the

adjacency matrix of Ĝs can be written as the block matrix:

(3.13) A(Ĝs) =



A(G) In 0 · · · 0 0 0

In 0 In · · · 0 0 0

0 In 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 In 0

0 0 0 · · · In 0 In
0 0 0 · · · 0 In 0



V1
V2
V3
...

Vs−2
Vs−1
Vs

and the corresponding diagonal degree matrix of A(Ĝs) is D(Ĝs) = diag(D(G) + In, 2In, 2In, . . . , 2In, In).

Hence, we get the Q-matrix of Ĝs as below:

(3.14) Q(Ĝs) =



Q(G) + In In 0 · · · 0 0 0

In 2In In · · · 0 0 0

0 In 2In · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2In In 0

0 0 0 · · · In 2In In
0 0 0 · · · 0 In In



V1
V2
V3
...

Vs−2
Vs−1
Vs

Lemma 3.1. Let Ĝs = G ◦ Ps with the Q-matrix in (3.14). If q is a Q-eigenvalue of Ĝs with the

corresponding eigenvector

x̂ = [xT
1 ,x

T
2 , . . . ,x

T
s ]T ,

where the entries of xt correspond to the vertices in Vt for t = 1, 2, . . . , s, then ξ = as(q)
as−1(q)

+ 1 is a Q-

eigenvalue of G associated with eigenvector x1, and xt = as−t(q)
as−1(q)

x1 for t = 2, 3, . . . , s, where at(q) is defined

in (2.1).
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Proof. Since q is an eigenvalue of Qs = Q(Ĝs) with corresponding eigenvector x̂, we have Qsx̂ = qx̂. It

follows (3.15) and (3.16) from (3.14)

(3.15) (Q(G) + In)x1 + x2 = qx1,

(3.16)



x1 + 2x2 + x3 = qx2,

x2 + 2x3 + x4 = qx3,
...

xs−3 + 2xs−2 + xs−1 = qxs−2,

xs−2 + 2xs−1 + xs = qxs−1,

xs−1 + xs = qxs.

Note that (3.15) and (3.16) are equivalent to

(3.17) Q(G)x1 + x2 = (q − 1)x1,

(3.18)



x1 + x3 = (q − 2)x2,

x2 + x4 = (q − 2)x3,
...

xs−3 + xs−1 = (q − 2)xs−2,

xs−2 + xs = (q − 2)xs−1,

xs−1 = (q − 1)xs.

Let C and D be the two matrices defined in Section 2. Clearly, (3.18) is equivalent to Cx̂ = 0. By Lemma

2.2, we get Dx̂ = 0, that is,

(3.19) Dx̂ =



1 0 0 0 · · · 0 0 as−1(q)

0 1 0 0 · · · 0 0 as−2(q)

0 0 1 0 · · · 0 0 as−3(q)
...

...
...

. . .
. . .

. . .
...

...

0 0 0 0 · · · 0 0 a3(q)

0 0 0 0 · · · 1 0 a2(q)

0 0 0 0 · · · 0 1 a1(q)


·



x1

x2

x3

...

xs−2
xs−1
xs


= 0

We claim that as−1(q) 6= 0. Since otherwise, we have x1 = 0 from (3.19), and then obtain x1 = x2 = · · · =
xs = 0 by (3.17) and (3.18). Thus, according to (3.19), we get



x1 = −as−1(q)xs,

x2 = −as−2(q)xs,

x3 = −as−3(q)xs,
...

xs−3 = −a3(q)xs,

xs−2 = −a2(q)xs,

xs−1 = −a1(q)xs,

⇐⇒



x2 = as−2(q)
as−1(q)

x1,

x3 = as−3(q)
as−1(q)

x1,

x4 = as−4(q)
as−1(q)

x1,
...

xs−2 = a2(q)
as−1(q)

x1,

xs−1 = a1(q)
as−1(q)

x1,

xs = a0(q)
as−1(q)

x1.
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Returning x2 = as−2(q)
as−1(q)

x1 into (3.17), we get

(3.20) Q(G)x1 =

(
q − 1− as−2(q)

as−1(q)

)
x1 =

(
as(q)

as−1(q)
+ 1

)
x1.

Hence, ξ = as(q)
as−1(q)

+ 1 is a Q-eigenvalue of G associated with eigenvector x1.

From Lemma 3.1, we know that each Q-eigenvalue q of Ĝs satisfies the equation as(q)+(1−ξ)as−1(q) = 0

for some Q-eigenvalue ξ of G. For this reason, let SpecQ(G) =
{
ξm1
1 , ξm2

2 , . . . , ξmd

d

}
be the Q-spectrum of

G. For ξi ∈ SpecQ(G), we define a polynomial of q with degree s as below:

(3.21) p
(s)
i (q) = as(q) + (1− ξi)as−1(q).

Denote by q1,i, q2,i, . . . , qs,i all the roots of p
(s)
i (q) and put Ŝ(ξi) = {q1,i, q2,i, . . . , qs,i} which we will use

frequently in what follows.

Suppose that g(x) and r(x) are real polynomials with real, simple, and disjoint, zeros, and that

deg(g(x)) > deg(r(x)). We say that the zeros of g(x) and r(x) interlace if each zero of r(x) lies between two

zeros of g(x), and there is at most one zero of r(x) between any two adjacent zeros of g(x).

Lemma 3.2. (See [1], p. 249) Suppose that
{
gn(x)

}
n≥0 is a sequence of polynomials defined by a three-

term recurrence relation of the form

gn+2(x) = (x− αn+1)gn+1(x)− βngn(x) with g0(x) = 1, g1(x) = x− α0,

where αn ∈ R and βn > 0 for n = 0, 1, 2, . . . . Then, for n ≥ 1, gn(x) has n real, distinct roots, and the roots

of gn(x) and gn+1(x) interlace.

The following result due to G. Szego (see [9], p. 46, Theorem 3.3.4) guarantees all roots in Ŝ(ξi) are real

and simple. Here we would like to rewrite the proof in detail for self-contained.

Lemma 3.3. Suppose that
{
gn(x)

}
n≥0 is a sequence of polynomials defined by a three-term recurrence

relation of the form

(3.22) gn+1(x) = (x− α)gn(x)− gn−1(x) with g0(x) = 1, g1(x) = x− 1,

where α ∈ R. Let c be an arbitrary real constant. Then the polynomial gn+1(x)− cgn(x) has n + 1 distinct

real zeros.

Proof. The recurrence formula (3.22) is valid for n = 1 if we write g−1(x) = −1. By the recurrence

formula (3.22), we have

gn+1(x)gn(y)− gn(x)gn+1(y)

x− y
= gn(x)gn(y) +

gn(x)gn−1(y)− gn−1(x)gn(y)

x− y
.

On replacing n by 0, 1, 2, . . . , n and adding, we obtain

gn+1(x)gn(y)− gn(x)gn+1(y)

x− y
=

n∑
i=0

gi(x)gi(y).

Taking y → x, we get g′n+1(x)gn(x)− gn+1(x)g′n(x) =
∑n

i=0 g
2
i (x), which implies that(

gn+1(x)

gn(x)

)′
=
g′n+1(x)gn(x)− gn+1(x)g′n(x)

g2n(x)
=

∑n
i=0 g

2
i (x)

g2n(x)
> 0.
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By Lemma 3.2, we can assume that gn(x) = (x − υ1)(x − υ2) · · · (x − υn), where υi 6= υj for i 6= j. Then
gn+1(x)
gn(x)

has υ1, υ2, . . . , υn as its poles. Also, from (3.22) we see that gn+1(x)
gn(x)

is asymptotic to h(x) = x−α as

|x| → +∞. Therefore, gn+1(x)
gn(x)

is strictly increasing from −∞ to +∞ on each of the intervals

(−∞, υ1), (υ1, υ2), . . . , (υn−1, υn), (υn,+∞),

which implies gn+1(x)
gn(x)

and l(x) = c have n+ 1 real, distinct intersection because c is a real constant. Hence,

the polynomial gn+1(x)− cgn(x) has n+ 1 distinct real zeros.

By applying Lemma 3.3 to the sequence of polynomials {−at(q)}t≥0, we have the following theorem.

Theorem 3.4. Let {at(q)}t≥0 be a sequence of polynomials defined in (2.1). Then all the roots of

p
(s)
i (q) = as(q) + (1− ξi)as−1(q) are real and simple, where ξi ∈ SpecQ(G).

Theorem 3.4 implies that the polynomial p
(s)
i (q) has s distinct real roots. In order to give the corre-

sponding relation between the Q-spectra of G and Ĝs, we also need the following lemma.

Lemma 3.5. Let q0 be a root of p
(s)
i (q) = as(q) + (1− ξi)as−1(q), where s ≥ 1 and ξi ∈ SpecQ(G). Then

as−1(q0) 6= 0.

Proof. By contradiction, we assume that as−1(q0) = 0. Then as(q0) = 0 because p
(s)
i (q0) = 0, and so

as−2(q0) = q0as−1(q0)− as(q0) = 0. Successively, we have as−3(q0) = · · · = a1(q0) = a0(q0) = 0, which is a

impossible because a0(q0) = −1.

Lemma 3.6. For ξi 6= ξj ∈ SpecQ(G), we have Ŝ(ξi) ∩ Ŝ(ξj) = ∅, where Ŝ(ξi) (resp., Ŝ(ξj)) denotes the

set of roots of the polynomial p
(s)
i (q) (resp., p

(s)
j (q)) defined in (3.21).

Proof. By the way of contradiction, suppose that Ŝ(ξi) ∩ Ŝ(ξj) 6= ∅, then p
(s)
i (q) and p

(s)
j (q) have a

common root q0 for ξi 6= ξj . Then 0 = p
(s)
i (q0) − p(s)j (q0) = (ξj − ξi)as−1(q0). It follows that as−1(q0) = 0.

However, we know that as−1(q0) 6= 0 by Lemma 3.5, which is a contradiction.

Remark 3.7. In fact, Theorem 3.4, Lemma 3.5 and Lemma 3.6 always hold when ξi and ξj are arbitrary

real numbers.

Now we provide the corresponding relation of the Q-spectra between G and Ĝs in the following theorem.

Theorem 3.1. Let SpecQ(G) =
{
ξm1
1 , ξm2

2 , . . . , ξmd

d

}
be the Q-spectrum of G, and Ŝ(ξi) the set of roots of

the polynomial p
(s)
i (q) defined in (3.21). Then SpecQ(Ĝs) = m1Ŝ(ξ1)∪m2Ŝ(ξ2)∪· · ·∪mdŜ(ξd), where miŜ(ξi)

denotes the multiset obtained by the union of mi copies of Ŝ(ξi), and Ŝ(ξi) ∩ Ŝ(ξj) = ∅ for 1 ≤ i 6= j ≤ d.

Proof. For the graph G, denote by EG(ξi) = 〈y1i,y2i, . . . ,ymii〉 the eigenspace corresponding to ξi for

each i (1 ≤ i ≤ d). For each qr,i ∈ Ŝ(ξi) (1 ≤ r ≤ s), we construct a vector

b(qr,i) =
[
1,

as−2(qr,i)
as−1(qr,i)

, . . . ,
a1(qr,i)

as−1(qr,i)
,

a0(qr,i)
as−1(qr,i)

]T
,

where {at(qr,i)}t≥0 is defined in (2.1) and as−1(qr,i) 6= 0 by Lemma 3.5, and then set

ŷk(qr,i) = b(qr,i)⊗ yki =
[
yT
ki,

as−2(qr,i)
as−1(qr,i)

yT
ki, . . . ,

a1(qr,i)
as−1(qr,i)

yT
ki,

a0(qr,i)
as−1(qr,i)

yT
ki

]T
,

where 1 ≤ k ≤ mi. Next we will verify that ŷ1(qr,i), . . . , ŷmi(qr,i) are linearly independent eigenvectors of

Q(Ĝs) with respect to the eigenvalue qr,i. In fact, we know that at(qr,i) = (qr,i − 2)at−1(qr,i) − at−2(qr,i)
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(t = 2, . . . , s) with the initial condition a0(qr,i) = −1 and a1(qr,i) = 1 − qr,i. Then at(qr,i) + 2at−1(qr,i) +

at−2(qr,i) = qr,iat−1(qr,i), and so we get

(3.23)
at(qr,i)

as−1(qr,i)
yki + 2

at−1(qr,i)

as−1(qr,i)
yki +

at−2(qr,i)

as−1(qr,i)
yki = qr,i

at−1(qr,i)

as−1(qr,i)
yki

for t = 2, . . . , s, because as−1(qr,i) 6= 0 by Lemma 3.5. In particular, if we take t = s, combining (3.20) and

(3.23), we obtain

(3.24) Q(G)yki + yki +
as−2(qr,i)

as−1(qr,i)
yki = qr,iyki.

Moreover, by the initial condition, we have

(3.25) a1(qr,i) + a0(qr,i) = qr,i · a0(qr,i).

Therefore, from (3.14) and (3.23)–(3.25), we can verify that

Q(Ĝs)ŷk(qr,i) =



Q(G) + In In 0 · · · 0 0

In 2In In · · · 0 0

0 In 2In · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2In In
0 0 0 · · · In In





yki
as−2(qr,i)
as−1(qr,i)

yki

as−3(qr,i)
as−1(qr,i)

yki

...
a1(qr,i)

as−1(qr,i)
yki

a0(qr,i)
as−1(qr,i)

yki



= qr,i



yki
as−2(qr,i)
as−1(qr,i)

yki

as−3(qr,i)
as−1(qr,i)

yki

...
a1(qr,i)

as−1(qr,i)
yki

a0(qr,i)
as−1(qr,i)

yki


= qr,iŷk(qr,i).

Hence, ŷk(qr,i) is an eigenvector of Q(Ĝs) with respect qr,i for each 1 ≤ k ≤ mi. Moreover, we see that

ŷ1(qr,i), . . . , ŷmi
(qr,i) are linearly independent because y1i, . . . ,ymii are linearly independent.

By Theorem 3.4, we know that for each ξi, the roots q1,i, . . . , qs,i ∈ Ŝ(ξi) are real and distinct. Fur-

thermore, for any two distinct ξi and ξj , we have Ŝ(ξi) ∩ Ŝ(ξj) = ∅ by Lemma 3.6, and so qr,i 6= qu,j for

1 ≤ r, u ≤ s. Hence, the eigenvectors belonging to
{
yk(qr,i) | 1 ≤ i ≤ d, 1 ≤ r ≤ s, 1 ≤ k ≤ mi

}
are linearly

independent, and we have obtained
∑d

i=1 smi = sn = |V (Ĝs)| such eigenvectors of Q(Ĝs). Therefore, the

Q-eigenvalue qr,i of Ĝs has multiplicity exactly mi for 1 ≤ i ≤ d and 1 ≤ r ≤ s.

This completes the proof.

Recall that GQ (resp., GQn ) denotes the set of connected graphs (resp. with n vertices) whose Q-

eigenvalues are mutually distinct. We have the following result immediately.

Corollary 3.8. Let G be a graph of order n. If G has d (d ≤ n) distinct Q-eigenvalues, then Ĝs has

exactly sd distinct Q-eigenvalues. In particular, Ĝs ∈ GQsn if G ∈ GQn .
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(c) (G ◦ P2) ◦ P2(b) G ◦ P2(a) G

Figure 2. Graphs with distinct Q-eigenvalues.

In 1974, Harary and Schwenk in [7] posed an interesting problem: “Which graphs have distinct eigen-

values?” As we know there are few results on this problem after 1974. At the same time, there are few

results to answer the question “Which graphs have distinct Q-eigenvalues?”. The following remark provides

a method to construct infinite families of graphs with distinct Q-eigenvalues. Later, we will give a specific

example.

Remark 3.9. Given a graph G ∈ GQn . By Corollary 3.8, we obtain an infinite family of graphs in GQ,

i.e.,
{
Ĝi

si | i ≥ 0
}

, which are recursively defined by Ĝ0
s0 = G and Ĝi

si = Ĝi−1
si−1
◦ Psi for i ≥ 1 and si ≥ 1.

Example 3.10. In Fig. 2(a), SpecQ(G) = {4.6412, 2.7237, 1.4108, 1.00, 0.2243} that is, G ∈ GQ5 . By

Theorem 3.1, in Fig. 2(b,c), Ĝ1
2 = G ◦P2, Ĝ2

2 = (G ◦P2) ◦P2 are also in GQ. In fact, by Remark 3.9, we can

construct an infinite family of graphs in GQ, that is,
{
Ĝi

si | i ≥ 0
}

, which are recursively defined by Ĝ0
s0 = G

and Ĝi
si = Ĝi−1

si−1
◦ Psi for i ≥ 1 and si ≥ 1.

4. Main Q-eigenvalue and Q-controllable graphs. Recall that connected graphs whose Q-

eigenvalues are mutually distinct and main are called Q-controllable graphs, and GQ∗
(resp., GQ∗

n ) denotes

the set of Q-controllable graphs (resp., with n vertices). In this section, we discuss the relation of main

Q-eigenvalues between G and Ĝs, and focus on showing that Ĝs ∈ GQ
∗

sn if G ∈ GQ∗

n is not bipartite.

Let {at(q)}t≥0 and {bt(q)}t≥0 be the two polynomial sequences defined in (2.1) and (2.2). Now we list

two results about these two polynomial sequences.

Lemma 4.1. Let q0 be a root of p
(s)
i (q) = as(q) + (1 − ξi)as−1(q) and 0 6= ξi ∈ SpecQ(G). Then

bk−1(q0) 6= 0 if s = 2k, and ak(q0) 6= 0 if s = 2k + 1.

Proof. If s = 2k, we shall show that bk−1(q0) 6= 0. By contradiction, assume that bk−1(q0) = 0. Then

bk(q0) = (q0 − 2)bk−1(q0)− bk−2(q0) = −bk−2(q0),
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and so

ak(q0) = (q0 − 1)bk−1(q0)− bk−2(q0) = −bk−2(q0) = a0(q0)bk−2(q0),

ak+1(q0) = (q0 − 1)bk(q0) = −(q0 − 1)bk−2(q0) = a1(q0)bk−2(q0),

ak+2(q0) = (q0 − 2)ak+1(q0)− ak(q0)

= (q0 − 2)a1(q0)bk−2(q0)− a0(q0)bk−1(q0) = a2(q0)bk−2(q0),

ak+3(q0) = (q0 − 2)ak+2(q0)− ak+1(q0)

= (q0 − 2)a2(q0)bk−2(q0)− a1(q0)bk−2(q0) = a3(q0)bk−2(q0),

...

as−2(q0) = a2k−2(q0) = ak−2(q0)bk−2(q0),

as−1(q0) = a2k−1(q0) = ak−1(q0)bk−2(q0).

By Lemma 3.5, we know that as−1(q0) 6= 0. Then we have ak−1(q0) 6= 0 and bk−2(q0) 6= 0. Note that

as(q0) + (1− ξi)as−1(q0) = 0, combining this with Lemma 2.1, we get

ξi = q0 − 1− as−2(q0)

as−1(q0)
= q0 − 1− ak−2(q0)

ak−1(q0)
=
q · bk−1(q0)

ak−1(q0)
= 0,

a contradiction. Thus, bk−1(q0) 6= 0.

Similarly, if s = 2k + 1 one can easily prove that ak(q0) 6= 0, and our result follows.

By Lemma 4.1, we have the following theorem.

Theorem 4.1. For ξi ∈ SpecQ(G), let Ŝ(ξi) be the set of roots of the polynomial p
(s)
i (q) defined in

(3.21). Then we have

(1) If ξi is a main Q-eigenvalue and ξi 6= 0, then all the Q-eigenvalues of Ĝs in Ŝ(ξi) are non-zero and

main.

(2) If ξi is a non-main Q-eigenvalue, then all the Q-eigenvalues of Ĝs in Ŝ(ξi) are non-main.

Proof. Suppose that ξi is a main Q-eigenvalue of G. By Theorem 3.1, we know that each element

of Ŝ(ξi) is a Q-eigenvalue of Ĝs. For each qr,i ∈ Ŝ(ξi) (1 ≤ r ≤ s), we know that qr,i is a root of

p
(s)
i (q) = as(q) + (1− ξi)as−1(q), and from (2.1), we have

p
(s)
i (0) = as(0) + (1− ξi)as−1(0) =

{
−ξi if s is even,

ξi if s is odd.

Thus, we conclude that qr,i 6= 0 for 1 ≤ r ≤ s since ξi 6= 0. Let yi be an eigenvector of Q(G) with respect

to ξi such that jTnyi 6= 0. Then, according to the proof of Theorem 3.1, we know that

ŷ(qr,i) =
[
yT
i ,

as−2(qr,i)
as−1(qr,i)

yT
i , . . . ,

a1(qr,i)
as−1(qr,i)

yT
i ,

a0(qr,i)
as−1(qr,i)

yT
i

]T
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is an eigenvector of Q(Ĝs) with respect to qr,i, and from (2.3) we have

jTsnŷ(qr,i) =
[
jTn , j

T
n , . . . , j

T
n

] [
yT
i ,

as−2(qr,i)
as−1(qr,i)

yT
i , . . . ,

a1(qr,i)
as−1(qr,i)

yT
i ,

a0(qr,i)
as−1(qr,i)

yT
i

]T
=

(
1 +

as−2(qr,i)

as−1(qr,i)
+ · · ·+ a1(qr,i)

as−1(qr,i)
+

a0(qr,i)

as−1(qr,i)

)(
jTnyi

)
=
as−1(qr,i) + as−2(qr,i) + · · ·+ a1(qr,i) + a0(qr,i)

as−1(qr,i)
(jTnyi)

=
fs(qr,i)

as−1(qr,i)
(jTnyi).

Since 0 6= ξi ∈ SpecQ(G) and qr,i is a root of p
(s)
i (q). Then bk−1(qr,i) 6= 0 for s = 2k and ak(qr,i) 6= 0 for

s = 2k+1 by Lemma 4.1. By Lemma 2.3 and qr,i 6= 0, we have fs(qr,i) 6= 0, and consequently jTsnŷ(qr,i) 6= 0.

Hence, qr,i is a main Q-eigenvalue of Ĝs. Thus, (1) follows.

Now suppose that ξi is a non-main Q-eigenvalue of G. For each qr,i ∈ Ŝ(ξi) (1 ≤ r ≤ s), we assume that

x̂ = [xT
1 ,x

T
2 , . . . ,x

T
s−1,x

T
s ]T is an eigenvector of Q(Ĝs) corresponding to qr,i as in Lemma 3.1. By Lemma

3.1, x1 is an eigenvector of Q(G) with respect to ξi and xt =
as−t(qr,i)
as−1(qr,i)

x1 for t = 2, 3, . . . , s. Since ξi is

non-main, we have jTnx1 = 0, and so jTsnx̂ = 0. Thus, (2) follows.

This completes the proof.

Recall that G is a connected graph throughout this paper. It is known that 0 is a Q-eigenvalue of G if

and only if G is bipartite. Now we give the main result of this section.

Theorem 4.2. If G ∈ GQ∗

n is not a bipartite graph, then Ĝs ∈ GQ
∗

sn .

Proof. By Corollary 3.8, all the Q-eigenvalues of Ĝs are simple, i.e., Ĝs ∈ Gsn. Since G is not a bipartite

graph, all the Q-eigenvalues of G is non-zero. Combining this with G ∈ GQ∗

n , by Lemma 4.1 we may conclude

that all the Q-eigenvalues of Ĝs are also main, and so Ĝs ∈ G∗sn. The result follows.

In fact, if G ∈ GQ∗

n is not a bipartite graph, then Ĝs ∈ GQ
∗

sn is also not a bipartite graph. The following

remark provides a method to construct infinite families of graphs in GQ∗
. Later, we will give a specific

example.

Remark 4.2. Given a graph G ∈ GQ∗

n which is not bipartite. By Theorem 4.2, we have obtained

an infinite family of graphs in GQ∗
, i.e.,

{
Ĝi

si | i ≥ 0
}

, which are recursively defined by Ĝ0
s0 = G and

Ĝi
si = Ĝi−1

si−1
◦ Psi for i ≥ 1 and si ≥ 1.

Example 4.3. In Fig. 3(a),

SpecQ(G) = {6.2422, 3.5496, 2.6524, 2.0000, 1.0855, 0.4703}

and G ∈ GQ
∗

6 is not a bipartite graph. By Theorem 4.2, in Fig. 3(b,c), Ĝ1
2 = G ◦ P2, Ĝ2

2 = (G ◦ P2) ◦ P2

are also in GQ∗
. In fact, by Remark 4.2, we can construct an infinite family of graphs in GQ∗

, that is,{
Ĝi

si | i ≥ 0
}

, which are recursively defined by Ĝ0
s0 = G and Ĝi

si = Ĝi−1
si−1
◦ Psi for i ≥ 1 and si ≥ 1.

5. Construction of non-isomorphic Q-cospectral graphs in GQ. Theorem 3.1 and Corollary 3.8

provide us a good method to construct the classes of graphs in GQ, respectively. In this section, we give

some examples. Additionally, the DQS-property of Ĝs is also considered here.
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(b) Ĝ1
2 = G ◦ P2 (c) Ĝ2

2 = (G ◦ P2) ◦ P2(a) G

Figure 3. Construction of large graphs in GQ∗
.

Theorem 5.1. Let G and H be two Q-cospectral graphs of order n. Then we have:

(1) Ĝs and Ĥs are Q-cospectral for any s ≥ 2.

(2) Ĝs and Ĥs are isomorphic if and only if G and H are isomorphic.

Proof. Let ξ1, ξ2, . . . , ξn be the common Q-eigenvalues (not necessarily different from each other) of G

and H. By Theorem 3.1, SpecQ(Ĝs) = Ŝ(ξ1) ∪ Ŝ(ξ2) ∪ · · · ∪ Ŝ(ξn) = SpecQ(Ĥs), where Ŝ(ξi) is the root set

of p
(s)
i (q) = as(q) + (1− ξi)as−1(q). Thus, (1) follows, and (2) is an immediate result by the construction of

Ĝs and Ĥs.

Example 5.1. In Fig. 4, the graphs G and H are a pair of Q-cospectral graphs and SpecQ(G) =

SpecQ(H) = {6.3723, 3.0000, 2.00002, 0.6722}. If s = 2, by Theorem 5.1, we obtain that Ĝ1
2 = G ◦ P2 and

Ĥ1
2 = H ◦ P2 are Q-cospectral but not isomorphic. Actually,

SpecQ(Ĝ1
2) = SpecQ(Ĥ1

2 ) = {7.5255, 4.3028, 3.41422, 2.3620, 0.8468, 0.6972, 0.58582, 0.2658}.

In fact, for any s ≥ 1, Ĝs and Ĥs are Q-cospectral and not isomorphic. By Theorem 5.1, we can get

infinitely many pairs of non-isomorphic Q-cospectral graphs, i.e., Ĝi
si and Ĥi

si , which are recursively defined

by Ĝ0
s0 = G, Ĥ0

s0 = H, and Ĝi
si = Ĝi−1

si−1
◦ Psi , Ĥ

i
si = Ĥi−1

si−1
◦ Psi for i ≥ 1 and si ≥ 1.

Example 5.2. In Fig. 5, the graphs G and H are a pair of Q-cospectral graphs which belong to GQ7 ,

i.e.,

SpecQ(G) = SpecQ(H) = {4.7757, 3.5892, 2.2763, 2.0000, 1.0000, 0.3588, 0.0000}

If s = 3, by Theorem 5.1, we obtain that Ĝ1
3 = G◦P3 and Ĥ1

3 = H ◦P3 are Q-cospectral but non-isomorphic.

We also verify that SpecQ(Ĝ1
3) = SpecQ(Ĥ1

3 ) =


6.0363 4.9587 3.9132 3.7321 3.2470 3.0684 3.0

2.4113 2.3182 2.0839 2.0000 1.5550 1.1923 1.0

0.3281 0.3122 0.2791 0.2679 0.1981 0.0981 0.0

.

In fact, for any s ≥ 1, Ĝs and Ĥs are Q-cospectral and not isomorphic. By Theorem 5.1, we can get infinitely

many pairs of non-isomorphic Q-cospectral graphs belong to GQ, i.e., Ĝi
si and Ĥi

si , which are recursively defined by

Ĝ0
s0 = G, Ĥ0

s0 = H, and Ĝi
si = Ĝi−1

si−1
◦ Psi , Ĥ

i
si = Ĥi−1

si−1
◦ Psi for i ≥ 1 and si ≥ 1.

Now, we give the following results about the DQS-problem.

Theorem 5.2. If Ĝs is DQS, then G is DQS.
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Figure 4. A pair of Q-cospectral graphs.
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Figure 5. A pair of Q-cospectral graphs.

Proof. LetH be any graph such that SpecQ(H) = SpecQ(G). By Theorem 5.1(1) we obtain SpecQ(Ĥs) =

SpecQ(Ĝs), and so Ĥs
∼= Ĝs because Ĝs is DQS. Hence, H ∼= G by Theorem 5.1(2).

Conversely, if G is DQS, we ask whether Ĝs (s ≥ 2) is also DQS? In [8], M. Mirzakhah and D. Kiani

have shown that the sun graph is DQS, that is, if G = Cn(the cycle of order n) and s = 2, then Ĝ2 = Cn ◦P2

is DQS.

In the following theorem, we give the DQS-property of Ĝs.

Theorem 5.3. Let Ĝs = G ◦ Ps and Ĥs = H ◦ Ps (s ≥ 1) be two Q-cospectral graphs. Then Ĝs
∼= Ĥs if

G is DQS.

Proof. Since Ĝs = G ◦ Ps and Ĥs = H ◦ Ps are Q-cospectral, we claim that G and H are Q-cospectral.

In fact, by the way of contradiction, suppose that SpecQ(G) 6= SpecQ(H). Let SpecQ(G) = {ξ1, ξ2, . . . , ξn}
and SpecQ(H) = {ξ′1, ξ′2, . . . , ξ′n}. Then there exists ξi ∈ SpecQ(G) such that ξi 6= ξ′j for 1 ≤ j ≤ n. Let Ŝ(ξi)

be the root set of p
(s)
i (q) = as(q)− ξias−1(q) and Ŝ(ξ′j) the root set of p

(s)
j (q) = as(q)− ξ′jas−1(q). For each

1 ≤ j ≤ n, as Lemma 3.6 and Remark 3.7, we may conclude that Ŝ(ξi) ∩ Ŝ(ξ′j) = ∅ because ξi 6= ξ′j . Thus,

from Theorem 3.1 we know that SpecQ(Ĝs) 6= SpecQ(Ĥs) = Ŝ(ξ′1)∪ Ŝ(ξ′2)∪ · · · ∪ Ŝ(ξ′n), which contracts our

assumption. Therefore, G ∼= H because G is DQS, and so Ĝs
∼= Ĥs.

This completes the proof.

Finally, we propose a conjecture.

Conjecture 1. If G ∈ GQ∗

n (with no zero eigenvalue) is DQS, then Ĝs (∈ GQ∗

sn ) is DQS for any s ≥ 2.
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