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THE COMMON INVARIANT SUBSPACE PROBLEM AND TARSKI’S THEOREM∗

GRZEGORZ PASTUSZAK†

Abstract. This article presents a computable criterion for the existence of a common invariant subspace of n×n complex

matrices A1, . . . , As of a fixed dimension 1 ≤ d ≤ n. The approach taken in the paper is model-theoretic. Namely, the criterion

is based on a constructive proof of the renowned Tarski’s theorem on quantifier elimination in the theory ACF of algebraically

closed fields. This means that for an arbitrary formula ϕ of the language of fields, a quantifier-free formula ϕ′ such that ϕ↔ϕ′

in ACF is given explicitly. The construction of ϕ′ is elementary and based on the effective Nullstellensatz. The existence of

a common invariant subspace of A1, . . . , As of dimension d can be expressed in the first-order language of fields, and hence,

the constructive version of Tarski’s theorem yields the criterion. In addition, some applications of this criterion in quantum

information theory are discussed.
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1. Introduction. Throughout the paper, C is the field of complex numbers and Mn(C) the vector

space of n× n matrices over C.

Assume that A,A1, . . . , As ∈ Mn(C) and V is a subspace of Cn. We say that V is A-invariant (or

invariant subspace of A) if and only if Av ∈ V for any v ∈ V . We say that V is a common invariant subspace

of A1, . . . , As if and only if V is Ai-invariant for any i = 1, . . . , s. Assume that x ∈ Cn, x 6= 0. We say that

x is a common eigenvector of A1, . . . , As if and only if x is an eigenvector of every Ai, that is, Aix = µix for

some µi ∈ C, for any i = 1, . . . , s. The vector x ∈ Cn is a common eigenvector of A1, . . . , As if and only if

the one-dimensional subspace 〈x〉 ⊆ Cn generated by x is a common invariant subspace of A1, . . . , As.

A computable criterion (or computable condition) is a procedure employing only finite number of arith-

metic operations. The problem of providing a computable criterion for the existence of d-dimensional common

invariant subspace of s ≥ 2 matrices A1, . . . , As ∈ Mn(C), for d ≤ n, is known as the common invariant

subspace problem or the CIS problem.

There are many partial solutions of the CIS problem. In [32], D. Shemesh shows that the matrices

A,B ∈Mn(C) have a common eigenvector (i.e., a common invariant subspace of dimension one) if and only

if L(A,B) 6= 0 where

L(A,B) =

n−1⋂
k,l=1

ker[Ak, Bl] 6= 0.

Here, kerX = {v ∈ Cn|Xv = 0} is the kernel of X and [X,Y ] = XY − Y X the commutator of X and Y ,
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for any X,Y ∈Mn(C). The author observes that L(A,B) = kerK, where

K =

n−1∑
k,l=1

[Ak, Bl]∗[Ak, Bl]

and X∗ is the matrix adjoint to X, for any X ∈ Mn(C). It follows that the condition L(A,B) 6= 0 is

computable.

The result of Shemesh is generalized in [16]. Indeed, we show in [16, Corollary 2.3] that the matrices

A1, . . . , As ∈Mn(C) have a common eigenvector if and only if M(A1, . . . , As) 6= 0, where

M(A1, . . . , As) =
n−1⋂

ki,lj≥0
k1+k2+···+ks 6=0
l1+l2+···+ls 6=0

ker[Ak11 · · ·Akss , A
l1
1 · · ·Alss ].

Moreover, we have M(A1, . . . , As) = kerK, where

K =

n−1∑
ki,lj≥0

k1+k2+···+ks 6=0
l1+l2+···+ls 6=0

[Ak11 · · ·Akss , A
l1
1 · · ·Alss ]∗[Ak11 · · ·Akss , A

l1
1 · · ·Alss ],

and thus, the condition M(A1, . . . , As) 6= 0 is computable.

In [25], we simplified the above condition in the following way. Assume that H,A1, . . . , As ∈Mn(C) and

H has pairwise different eigenvalues. Then matrices H,A1, . . . , As have a common eigenvector if and only if

N (H,A1, . . . , As) 6= 0, where

N (H,A1, . . . , As) =

n−1⋂
k=1

s⋂
i=1

ker[Hk, Ai].

Similarly as in the previous cases, N (H,A1, . . . , As) = kerK, where

K =

n−1∑
k=1

s∑
i=1

[Hk, Ai]
∗[Hk, Ai].

The papers [1], [2], [11] and [35] are devoted to common invariant subspaces of dimensions higher than

one. In [1] and [2], the authors study the case when algebra generated by two complex matrices is semisimple

and use the concept of a standard polynomial, see [27]. In [11] and [35], the authors reduce the general CIS

problem to the question of existence of a common eigenvector of suitable compound matrices, see [20]. This is

done for the case of two complex matrices. Some methods of [11] and [35] are used in [16] and [25] to obtain

generalized results for arbitrary number of matrices. The cited papers generally assume that given matrices

have pairwise different eigenvalues. Hence, they do not give a complete solution of the CIS problem.

The general version of the CIS problem, with arbitrary number of matrices and arbitrary dimension of

common invariant subspaces, is solved in [3]. In the solution the authors use techniques of Gröbner bases

theory and algebraic geometry.

In this paper, we present another complete solution of the common invariant subspace problem. Our

approach has a model-theoretic nature. Namely, we observe that the existence of a common invariant
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subspace of A1, . . . , As ∈ Mn(C) of dimension d ≤ n can be expressed in the first-order language of fields.

Denote this first-order formula by ϕ. Then it follows from the renowned theorem of A. Tarski on quantifier

elimination in the theory of algebraically closed fields (denoted by ACF) that there exists a quantifier-free

formula ϕ′ (a formula in which quantifiers do not occur) such that ϕ↔ϕ′ in ACF. Quantifier-free formulas

can be viewed as computable criteria, and hence, Tarski’s theorem directly implies that the solution of the

CIS problem exists. We prove in the paper a constructive version of Tarski’s theorem to get an explicit form

of the solution. Our proof is short and elementary. We base it on the effective Nullstellensatz.

A. Tarski showed that the theory of algebraically closed fields admits quantifier elimination in 1948.

Tarski has never published his proof, but one can find it implicitly in [29], see also [34] and [36] for more

information. Tarski’s proof is inductive with respect to the degree of a formula, see [21] for the definition.

In the second step of induction the author eliminates one existential quantifier from a given formula. This

leads to a formula of lower degree.

By a constructive proof (or constructive version) of Tarski’s theorem, we mean a proof of Tarski’s

theorem which yields a concrete quantifier-free form of a given formula. In some sense, the original proof

given by Tarski is already constructive.

Tarski’s theorem has a number of proofs. Proofs which are constructive are part of algorithmic quantifier

elimination theory. There is an extensive literature on this topic. The reader is reffered to [22] for some

review of important results in the field. Here, we only mention [12] by J. Heintz, where the author presents a

detailed and comprehensive analysis of the complexity of quantifier elimination in ACF. In the paper Heintz

gives a concrete algorithm for quantifier elimination. He obtains a doubly-exponential degree bound for the

complexity of quantifier-free formula, see Section 4 of [12].

Assume that K is an algebraically closed field and K[x1, . . . , xm] is the polynomial ring over K in m

variables x1, . . . , xm. Our constructive proof of Tarski’s theorem is based on the effective Nullstellensatz.

Assume that m, d, s ≥ 1 are some natural numbers. Effective Nullstellensatz yields a natural number

γ(m, d, s) satisfying the following condition: for any polynomials F1, . . . , Fs ∈ K[x1, . . . , xm] such that

deg(Fi) ≤ d we have 1 ∈ 〈F1, . . . , Fs 〉 if and only if there exist polynomials H1, . . . ,Hs ∈ K[x1, . . . , xm] such

that 1 = H1F1 + · · ·+HsFs and deg(Hi) ≤ γ(m, d, s), for any i = 1, . . . , s (deg(F ) denotes the degree of a

polynomial F ∈ K[x1, . . . , xm]). The numbers γ(m, d, s) are calculated in [14] (with corrections in [31]), [8],

[18], [33], [17] and [24] (see also [4] for more general considerations). Any value from these papers suffices

for our proof of Tarski’s theorem, but the results of [18] and [17] are optimal, that is, the lowest possible.

The significance of knowing the values γ(m, d, s) is fundamental in our constructive proof. Indeed, this

enables to write the condition 1 ∈ 〈F1, . . . , Fs 〉 in the first-order language of fields. Such a strategy for the

proof appears implicitly in the literature and may already be known. For example, Heintz makes somewhat

similar use of the effective Nullstellensatz in his algorithm, see Section 4 of [12].

The paper is organized as follows. In Section 2, we recall for convenience some basic facts and terminology

from model theory (we base on [21] and [28]). We also introduce the notation which is, in most cases, the

standard one.

In Section 3, we recall the aforementioned results concernig effective Nullstellensatz. We concentrate on

our recent construction of γ(m, d, s) obtained in [24]. It was developed exclusively for the constructive proof

of Tarski’s theorem. Although the construction is far from optimal, it suffices for the proof, because any

value of γ(m, d, s) is sufficient. Results of [18] and [17] yield the optimal construction.
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Section 4 is devoted to the constructive proof of Tarski’s theorem. The main result is Theorem 4.2. In

Corollary 4.3 we give a computable criterion for the existence of a common root of multivariate polynomials.

This is a direct consequence of Theorem 4.2.

In Section 5, we give a solution of the CIS problem, based on the results of Section 4. We define a first-

order formula CISd of the language of fields that expresses the existence of a common invariant subspace of

dimension d of complex n× n matrices. Thus, Theorem 4.2 yields the desired solution. Finally, we discuss

some applications of common invariant subspaces in quantum information theory. In that sense, we continue

our research from [16] and [25], see also [15] and [26] for similar concepts.

Section 6 is the last section of the paper. In this section, we apply our results to give a computable

criterion for the existence of a 2-dimensional common invariant subspace of two general 3× 3 matrices. This

is the first non-trivial example since the CIS problem for common eigenvectors is solved completely in [16].

2. First-order languages and formulas. In this section, we recall for convenience some facts and

terminology from model theory. All the details can be found in [21], [28] or any other textbook in model

theory. Among other things, we give a precise formulation of Tarski’s theorem. We also introduce the

notation.

A first-order language L is a quadruple (Ω, R, C,X), where Ω is the set of operation symbols, R the set of

relation symbols, C the set of constant symbols and X the set of variables. If L is a language, then Form(L)

is the set of all first-order L-formulas (or first-order formulas over L).

Assume that L is a language and ϕ1, . . . , ϕn are L-formulas. Then
∧n
i=1 ϕi and

∨n
i=1 ϕi denote the

formulas ϕ1 ∧ · · · ∧ ϕn and ϕ1 ∨ · · · ∨ ϕn, respectively. If x = (x1, . . . , xm) is a sequence of variables and

Q is a quantifier, then Qx is the abbreviation of Qx1
· · ·Qxm

. Generally, if A = {a1, . . . , as} is a set of

variables, then QA is the abbreviation of Qb1 · · ·Qbs , where b1, . . . , bs is any permutation of a1, . . . , as. This

is consistent since the formulas Qb1 · · ·Qbsϕ and Qa1 · · ·Qasϕ are equivalent, for any L-formula ϕ.

A variable x occurring in a formula ϕ ∈ Form(L) is bound if and only if there is a subformula ψ of ϕ

such that x occurs in ψ and ∃xψ or ∀xψ is a subformula of ϕ. If x occurs in ϕ and x is not bound, then

x is free. For example, if ϕ = ∃x(x2 + y = 1), then x is bound and y is free. If ϕ is an L-formula and

a1, . . . , an are all free variables of ϕ, then we write ϕ(a) instead of ϕ, where a = (a1, . . . , an). A formula

ϕ ∈ Form(L) is atomic if and only if ϕ is of the form r(a) or t1 = t2, where r is a relation symbol of L and

t1, t2 are terms over L. For example, a formula x2 + y = 1 is atomic and (x2 + y = 1) ∧ (x + y + z = 0)

is not. A formula ϕ ∈ Form(L) is quantifier-free if and only if it has no subformula of the form ∃xψ or

∀xψ. Hence, quantifier-free formulas are boolean combinations of atomic formulas. For example, a formula

(x2 + y = 1) ∧ (x+ y + z = 0) is quantifier-free and ∃x(x2 + y = 1) is not.

Assume that L is a language. A formula ϕ ∈ Form(L) is a sentence if and only if ϕ has no free variables.

For example, a formula ∀y∃x(x2 + y = 1) is a sentence. A formula ∃x(x2 + y = 1) is not a sentence. The set

of all sentences over L is denoted by Sent(L). An L-theory (or theory over L) is any subset of Sent(L). If T

is an L-theory and a formula ϕ ∈ L is provable in T , then we write T ` ϕ. We denote by Mod(L) the set of

all models of L. If ϕ ∈ Form(L) and ϕ is satisfied in a model M , then we write M |= ϕ. If T is a L-theory,

M is a model of L and M |= ϕ for any ϕ ∈ Sent(L), then we say that M is a model of T . We denote by

Mod(T ) the set of all models of T . The following fundamental theorem states that the first-order logic is

sound and complete.
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Theorem 2.1. Assume that L is a language, T is an L-theory and ϕ ∈ Sent(L). Then T ` ϕ if and

only if M |= ϕ for any M ∈ Mod(T ).

Assume that L is a language and ϕ is a formula over L. It is well known that ϕ can be written

in the prenex normal form. It follows from De Morgan’s laws that ϕ is equivalent with the formula∨t
i=1 ∃x(

∧si
j=1 ϕij), where ϕij are atomic formulas or negations of atomic formulas. An L-formula is a

conjunctive prenex normal formula if it has the form ∃x(
∧s
i=1 ϕi), where each ϕi is an atomic L-formula or a

negation of such. We say that an L-theory T admits quantifier elimination if and only if for any conjunctive

prenex normal L-formula ϕ there is a quantifier-free L-formula ϕ′ such that T ` ϕ↔ϕ′. It is clear that we

can replace conjunctive prenex normal L-formula by any L-formula in this condition.

We denote the language of fields (0, 1,+,−, ·) by F . The theory of algebraically closed fields over the

language F is denoted by ACF. The axioms forming ACF are well known. Recall that if ϕ(a) is an atomic

F-formula, then ϕ(a) has the form F = 0, where F is a mutivariate polynomial in Z[a1, . . . , an]. This yields

the general form of quantifier-free F-formulas. We introduce some notation for multivariate polynomials

over the ring Z.

Assume that a = (a1, . . . , an) and x = (x1, . . . , xm). Then Z[a] denotes the ring Z[a1, . . . , an] and Z[a][x]

the ring of polynomials in m variables x1, . . . , xm over the ring Z[a]. Generally, if C is a set of variables, then

Z[C][x] is the ring of polynomials in m variables x1, . . . , xm over the ring Z[C] of polynomials in variables

from C. A polynomial F in Z[a][x] has the form
∑
α∈Nm fα · xα, where fα ∈ Z[a] for any α ∈ Nm and

fα = 0 for almost all α ∈ Nm. Here xα denotes xα1
1 · · ·xαm

m , where α = (α1, . . . , αm) ∈ Nm. If α ∈ Nm and

α = (a1, . . . , am), then we set |α| = a1 + · · ·+ am. If F =
∑
α∈Nm fα · xα, then the degree of F with respect

to x1, . . . , xm is a maximal element of the set {|α|; fα 6= 0}. The degree of F with respect to x1, . . . , xm is

denoted by deg(F ).

The following is a precise statement of Tarski’s theorem on quantifier elimination in the theory of

algebraically closed fields.

Theorem 2.2. Assume that a = (a1, . . . , an) and ϕ(a) is a conjunctive prenex normal F-formula. The

following equivalent assertions hold.

(1) There exists a quantifier-free F-formula ϕ′(a) such that ACF ` ϕ(a)↔ϕ′(a).

(2) There exists a quantifier-free F-formula ϕ′(a) such that for any algebraically closed field K and any

tuple a ∈ Kn we have K |= ϕ(a) if and only if K |= ϕ′(a).

Note that the equivalence of conditions (1) and (2) from the above theorem follows directly from Theorem

2.1.

3. Effective Nullstellensatz. We recall in this section some results concerning the effective Nullstel-

lensatz. First we introduce the terminology.

We denote by N1 the set N \ {0}. Assume that K is an algebraically closed field and m, d, s ∈ N1. A

number γ(m, d, s) ∈ N is K-bounding if and only if the following condition is satisfied: for any F1, . . . , Fs ∈
K[x1, . . . , xm] such that deg(Fi) ≤ d we have 1 ∈ 〈F1, . . . , Fs 〉 if and only if there exist H1, . . . ,Hs ∈
K[x1, . . . , xm] such that 1 = H1F1 + · · · + HsFs and deg(Hi) ≤ γ(m, d, s), for any i = 1, . . . , s. A number

γ(m, d, s) ∈ N is bounding if and only if it is K-bounding for any algebraically closed field K. A function

γ : (N1)3 → N is K-bounding (bounding, respectively) if and only if the number γ(m, d, s) is K-bounding

(bounding, respectively) for any m, d, s ∈ N1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 343-356, August 2017.

Grzegorz Pastuszak 348

Effective Nullstellensatz yields a bounding function or a K-bounding function for some concrete K. The

first result on effective Nullstellensatz is proved by G. Hermann in [14], with some corrections made by A.

Seidenberg in [31]. They showed that the function γ(m, d, s) = (2d)2
m

, for any m, d, s ∈ N1, is a bounding

function. Functions of this form are called doubly-exponential. In [8], W. D. Brownawell shows that the

function

γ(m, d, s) = m ·min(s,m) · dmin(s,m) + min(s,m) · d,

for any m, d, s ∈ N1, is a C-bounding function. J. Kollar shows in [18] that the number γ(m, d, s) = dm is a

bounding number for any m, s ∈ N1 and d ≥ 3. In [33], M. Sombra gets that the function γ(m, d, s) = 2dm,

for any m, d, s ∈ N1, is a bounding function. The result of Z. Jelonek given in [17] shows that the function

γ(m, d, s) = dm for s ≤ m and γ(m, d, s) = 2dm − 1 for s > m is a bounding function. We note that

the analysis of effective Nullstellensatz given in [18], [21] and [17] is more detailed than the approach we

take in the section. The results of [18] and [17] give optimal, or nearly optimal, single-exponential values of

γ(m, d, s), see Section 1 of [17] for the details. Here by optimal we mean the lowest possible.

A construction of a bounding function is also given in our recent paper [24]. In that paper we set a

bound on the length of ascending chains of ideals in K[x1, . . . , xm] which are generated by polynomials of

degrees less or equal to fixed natural numbers, see [24, Theorem 4.2]. Similar problems are studied in [23]

and [5], see also [30]. We derive a bounding function from results of Section 3 of [24] and [24, Theorem

4.2] by applying some basic techniques of Gröbner bases theory. In fact, we get a more general function,

see Corollary 4.5 in [24] for details. The main results of [24] are proved in elementary way, using mainly

combinatorial arguments.

The bounding function obtained in [24] is not optimal, but we got it exclusively for the constructive

proof of Tarski’s theorem. Since any concrete bounding function is sufficient for this proof (and hence, for

solution of the CIS problem), we recall our construction below.

Denote by F the set of all non-decreasing functions N1 → N1. If f ∈ F and s ∈ N, then sf : N1 → N1 is

a function such that sf(n) = f(s+ n) for any n ∈ N1. Observe that sf ∈ F. The elements of the set Nm are

treated as sequences of natural numbers, for any m ∈ N.

We define a sequence (Bm)m∈N1
of functions such that Bm : F → N for any m ∈ N as follows. The

definition is inductive with respect to the number m. It is given in two main steps, but the second step is

divided in three parts.

Step 1. Assume that m = 1. We define B1 : F→ N to be a function such that B1(f) = f(1) + 1 for any

f ∈ F.

Step 2. Assume that m ≥ 2 and the function Bm−1 : F→ N is defined. In order to define Bm : F→ N,

we construct a sequence of functions (Bkm)mk=0, Bkm : F × Nk → N. This is done by the backward induction

with respect to the number k. We give the construction in three steps.

Step 2.1. Assume that k = m. We define Bmm : F×Nm → N to be a function such that Bmm(f, b1, . . . , bm) =

(b1 + 1) · · · (bm + 1) for any f ∈ F and (b1, . . . , bm) ∈ Nm.

Step 2.2. Assume that k ∈ {0, . . . ,m − 1} and the function Bk+1
m : F × Nk+1 → N is defined. Suppose

f ∈ F, β ∈ Nk and let g : N1 → N1 be a function such that g(1) = 1 and

g(n+ 1) = 1 + g(n) + Bk+1
m (g(n)f, β, f(g(n)))
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for any n ≥ 1. We have g ∈ F, and hence, there is a function Fkm : F×Nk → F such that (f, β) 7→ g. We set

Bkm(f, β) = g(Bm−1(f ◦ g) + 1) for any f ∈ F, β ∈ Nk and g = Fkm(f, β).

Step 2.3. We identify Bm with B0m.

Let d ∈ N1 and denote the function f : N1 → N1 such that f(n) = 3nd by a string 3nd. Then [24,

Corollary 3.5] yields that the function

γ(m, d, s) = (3Bm(3nd)−1 − 1)d,

for any m, d, s ∈ N1, is a bounding function. This function is rather Ackermannian (see [10] for some

information on such functions) and hence far from optimal.

4. Tarski’s theorem. This section is devoted to present the constructive proof of Tarski’s theorem.

The proof uses an arbitrary bounding function, so any version of the effective Nullstellensatz fits for our

purpose. We recall from Section 2 that it suffices to give the proof for conjunctive prenex normal F-formulas.

We show below that these formulas have some special form.

Assume that a = (a1, . . . , an), x = (x1, . . . , xm) and F1, . . . , Fs ∈ Z[a][x]. Assume that Fi =
∑
α∈Nm fi,α ·

xα, where fi,α ∈ Z[a] for any i = 1, . . . , s, α ∈ Nm and fα = 0 for almost all α ∈ Nm. A formula of the form

∃x(F1(x) = 0 ∧ · · · ∧ Fs(x) = 0) is a common root formula.

Proposition 4.1. Any conjunctive prenex normal F-formula is equivalent with some common root for-

mula.

Proof. Assume that a = (a1, . . . , an) and ϕ(a) is a conjunctive prenex normal F-formula. Then

ϕ(a) = ∃x(F1(x) = 0 ∧ · · · ∧ Fr(x) = 0 ∧G1(x) 6= 0 ∧ · · · ∧Gt(x) 6= 0),

where each Fi, Gj is a polynomial of the form
∑
α∈Nm fα · xα, where fα ∈ Z[a] and fα = 0 for almost all

α ∈ Nm. Since the formula G1(x) 6= 0 ∧ · · · ∧ Gt(x) 6= 0 is equivalent with (G1 · · ·Gt)(x) 6= 0, the formula

ϕ(a) is equivalent with

ϕ′(a) = ∃x,z(F1(x) = 0 ∧ · · · ∧ Fr(x) = 0 ∧ zG(x)− 1 = 0),

where G = G1 · · ·Gt. This shows the assertion.

Proposition 4.1 implies that it suffices to give the proof of Tarski’s theorem only for common root

formulas. Thus, we aim to give an equivalent quantifier-free form of common root formulas. Note that

the proof of Proposition 4.1 shows a procedure of getting a common root formula equivalent with a given

conjunctive prenex normal formula.

We introduce some special quantifier-free F-formulas. Assume that m ∈ N1. We view the set Nm as a

monoid with respect to the pointwise addition, denoted by +. If α, β ∈ Nm and α+ γ = β for some γ ∈ Nm,

then we write α ‖β. If α ∈ Nm and α = (a1, . . . , am), then we set |α| = a1 + · · ·+ am.

Assume that d, d′ ≥ 1 are fixed natural numbers. Let F1, . . . , Fs ∈ Z[a][x] be polynomials such that

deg(Fi) ≤ d and Fi =
∑
|α|≤d fi,α · xα, where fi,α ∈ Z[a] for any i = 1, . . . , s and α ∈ Nm. Let Ad,d

′

F1,...,Fs
= A

be a matrix with rows indexed by elements of the set X = {δ ∈ Nm|d + d′ ≥ |δ|}, columns indexed by

elements of {1, . . . , s} ×X and

A(δ, (i, β)) =

{
fi,δ−β if β ‖ δ,

0 otherwise,
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where δ, β ∈ X and i ∈ {1, . . . , s}. Let Âd,d
′

F1,...,Fs
= Â be an augmented matrix (A|B), where B is a column

with {1, . . . , s} ×X rows such that B =
[
0 . . . 0 1

]T
. Assume that S(A) and S(Â) are the sets

of all square submatrices of A and Â, respectively. Moreover, assume that S(Â, n) is the subset of S(Â)

consisting of the matrices of order greater than n. We define a quantifier-free formula

∆d,d′

F1,...,Fs
(a) =

∧
M∈S(A)

(detM 6= 0→ (
∨

N∈S(Â,oM )

detN 6= 0)),

where oM denotes the order of the matrix M . Assuming that a is a tuple of elements of some field, the

formula ∆d,d′

F1,...,Fs
(a) holds if and only if the rank of the matrix Â is greater than the rank of A.

In the following theorem we show that common root formulas are equivalent with quantifier-free formulas

of the form ∆d,d′

F1,...,Fs
(a). This theorem is a constructive version of Tarski’s theorem on quantifier elimination

in the theory of ACF. Note that any F-formula can be easily written as a disjunction of common root

formulas.

Theorem 4.2. Assume that γ : (N1)3 → N is a bounding function. Assume that a = (a1, . . . , an),

x = (x1, . . . , xm), F1, . . . , Fs ∈ Z[a][x] and

ϕ(a) = ∃x(F1(x) = 0 ∧ · · · ∧ Fs(x) = 0).

Let d be the maximum of degrees of F1, . . . , Fs and d′ = γ(m, d, s). Then ACF ` ϕ(a)↔∆d,d′

F1,...,Fs
(a).

Proof. Assume that Fi =
∑
|α|≤d fi,α · xα, where fi,α ∈ Z[a] for any i = 1, . . . , s and α ∈ Nm. Assume

that K is an algebraically closed field and a ∈ Kn. Then fi,α(a) ∈ K for any i = 1, . . . , s, α ∈ Nm,

and thus, it follows from Hilbert’s Nullstellensatz that ϕ(a) holds if and only if 1 /∈ 〈F1, . . . , Fs〉. Since

γ : (N1)3 → N is a bounding function, the condition 1 /∈ 〈F1, . . . , Fs〉 is equivalent with non-existence of

polynomials H1, . . . ,Hs ∈ K[x1, . . . , xm] such that 1 = H1F1 + · · ·+HsFs and deg(Hi) ≤ γ(m, d, s) = d′ for

any i = 1, . . . , s. The fact that deg(Hi) ≤ d′ enables to write the latter condition in the first-order language

of fields.

We introduce some sets of variables. Assume that Ci = {ci,β}|β|≤d′ , where β ∈ Nm and i = 1, . . . , s.

Let Hi ∈ Z[Ci][x] be a polynomial of the form Hi =
∑
|β|≤d′ ci,β · xβ for i = 1, . . . , s. Set C =

⋃s
i=1 Ci and

consider the formula ψ(a) = ∀CH1F1 + · · ·+HsFs 6= 1 which is equivalent with ϕ(a). Observe that

H1F1 + · · ·+HsFs =
∑

|δ|≤d+d′
(
∑

β+α=δ

c1,βf1,α + · · ·+ cs,βfs,α)xδ,

where δ ∈ Nm, and hence, the formula ψ(a) expresses the non-existence of solution of some system of linear

equations with the set C as a set of variables. This system can be written in such a way that the matrices

A = Ad,d
′

F1,...,Fs
and Â = Âd,d

′

F1,...,Fs
are its coefficient matrix and augmented matrix, respectively. Then it follows

from the Kronecker-Capelli theorem that ψ(a) holds if and only if rk(Â) > rk(A), where rk(M) denotes the

rank of the matrix M . This is equivalent with ∆d,d′

F1,...,Fs
(a). Hence, we get ACF ` ϕ(a)↔∆d,d′

F1,...,Fs
(a) by

Theorem 2.1.

Note that in the proof of Theorem 4.2, any bounding function suffices. Bounding functions obtained in

[18] and [17] are optimal (see Section 2), so they yield formulas ∆d,d′

F1,...,Fs
(a) of the lowest degree.

As a direct consequence of our considerations, we get the following computable criterion for the existence

of a common root of multivariate polynomials.
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Corollary 4.3. Assume that γ : (N1)3 → N is a bounding function. Assume that K is an algebraically

closed field, d is a natural number, F1, . . . , Fs ∈ K[x1, . . . , xm] and Fi =
∑
|α|≤d ai,α ·xα for i = 1, . . . , s. Set

d′ = γ(m, d, s). The polynomials F1, . . . , Fs have a common root if and only if rk(Â) > rk(A), where A and

Â are matrices obtained from Ad,d
′

F1,...,Fs
and Âd,d

′

F1,...,Fs
, respectively, by replacing the elements fi,α by ai,α for

any i = 1, . . . , s, α ∈ Nm.

Proof. The proof is a simplified version of the proof of Theorem 4.2.

5. Common invariant subspaces. In this section, we give a computable criterion for the existence of

a common invariant subspace of complex n× n matrices of dimension d ≤ n. This is a complete solution of

the CIS problem. We base the solution on the constructive proof of Tarski’s theorem, see Theorem 4.2. The

end of this section is devoted to some applications of common invariant subspaces in quantum information

theory.

Assume that A1, . . . , As ∈ Mn(C) and d ≤ n is a natural number. We show that that the existence of

a common invariant subspace of A1, . . . , As of dimension d can be expressed in the first-order language of

fields F . Let At = [atij ]i,j=1,...,n for any t = 1, . . . , s and C = {atij |i, j = 1, . . . , n; t = 1, . . . , s}. Define a

lexicographic order on C in a natural way, that is, atij < at
′

i′j′ if and only if (t, i, j) is smaller then (t′, i′, j′)

in the lexicographic order. We define a tuple c of coefficients of A1, . . . , As as the only increasing sequence

of elements of C of length s · n2. We call c the coefficient tuple of A1, . . . , As.

Assume that V = {vji |i = 1, . . . , d; j = 1, . . . , n} is a set of variables and v is a tuple of elements of V

defined similarly as the coefficient tuple. Set vi =
[
v1i . . . vni

]T
for i = 1, . . . , d and denote by MV

the augmented matrix (v1| . . . |vd). Assume that Sd(MV ) is the set of all square submatrices of the matrix

MV of order d and denote by rk(MV ) = d the first-order F-formula∨
M∈Sd(MV )

(detM 6= 0).

The formula rk(MV ) = d states that the vectors v1, . . . , vd are linearly independent. Assume that W =

{αtij |i = 1, . . . , s; j, t = 1, . . . , d} is a set of variables and α is a tuple of elements of W defined similarly as

the coefficient tuple. Denote by IV (Ai), for i = 1, . . . , s, the first-order F-formula

d∧
j=1

(Aivj = α1
ijv1 + · · ·+ αdijvd).

The formula IV (Ai) states that the vector space spanned by v1, . . . , vd is Ai-invariant. Thus, the first-order

F-formula

ϕ(c) = ∃v(rk(MV ) = d ∧ ∃α(

s∧
i=1

IV (Ai)))

expresses the existence of a common invariant subspace of A1, . . . , As of dimension d. This formula is

equivalent with the formula ∨
M∈Sd(MV )

(∃(v,α)(detM 6= 0 ∧
s∧
i=1

IV (Ai))),

and finally, we get that ϕ(c) is equivalent with the formula

∨
M∈Sd(MV )

(∃(v,α,zM )(zM · detM = 1) ∧
s∧
i=1

d∧
j=1

(Aivj = α1
ijv1 + · · ·+ αdijvd)).
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We denote the above formula by CISd(c) and call it the CIS-formula. Observe that CISd(c) is a logical

disjunction of common root formulas which are indexed by the elements of Sd(MV ). We denote these

common root formulas by CISd(c,M), for M ∈ Sd(MV ), that is,

CISd(c) =
∨

M∈Sd(MV )

CISd(c,M).

The formula CISd(c,M) has the form ∃w(F1(w) = 0 ∧ · · · ∧ Fr(c,d)(w) = 0), where w = (v, α, zM ), r(c, d) =

sdn+ 1 and Fi ∈ Z[c][w] for any i = 1, . . . , r(c, d). We denote the sequence F1, . . . , Fr(c,d) by σd(c,M).

The following theorem yields a computable criterion for the existence of a common invariant subspace

of A1, . . . , As ∈Mn(C) of dimension d.

Theorem 5.1. Assume that γ : (N1)3 → N is a bounding function. Assume that A1, . . . , As ∈ Mn(C)

and d ≤ n is a natural number. Assume that c is the coefficient tuple of A1, . . . , As and let

CISd(c) =
∨

M∈Sd(MV )

CISd(c,M).

Set t = d + 1 and t′ = γ(d(n + sd) + 1, d + 1, sdn + 1). The matrices A1, . . . , As have a common invariant

subspace of dimension d if and only if there exists M ∈ Sd(MV ) such that the quantifier-free formula ∆t,t′

σd(c,M)

holds.

Proof. The matrices A1, . . . , As have a common invariant subspace of dimension d if and only if there

exists M ∈ Sd(MV ) such that the common root formula CISd(c,M) holds. This formula has the form

∃w(F1(w) = 0∧ · · · ∧Fr(c,d)(w) = 0), where r(c, d) = sdn+ 1 and Fi ∈ Z[c][w] for any i = 1, . . . , r(c, d). The

tuple w has d(n+ sd) + 1 elements and the maximum of degrees of polynomials Fi equals the degree of the

polynomial zM · detM − 1 which is d+ 1 ≥ 2. Hence, the assertion follows from Theorem 4.2.

Observe that the polynomials Fi(w), for i = 1, . . . , r(c,M), can be viewed as elements of C[w], because

c is a tuple of complex numbers. Hence, Corollary 4.3 also yields a computable condition for the existence

of a common invariant subspace.

We note that the formula CISd(c) is equivalent with a single common root formula of the form

∃(v,α,z)((
∏

M∈Sd(MV )

(zM · detM − 1)) = 0 ∧
s∧
i=1

d∧
j=1

(Aivj = α1
ijv1 + · · ·+ αdijvd)),

where the tuple z contains all elements of the set {zM |M ∈ Sd(MV )}, ordered in a fixed way. Indeed,

this follows from the fact that G1(x) = 0 ∨ · · · ∨ Gn(x) = 0 is equivalent with (G1 · · ·Gn)(x) = 0, for any

polynomials G1, . . . , Gn. The required computable criterion can be obtained by applying Theorem 4.2 to

the above single common root formula. Nevertheless, we usually prefer to view the formula CISd(c) as in

Theorem 5.1, where it is a logical disjunction of less complex common root formulas (note that the degree

of
∏
M∈Sd(MV )(zM · detM − 1) equals

(
n
d

)
(d + 1)). It is hard to say which way is better from the point of

view of computational complexity.

Remark 5.2. We can consider the generalized CIS problem where the field C of complex numbers

is replaced by any algebraically closed field K. The formula CISd(c), where c is a coefficient tuple of

A1, . . . , As ∈Mn(K), expresses the existence of a d-dimensional common invariant subspace of these matri-

ces. Hence, Theorem 4.2 yields the solution to the generalized CIS problem.
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Common invariant subspaces, sometimes satisfying additional conditions, play a prominent role in quan-

tum information theory. We show this role on two examples concerning quantum channels: irreducible

quantum channels and decoherence-free subspaces. In these examples, we apply Theorem 5.1 and Theorem

4.2 to generalize some results from [16] and [25]. We give this part of the section an expository character

and leave the details. We recommend [7] and [13] as comprehensive monographs on quantum information

theory and quantum mechanics in general.

A quantum channel is a completely positive map Φ : Mn(C) → Mn(C) which preserves the trace. It

follows from [13, 5.2.3] that there are matrices A1, . . . , As ∈Mn(C) such that Φ(X) =
∑s
i=1AiXA

∗
i for any

X ∈Mn(C), where A∗ denotes the matrix adjoint to A.

An important subclass of the class of all quantum channels is formed by irreducible quantum channels.

It is proved in [9] that a quantum channel Φ(X) =
∑s
i=1AiXA

∗
i is irreducible if and only if the matrices

A1, . . . , As do not have a nontrivial common invariant subspace. Hence, Theorem 5.1 provides a computable

criterion for irreducibility of Φ. This generalizes the main results of [16], see especially Sections 3 and 4 of

[16].

Quantum channels are used to transmit quantum information. Unfortunately, quantum information

may be easily corrupted by a number of factors, see [6]. Any such a factor is described as a decoherence. A

way to overcome the effects of decoherence is to ”hide” quantum information from the environment in some

“quiet corner”. This quiet corner is called the decoherence-free subspace (DFS).

There are few different mathematical definitions of DFS in the literature, see [19] for the details. In [25],

we define DFS as the common reducing unitary subspace. We recall this definition below.

Assume that A,A1, . . . , As ∈Mn(C) and W is a subspace of Cn. We say that W is a reducing subspace

of A (or A-reducing) if and only if W is an invariant subspace of A and A∗. We say that W is a common

reducing subspace of A1, . . . , As if and only if W is Ai-reducing for any i = 1, . . . , s.

Assume that A1, . . . , As ∈Mn(C) and Φ(X) =
∑s
i=1AiXA

∗
i is a quantum channel. A nonzero subspace

W of Cn is a common reducing unitary subspace (or a decoherence-free subspace) for Φ if and only if W

is a common reducing subspace of A1, . . . , As and there exists a unitary matrix U ∈ Mn(C) and complex

numbers g1, . . . , gs such that Aiw = (giU)w for any w ∈W and i = 1, . . . , s.

The conditions that U ∈Mn(C) is a unitary matrix and Aiw = (giU)w for any w ∈W and i = 1, . . . , s

can be written in the first-order language of fields F . Hence, there is a F-formula expressing the existence

of a common reducing unitary subspace of dimension d. This formula is similar to CISd(c). Consequently,

Theorem 4.2 provides a computable criterion for the existence of decoherence-free subspaces. This generalizes

the main results of [25], see especially Section 3 of [25].

Remark 5.3. The paper shows that there is a significant impact of quantifier elimination theory on

mathematics and related fields. Indeed, Tarski’s theorem shows that any problem which can be expressed

in the first-order language of fields (like the CIS problem) has its equivalent reformulation as a computable

criterion. Moreover, Theorem 4.2 (and algorithmic quantifier elimination theory in general) provides the

exact form of this criterion. It is our opinion that this observation opens the possibility for other applications

of quantifier elimination theory in mathematical sciences.

6. An example. We apply here our main results to get a computable criterion for the existence of a

2-dimensional common invariant subspace of two general 3×3 matrices. We concentrate on the construction
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of the appropriate general CIS-formula. We stick to the notation introduced in Section 5. We do not present

any calculations for concrete 3 × 3 matrices since the procedure given in Sections 4 and 5 is tedious. We

leave the systematic treatment of this issue to further research.

We consider the existence of a common invariant subspace of dimension 2 of two 3× 3 matrices A1, A2.

Hence, n = 3, s = 2 and d = 2. Assume that

A1 =

 a111 a112 a113
a121 a122 a123
a131 a132 a133

 , A2 =

 a211 a212 a213
a221 a222 a223
a231 a232 a233

 .
Then the coefficient tuple c of A1, A2 is the following tuple

c = (a111, a
1
12, a

1
13, a

1
21, a

1
22, a

1
23, a

1
31, a

1
32, a

1
33, a

2
11, a

2
12, a

2
13, a

2
21, a

2
22, a

2
23, a

2
31, a

2
32, a

2
33).

Furthermore, let V = {vji |i = 1, 2; j = 1, 2, 3}, and thus,

MV =

 v11 v12
v21 v22
v31 v32

 .
The set S2(V ) is a set of all submatrices of the matrix MV of order 2, so

S2(V ) = {
[
v11 v12
v21 v22

]
,

[
v21 v22
v31 v32

]
,

[
v11 v12
v31 v32

]
}.

We denote the elements of this set by M1,M2,M2, respectively, and set

wi = (v11 , v
1
2 , v

2
1 , v

2
2 , v

3
1 , v

3
2 , α

1
11, α

1
12, α

1
21, α

1
22, α

2
11, α

2
12, α

2
21, α

2
22, zMi

)

for i = 1, 2, 3. Since detM1 = v11v
2
2 − v12v21 we get

CIS2(c,M1) = ∃w1
((zM1

(v11v
2
2 − v12v21) = 1) ∧ (A1

 v11
v21
v31

 = α1
11

 v11
v21
v31

+ α2
11

 v12
v22
v32

)∧

∧(A1

 v12
v22
v32

 = α1
12

 v11
v21
v31

+ α2
12

 v12
v22
v32

) ∧ (A2

 v11
v21
v31

 = α1
21

 v11
v21
v31

+ α2
21

 v12
v22
v32

)∧

∧(A2

 v12
v22
v32

 = α1
22

 v11
v21
v31

+ α2
22

 v12
v22
v32

)).

Note that the formula

A1

 v11
v21
v31

 = α1
11

 v11
v21
v31

+ α2
11

 v12
v22
v32

 ,
and the other three similar formulas as well, is in fact a logical conjunction of 3 formulas. We get the formulas

CIS2(c,M2),CIS2(c,M3) by replacing the formula zM1
(v11v

2
2−v12v21) = 1 in CIS2(c,M1) by zM2

(v21v
3
2−v22v31) =
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1 and zM3(v11v
3
2 − v12v31) = 1, respectively. We also replace the tuple w1 in CIS2(c,M1) by w2 or w3. Finally,

we get

CIS2(c) = CIS2(c,M1) ∨ CIS2(c,M2) ∨ CIS2(c,M3).

Recall also from Section 5 that CIS2(c) is equivalent with the formula obtained from CIS2(c, zM1
) by replacing

w1 by the tuple

w = (v11 , v
1
2 , v

2
1 , v

2
2 , v

3
1 , v

3
2 ,alpha

1
11, α

1
12, α

1
21, α

1
22, α

2
11, α

2
12, α

2
21, α

2
22, zM1

, zM2
, zM3

)

and the formula zM1(v11v
2
2 − v12v21) = 1 by the formula

(zM1
(v11v

2
2 − v12v21)− 1) · (zM2

(v21v
3
2 − v22v31)− 1) · (zM3

(v11v
3
2 − v12v31)− 1) = 0.

Assume that i ∈ {1, 2, 3}. The formula CISd(c,Mi) has the form

∃wi
(F i1(wi) = 0 ∧ · · · ∧ F ir(c,d)(wi) = 0),

where r(c, d) = sdn + 1 = 13 and the tuple wi has d(n + sd) + 1 = 15 elements. The maximum of degrees

of polynomials F i1(wi), . . . , F
i
13(wi) equals the degree of the polynomial zMi

· detMi − 1 which is d+ 1 = 3.

We denote the sequence F i1(wi), . . . , F
i
13(wi) by σ2(c, i).

Recall from Section 3 that the function γ(m, d, s) = dm for s ≤ m and γ(m, d, s) = 2dm − 1 for s > m

is a bounding function. We set t = d+ 1 = 3 and

t′ = γ(d(n+ sd) + 1, d+ 1, sdn+ 1) = γ(15, 3, 13) = 315.

Then Theorem 5.1 yields the matrices A1, A2 have a 2-dimensional common invariant subspace if and only

if there is i ∈ {1, 2, 3} such that the quantifier-free formula ∆t,t′

σ2(c,i)
holds. These formulas are complicated

since the number t′ = 315 is very large.

Remark 6.1. In Section 4, we construct some quantifier-free formula equivalent with a given common

root formula. This quantifier-free formula depends on the bounding function γ. Assume that γ is one of the

optimal bounding functions, see Section 3 for the details. Then our quantifier-free formula gets the optimal

complexity (this is shown implicitly in [12]). This implies that computational complexity of the CIS problem

depends on the complexity of the CIS-formula (that is, on the number and degrees of polynomials that it

involves). It is thus interesting and natural to seek for less complex formulas expressing the existence of a

common invariant subspace of square complex matrices then the one proposed in Section 5. It is easy to

observe that our proposition is the simplest one, but it seems to be far from optimal.
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