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REFINED INERTIA OF MATRIX PATTERNS∗

JONATHAN EARL† , KEVIN N. VANDER MEULEN‡ , AND ADAM VAN TUYL†

Abstract. This paper explores how the combinatorial arrangement of prescribed zeros in a matrix affects the possible

eigenvalues that the matrix can obtain. It demonstrates that there are inertially arbitrary patterns having a digraph with no

2-cycle, unlike what happens for nonzero patterns. A class of patterns is developed that are refined inertially arbitrary but

not spectrally arbitrary, making use of the property of a properly signed nest. The paper includes a characterization of the

inertially arbitrary and refined inertially arbitrary patterns of order three, as well as the patterns of order four with the least

number of nonzero entries.
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1. Introduction. Since the concepts were introduced in Drew et. al. [9], much work has focused on

when a sign pattern is spectrally or inertially arbitrary (for example, [3, 6, 11, 14]). Various papers have also

focused on the combinatorial arrangement of the nonzero positions in a matrix when considering eigenvalue

properties of patterns (for example, [4, 7, 8]). The paper by Cavers and Fallat [3] reviews some of these

results and also sets them in a more general setting, initiating the study of other types of patterns. Recently,

there has started to be some consideration of zero-nonzero patterns, patterns with prescribed zero entries,

nonzero entries and entries that are unrestricted (see, for example, [10]). The concept of a refined inertially

arbitrary pattern has also recently been defined in [8] in the context of nonzero patterns. This concept

includes patterns that allow for Hopf bifurcations [1]. In this paper, we begin an exploration of zero patterns

(patterns that have prescribed zero entries, with the remaining entries unrestricted) that are refined inertially

arbitrary, comparing them to other known results.

We first introduce the technical definitions and some lemmas in Section 2. We recall that a refined

inertially arbitrary zero pattern requires a pair of symmetrically opposite nonzero entries, as was observed

in [3]. We then show, in Section 3, that this restriction is not required for inertially arbitrary zero patterns,

unlike what happens for nonzero patterns [4] and sign patterns [5].

In [8], Deaett et. al. present an irreducible nonzero pattern of order 5 that is refined inertially arbitrary

but not spectrally arbitrary. In Section 4, we produce an infinite class of zero patterns that are refined

inertially arbitrary but not spectrally arbitrary.

Garnett and Shader [11] showed that a path (sign) pattern Tn having two end loops is spectrally arbitrary.

In Section 5, using the technique from [11], we show that there are other zero patterns corresponding to a
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path with two loops that are spectrally arbitrary. While Tn has a signing that is spectrally arbitrary, there

is no signing of the nonzero entries of the path pattern introduced in Section 5 that is spectrally arbitrary.

In Section 6, we characterize the zero patterns of order 3 that are refined inertially arbitrary and inertially

arbitrary, comparing them to the known spectrally arbitrary patterns. We say a pattern of order n is sparse if

it has less than 2n nonzero entries. In Section 7, we conclude with an exploration of the sparse zero patterns

of order 4 determining which are refined inertially arbitrary, spectrally arbitrary, or inertially arbitrary.

2. Technical definitions and lemmas for inertially arbitrary patterns. A sign pattern is an

order n matrix with entries in {+,−, 0}; a nonzero pattern has entries in {∗, 0}. The qualitative class of a

sign pattern A, denoted Q(A), is the set of all real matrices A such that sgn (Aij) = sgn (Aij). Likewise the

qualitative class of a nonzero pattern A consists of all the real matrices A with Aij nonzero if and only if

Aij 6= 0. A zero pattern A is a matrix with entries in {~, 0}; Q(A) is the set of real matrices A such that

Aij = 0 implies Aij = 0. We refer to the ~ entries of A as the nonzero entries of the pattern, even though

a matrix A ∈ Q(A) may have a zero in that position.

A pattern A realizes a polynomial p(x) if there exists a matrix A ∈ Q(A) such that the characteristic

polynomial of A is p(x), and A is spectrally arbitrary if A realizes all monic polynomials of degree n with real

coefficients. The inertia of an order n matrix A, denoted i(A), is the ordered tuple i(A) = (n+, n−, n0) where

n+ (resp. n−, n0) is the number of eigenvalues of A with positive real part (resp. negative and zero). The

refined inertia of a matrix A, ri(A) = (n+, n−, nz, ni) includes ni, the number of the eigenvalues of A that

are purely imaginary, and nz, the number of eigenvalues of A that are zero. Note that nz + ni = n0. A can

realize an inertia (resp. refined inertia) a if there exists an A ∈ Q(A) such that i(A) = a (resp. ri(A) = a).

A pattern A is inertially arbitrary if A can realize all inertias (n1, n2, n3) with n1 +n2 +n3 = n. Likewise, A
is refined inertially arbitrary if A can realize all refined inertias (n1, n2, n3, n4) where n1 +n2 +n3 +n4 = n.

Note that for nonzero patterns and zero patterns, if A can realize the inertia (n+, n−, n0), then the reversal

(n−, n+, n0) can also be realized by A by taking the negative of the matrix used to realize (n+, n−, n0). Since

we will be focusing on zero patterns, when considering inertias, we will restrict to inertias with n+ ≥ n−.

A matrix A (or pattern) of order n is irreducible if there does not exist a permutation matrix P , such

that PAP−1 is a block triangular matrix, with two or more non-empty diagonal blocks. We will focus on

irreducible patterns since the eigenvalues of a reducible matrix can be obtained from its irreducible blocks.

As noted in the concluding comments, it may be worth considering reducible patterns in future work.

Note that any pattern A of order n can be represented by a corresponding digraph D on n vertices:

A is the adjacency matrix of the digraph D = D(A) with vertex set {vi|1 ≤ i ≤ n} and arc set E(D) =

{(vi, vj)|Ai,j 6= 0}. Note that A is irreducible if and only if D(A) is strongly connected (see e.g. [2, Theorem

3.2.1]). Furthermore, if A is a pattern and AT is the transpose of A with digraphs D and DT , respectively,

DT is obtained from D by reversing all the arcs. Two patterns A and B are equivalent if B can be obtained

from A via permutation similarity and/or transposition. The underlying graph G of a digraph D has vertex

set V (G) = V (D) and edge set E(G) = {{vi, vj}|(vi, vj) ∈ E(D)}.

If D(A) has a cycle (vi1 , vi2), (vi2 , vi3), . . . , (vik , vi1) and A = [aij ] ∈ Q(A), then the associated cycle

product is (−1)k−1avi1 ,vi2avi2 ,vi3 · · · avik ,vi1 . A composite cycle of length k is a set of vertex disjoint cycles

with lengths summing to k (with an associated cycle product being the product of the cycle products of

the individual cycles). Note that a composite cycle C could consist of only a single cycle; in this case, we

sometimes call C a proper cycle. A 1-cycle is an arc from a vertex back to itself; this arc is often called a
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loop. We will use the following fact (see, for example, [2, Section 9]):

Lemma 2.1. Given A ∈ Q(A), if Ek is the sum of all the composite cycle products of length k in D(A),

then the characteristic polynomial of A is

pA(x) = xn − E1x
n−1 + E2x

n−2 + · · ·+ (−1)nEn.

Example 2.2. The pattern

Cn =



~ ~ 0 · · · 0

~ 0 ~
. . .

...

~ 0 0
. . . 0

...
...

. . .
. . . ~

~ 0 · · · 0 0


is known to be spectrally arbitrary for all n ≥ 2, since it is the pattern of a companion matrix (see, e.g., [3]).

One could use a matrix realization with ones on the superdiagonal, along with Lemma 2.1 to verify Cn can

obtain every characteristic polynomial of degree n.

We use the following lemmas to develop Theorem 6.3, a main result of Section 6. The first lemma was

observed in [14, Lemma 20]. Further necessary conditions on the coefficients of a characteristic polynomial

based on inertia can be found in [6, Lemma 1].

Lemma 2.3. [14, Lemma 20] If a pattern A of order n is inertially arbitrary, then D(A) must have a

composite k-cycle for each k, 1 ≤ k ≤ n.

Proof. It is enough to observe that if A has inertia (0, n, 0), then the characteristic polynomial of A has

all positive coefficients. Thus, the result follows from Lemma 2.1.

The next lemma indicates that the digraph of refined inertially arbitrary patterns require a proper 2-

cycle, not merely a composite 2-cycle, as observed by Cavers and Fallat in [3, Cor. 2.8]). While Cavers and

Fallat used the refined inertia (0, 0, a, b) with b = 2 in their hypothesis, we observe that for any b ≥ 2, if

A ∈ A has refined inertia (0, 0, a, b), then D(A) has a 2-cycle. We include the argument for completeness.

Lemma 2.4. If a pattern A allows refined inertia (0, 0, a, b) with b ≥ 2, then D(A) has a proper 2-cycle.

Proof. Suppose A ∈ A has refined inertia (0, 0, n − 2c, 2c) for some c ≥ 1. In particular, suppose A

has nonzero eigenvalues ±`1i,±`2i, . . . ,±`ci. Note that the trace of A is zero since it is the sum of the

eigenvalues. If pA(x) = xn − E1x
n−1 + E2x

n−2 + · · · + (−1)nEn, then since E2 is the sum of all products

of two eigenvalues, E2 =
c∑

k=1

`2k > 0. By Lemma 2.1, E2 is also the sum of the signed composite 2-cycles, so

E2 =
∑
k<j

akkajj −
∑
k<j

akjajk. If D(A) has no proper 2-cycles, then

2E2 = 2
∑
k<j

akkajj = (tr(A))2 −
∑

a2
kk = −

∑
a2
kk ≤ 0.

But this would contradict the fact that E2 > 0. Thus, D(A) must have a proper 2-cycle.

In the next lemma, we note that if the digraph of a pattern has n loops, then the pattern is inertially

arbitrary. A pattern B is a superpattern of a pattern A if Bij = 0 implies Aij = 0. A superpattern B is a
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proper superpattern of A if B 6= A. Note that if A is allows an eigenvalue property, then any superpattern

of A will also allow that property. The following lemma is an example for the property of being inertially

arbitrary.

Lemma 2.5. If A is pattern of order n with ~ entries in all its diagonal positions, then A is inertially

arbitrary.

Proof. In this case, A is a superpattern of the reducible diagonal pattern which is inertially arbitrary.

3. An inertially arbitrary pattern without a 2-cycle. Unlike for nonzero patterns [4, Lemma 2.1],

and sign patterns [5, Lemma 5.1], the digraph of an irreducible inertially arbitrary zero pattern does not

require a proper 2-cycle, as we will see in Theorem 3.1. For n ≥ 3, let

An =



~ ~ 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . ~ ~ 0

0
. . .

. . . ~ ~
~ 0 · · · 0 0


.

Theorem 3.1. For n ≥ 3, the pattern An is inertially arbitrary but not refined inertially arbitrary.

Proof. By Lemma 2.4, An is not refined inertially arbitrary. Let

A = A(a1, a2, . . . , an−1, c) =



a1 1 0 · · · 0

0 a2 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . an−1 1

c 0 · · · 0 0


.

By cofactor expansion along row n, we see that the characteristic polynomial of A is pA(x) = f(x)− c with

f(x) = x(x−a1)(x−a2) · · · (x−an−1). Note that f(0) = 0. Further A(a1, a2, . . . , an−1, 0) is upper triangular

and hence has eigenvalues a1, a2, . . . , an−1 and 0. Thus, An can realize any inertia (n+, n−, n0) with n0 ≥ 1.

To obtain the remaining inertias, we use the idea that if you take a polynomial function with distinct

roots, with one root at zero, and shift it down slightly, then the resulting function will have distinct nonzero

roots. The slope of the original polynomial at origin will determine if you gained a positive or negative root.

In particular, let A(c) = A(d1, d2, . . . , dn−1, c) be a realization of A with distinct dk, 1 ≤ k ≤ n−1, such that

i(A(0)) = (a, b, 1) for some a, b ≥ 0. Then pA(0)(x) = f(x) and f ′(0) 6= 0 since 0 is not a double root of f(x).

In this case, without loss of generality, assume f ′(0) > 0. Choose ε > 0 such that ε < min{|f(x)| : f ′(x) = 0}.
Since pA(ε)(x) = f(x) + ε, we have i(A(ε)) = (a+ 1, b, 0) and i(A(−ε)) = (a, b+ 1, 0). Thus, An can realize

any inertia (n+, n−, n0) with n0 = 0.

Remark 3.2. The pattern in Theorem 3.1 is an order n example of a zero pattern that is inertially

but not refined inertially arbitrary. In [3], Cavers and Fallat presented an order 4 zero pattern N with this

property. In Section 7, we provide some other order 4 zero patterns with this property.

Remark 3.3. The inertially arbitrary pattern in Theorem 3.1 is minimal in that if any of the ~ entries

are replaced by 0, then the resulting pattern would no longer be an inertially arbitrary pattern. In particular:
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if a nonzero entry on the n-cycle was set to zero, then the resulting digraph would have no composite n-

cycle; and replacing any nonzero on the diagonal with zero would result in a digraph that has no composite

(n− 1)-cycle. In either case, the resulting pattern could not be inertially arbitrary by Lemma 2.3.

4. Refined inertially arbitrary path patterns. In this section, we explore irreducible patterns

whose underlying graph is a path. In this case, the largest cycle in the graph is a 2-cycle. In particular,

the digraph of such a pattern must include (n − 1) 2-cycles (for irreducibility) and at least one loop (by

Lemma 2.3). We characterize which of these patterns with 2n − 1 nonzero entries are refined inertially

arbitrary.

Given 1 ≤ α ≤ n, let

Pn,α =



0 ~ 0 · · · 0

~ 0 ~ · · ·
...

0 ~ ~
. . . 0

... 0
. . . 0 ~

0 · · · 0 ~ 0


be the order n pattern with 2n− 1 nonzero entries such that the nonzero diagonal element is in row α. Note

that Pn,α is not spectrally arbitrary since it does not allow a characteristic polynomial with the coefficient

of xn−1 zero while the coefficient of xn−3 is nonzero. For example, there is no matrix A ∈ Q(Pn,α) with

characteristic polynomial xn + xn−3.

We use the following concept:

Definition 4.1. Suppose B is an order n real matrix. Let α1, α2, . . . , αn be a rearrangement of the

elements of {1, . . . , n}, and B [{α1, . . . , αk}] denote the principal submatrix in rows and columns α1, . . . , αk
of B. A sign pattern A allows a nested sequence of properly signed principal minors (abbreviated to a

properly signed nest) if there exist B ∈ Q(A) and α1, . . . , αn, such that

sgn(det(B [{α1, . . . , αk}])) = (−1)k for k = 1, . . . , n.

In this case, we refer to [{α1, . . . , αn}] as a properly signed nest of B.

Example 4.2. Define Pn,α to be the matrix with pattern Pn,α having 1’s on the subdiagonal and −1’s

on the remaining n nonzero positions. As noted in [15, Example 2], Pn,1 has a properly signed nest, namely

[{1, 2, 3, . . . , n}].

Lemma 4.3. [13, Theorem 2.1] If A is an order n sign pattern that allows a properly signed nest, then

A allows inertias (n, 0, 0) and (0, n, 0).

Theorem 4.4. The pattern Pn,1 is refined inertially arbitrary for all n ≥ 1.

Proof. Note that for n ≤ 2, Pn,1 = Cn, the pattern in Example 2.2. Hence, it is refined inertially

arbitrary. For n > 2, note that

Pn,1 =

[
Pn−2,1 Q
S T

]
with S =

[
0 · · · 0 ~
0 · · · 0 0

]
, Q = ST , and T =

[
0 ~
~ 0

]
. Note that the matrices

[
0 1

1 0

]
,

[
0 0

1 0

]
, and[

0 −1

1 0

]
all have the pattern T , so T can realize the refined inertiasW = {(1, 1, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2)}.
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T does not allow the refined inertias (2, 0, 0, 0) or (1, 0, 1, 0). Let P ′n,1 be the reducible subpattern of Pn,1 with

S = 0. By induction, P ′n,1 (and hence, Pn,1) can realize any refined inertia of the form (a, b, c, 2d)+(x, y, z, w),

such that a+ b+ c+ 2d = n− 2 and (x, y, z, w) ∈W . Thus, P ′n,1 can realize all refined inertias of the form

(α, β, γ, 2δ), where α + β + γ + 2δ = n, and either α, β ≥ 1, or γ ≥ 2, or δ ≥ 1. This means that we have

shown that P ′n,1 allows every refined inertia except possibly (n, 0, 0, 0) and (n− 1, 0, 1, 0), up to reversal.

By Example 4.2 and Lemma 4.3, Pn,1 allows refined inertia (0, n, 0, 0) and its reversal (n, 0, 0, 0). Consider

the reducible subpattern of Pn,1 with entry (n−1, n) set to zero. Lemma 4.3 implies that Pn,1 allows inertias

(n− 1, 0, 1, 0) and (0, n− 1, 1, 0). Thus, by induction Pn,1 is refined inertially arbitrary.

Lemma 4.5. Pn,α does not allow a properly signed nest if n is odd, and α is even.

Proof. Suppose n is odd, and α is even. Then, Pn,α has no nonzero transversal, that is, D(Pn,α) has

no composite n-cycle. In this case, det(P ) = 0 for each P ∈ Pn,α. Hence, Pn,α does not allow a properly

signed nest.

Remark 4.6. Note that

if R =

 0 1

···

1 0

 and e = [0, . . . , 0, 1] , then Pn,n−1 =

[
RPn−1,1R −eT

e 0

]
.

Additionally, Pn,α is equivalent to Pn,n−α+1, since Pn,α = RPn,n−α+1R.

Lemma 4.7. P = Pn,n−1 has a properly signed nest if and only if n is even. Further, [{n − 1, n −
2, . . . , 1, n}] is a properly signed nest of P if n is even.

Proof. By Lemma 4.5, if Pn,n−1 allows a properly signed nest, then n must be even. Note that P2,1

allows a properly signed nest by Example 4.2. Suppose that n is even, and n > 2. The matrix Pn−1,1 has a

properly signed nest as noted in Example 4.2, so det(Pn−1,1) < 0, since n−1 is odd. Thus, det(RPn−1R) < 0

and RPn−1R has the properly signed nest [{n − 1, n − 2, . . . , 2, 1}]. By Remark 4.6, it is enough to show

that det(Pn,n−1) > 0. By cofactor expansion on the first column,

det(Pn,n−1) = −det





−1 0 0 0 · · · 0

1 0 −1
. . .

. . .
...

0 1
. . .

. . .
. . . 0

0
. . .

. . . 0 −1 0
...

. . .
. . . 1 −1 −1

0 · · · 0 0 1 0




= det(Pn−2,n−3).

It follows by induction that det(Pn,n−1) > 0. Hence, Pn,n−1 has a the properly signed nest [{n − 1, n −
2, . . . , 1, n}].

Lemma 4.8. Let P = Pn,α. Then P allows a properly signed nest if and only if n is even or α is odd.

In this case, [{α, α− 1, α− 2, . . . , 1, α+ 1, α+ 2, . . . , n}] is a properly signed nest of Pn,α.

Proof. By Lemma 4.5, α must be odd if n is odd. Suppose that either n is even, or n is odd and α is

odd. Observe that if n is even and α is even, Pn,α is equivalent to Pn,n−α+1, and n − α + 1 is odd. Thus,

we may assume that α is odd. The case when α = 1 is covered by Theorem 4.4 and Example 4.2. The case

when α = n− 1 is covered by Lemma 4.7.
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Suppose 1 < α < n− 1. We claim that [{α, α− 1, α− 2, . . . , 1, α+ 1, α+ 2, . . . , n}] is a properly signed

nest for Pn,α. By induction, it is enough to show that

sgn(det(Pn,α)) = − sgn(det(Pn−1,α)).

By cofactor expansion along the last column of Pn,α,

det(Pn,α) = det

([
Pn−2,α ∗

0 1

])
= det(Pn−2,α).

Since Pn−1,α has a properly signed nest,

sgn(det(Pn−2,α)) = sgn(det(Pn,α)) = − sgn(det(Pn−1,α)).

Thus, Pn,α has a properly signed nest, and [{α, α− 1, α− 2, . . . , 1, α+ 1, α+ 2, . . . , n}] is a properly signed

nest for Pn,α.

Theorem 4.9. Suppose n ≥ 1. Then Pn,α is refined inertially arbitrary if and only if n is even or α is

odd.

Proof. For both n = 1 and n = 2, Pn,α = Cn, which are both spectrally arbitrary. Let n = k for some

k ≥ 3 and assume that the claim is true for all patterns Pm,α with m ≤ k − 1 and 1 ≤ α ≤ m. First note

that we can assume that α > 1 by Theorem 4.4. Further, we can assume that α < n − 1 since Pn,α is

equivalent to Pn,n−α+1 as noted in Remark 4.6. Note, Pn,α =

[
Pn−2,α Q
S T

]
, with Q,S, and T as defined

in the proof of Theorem 4.4. As in the proof of Theorem 4.4, T can realize the refined inertias (1, 1, 0, 0),

(0, 0, 2, 0), and (0, 0, 0, 2). Replacing Q with a zero matrix, the resulting block triangular pattern can be

used to inductively show that Pn,α allows all refined inertias, except possibly (n, 0, 0, 0) and (n − 1, 0, 1, 0)

and their reversals. By Lemmas 4.3 and 4.8, Pn,α allows (n, 0, 0, 0). If α is odd, we can set entry (n, n− 1)

to be zero to obtain a block triangular subpattern of Pn,α with blocks Pn−1,α and [0]. Hence, inductively,

Pn,α allows refined inertia (n − 1, 0, 1, 0). If n is even and α is even, setting entry (2, 1) to be zero gives a

block triangular pattern with blocks [0] and Pn−1,α−1 which inductively allows refined inertia (n− 1, 0, 1, 0).

Thus, Pn,α is refined inertially arbitrary.

It may be interesting to characterize which superpatterns of Pn,α are refined inertially arbitrary. When

n is odd and α is even, then adding more loops to even positions, and only even positions, will not produce a

refined inertially arbitrary pattern since such a pattern has zero determinant, as in Lemma 4.5. In the next

section, we explore some superpatterns that are spectrally arbitrary, and hence, refined inertially arbitrary.

5. Superpatterns of Pn,α. In the previous section, we demonstrated that while the path patterns with

one loop are not spectrally arbitrary, some are refined inertially arbitrary. Inserting exactly one additional

~ in some Pn,α patterns can produce a spectrally arbitrary superpattern, as will be demonstrated in this

section.

A useful technique is the nilpotent-centralizer method introduced in [11]. While this technique was

introduced for sign patterns, it also applies to the zero patterns we have been discussing, as noted in [10] and

described in the next theorem. A matrix N is nilpotent if Nk = 0 for some positive integer k. A nilpotent

matrix has index k if k is the smallest positive integer such that Nk = 0. The notation A ◦ B represents

the Hadamard product of A and B. We use the fact that an entry of A ◦ B is nonzero if and only if the

corresponding entries of both A and B are nonzero.
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Theorem 5.1. [11] Let A be an order n nilpotent matrix of index n with pattern A. If the only matrix

B in the centralizer of A satisfying BT ◦ A = 0 is the zero matrix, then A is spectrally arbitrary.

For example, using the nilpotent-centralizer method, Garnett and Shader [11] demonstrated that

Tn =



~ ~ 0 · · · 0

~ 0
. . .

. . .
...

0
. . .

. . . ~ 0
...

. . . ~ 0 ~
0 · · · 0 ~ ~


is spectrally arbitrary for n ≥ 2. For n ≥ 3, let

Wn =



~ ~ 0 · · · · · · 0

~ 0
. . .

. . .
...

0
. . .

. . . ~
. . .

...
...

. . . ~ 0 ~ 0
...

. . . ~ ~ ~
0 · · · · · · 0 ~ 0


=

[
Tn−1 eT

e 0

]

with e = [0, . . . , 0, 1] .

Theorem 5.2. If n ≥ 3, then Wn is a spectrally arbitrary pattern.

Proof. Let n ≥ 3 and

M =



m1,1 m1,2 0 · · · 0

m2,1 0
. . .

. . .
...

0
. . .

. . . mn−3,n−2 0
...

. . . mn−2,n−3 0 mn−2,n−1

0 · · · 0 mn−1,n−2 mn−1,n−1


be the nilpotent matrix used in [11, Corollary 8] to show that Tn−1 is spectrally arbitrary. This means that

if A is a matrix in the centralizer of M with AT ◦ Tn−1 = 0, then A = 0. Note also that the ~ entries of

Tn−1 are nonzero in M .

Let N =

[
M eT

0 0

]
. Then N is a nilpotent matrix with pattern Wn. Since N is a proper Hessenberg

matrix, N has nilpotent index n (see, for example, [12, Theorem 7.4.4]).

Suppose B is a matrix such that BT ◦Wn = 0. Then B =

[
A y

x a

]
, for some x = [x1, x2, . . . , xn−2, 0],

y = [y1, y2, . . . , yn−2, 0]
T

, and a ∈ R, such that AT ◦ Tn−1 = 0. Suppose that B is in the centralizer of N .

We claim that B = 0. Observe that

NB =

[
MA+ eTx My + aeT

0 0

]
and BN =

[
AM AeT

xM xeT

]
.
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Let L be the principal submatrix of M consisting of the first n− 1 rows and columns. Since L has exactly

one transversal, L is nonsingular. With NB = BN , it follows that xM = 0, and hence, x = 0 since L is

nonsingular. Since x = 0, MA = AM , and since the only matrix A in the centralizer of M with AT ◦Tn−1 = 0

is 0, A = 0. This implies that My + aeT = 0. Ignoring the last row of this matrix equation gives us the

equation L[y1, . . . , yn−2]T = 0. Since L is invertible, we have y = 0. It follows that a = 0, and hence, B = 0.

Therefore, Wn is spectrally arbitrary for all n ≥ 3 by Theorem 5.1.

Remark 5.3. While Tn has a signing that is spectrally arbitrary [11], there is no signing of the nonzero

entries of Wn that is spectrally arbitrary. In particular, Wn has exactly one nonzero transversal, so each

matrix realization having zero as an eigenvalue requires a zero in one of the ~ positions.

6. Classifying patterns of order 3. By Lemma 2.3, if A is an order 3 irreducible pattern that is

inertially arbitrary, then D(A) must have at least one loop and either a proper two-cycle or another loop,

in order to have a composite 2-cycle. Hence, accounting for irreducibility, we have the following:

Lemma 6.1. If A is an irreducible inertially arbitrary zero pattern of order 3, then A must have at least

5 ~ entries.

The next result describes the irreducible spectrally arbitrary patterns of order 3 as demonstrated in [10].

Theorem 6.2. [10, Corollary 3.11] Given A is an irreducible zero pattern of order 3, then A is spectrally

arbitrary if and only if A is equivalent to a superpattern of ~ ~ 0

~ 0 ~
~ 0 0

 ,
 ~ ~ 0

0 0 ~
~ ~ 0

 ,
 ~ ~ 0

~ 0 ~
0 ~ ~

 , or

 ~ ~ 0

~ ~ ~
0 ~ 0

 .
Next we classify the irreducible patterns of order 3 that are refined inertially arbitrary.

Theorem 6.3. Given A is an irreducible order 3 pattern, then A is refined inertially arbitrary if and

only if A is equivalent to a superpattern of either ~ ~ 0

~ 0 ~
~ 0 0

 ,
 ~ ~ 0

0 0 ~
~ ~ 0

 , or

 ~ ~ 0

~ 0 ~
0 ~ 0

 .
Proof. Suppose A is refined inertially arbitrary. If A is irreducible, then A is a superpattern of either

H1 =

 0 ~ 0

0 0 ~
~ 0 0

 , or H2 =

 0 ~ 0

~ 0 ~
0 ~ 0

 .
By Lemma 2.4, D(A) must have a proper 2-cycle and a loop. If A is a superpattern pattern of H1, then A is

equivalent to a superpattern of one of the first two patterns in Theorem 6.2. Suppose A is a superpattern of

H2. Then A is equivalent to a superpattern of P3,1 or P3,2. If A is a superpattern of P3,1 then A is refined

inertially arbitrary by Theorem 4.4. If A = P3,2 then A is not refined inertially arbitrary by Theorem 4.9.

If A is a proper superpattern of P3,2, then A is one of the first two patterns in Theorem 6.2, or A is a

superpattern of P3,1.

Corollary 6.4. If A is an irreducible refined inertially arbitrary pattern of order 3 that is not spectrally

arbitrary, then A is equivalent to P3,1.
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Theorem 6.5. If an irreducible zero pattern of order 3 is inertially arbitrary, but not refined inertially

arbitrary, then it is equivalent to

A3 =

 ~ ~ 0

0 ~ ~
~ 0 0

 .
Proof. Let A be inertially arbitrary. By Lemma 2.1, A has an ~ entry on the main diagonal. Note

that A 6= P3,2 since any matrix with pattern P3,2 is singular. If A is a superpattern of P3,1 or a proper

superpattern of P3,2, then A is refined inertially arbitrary as noted in the previous proof. Thus, if A is not

refined inertially arbitrary, then A is equivalent to a superpattern of the pattern B1 defined in the proof

of Theorem 6.3. If D(A) has a proper 2-cycle, then A will be equivalent to a superpattern of a spectrally

arbitrary pattern, namely one of the first two patterns in Theorem 6.2. Thus, D(A) does not have a proper

2-cycle and hence, by Lemma 2.1, A must have two ~ entries on the main diagonal. Note that A does not

have three ~ entries on the diagonal, otherwise it would be refined inertially arbitrary as noted in Lemma 2.5.

Thus, D(A) consists of a proper 3-cycle with two loops.

Corollary 6.6. Given A is an irreducible order 3 pattern, A is inertially arbitrary if and only if A is

equivalent to a superpattern of ~ ~ 0

~ 0 ~
~ 0 0

 ,
 ~ ~ 0

0 0 ~
~ ~ 0

 ,
 ~ ~ 0

~ 0 ~
0 ~ 0

 , or

 ~ ~ 0

0 ~ ~
~ 0 0

 .
Proof. The result follows from Theorem 6.3 and Theorem 6.5.

7. Order 4 refined inertially arbitrary patterns. In this section, we determine all refined inertially

arbitrary order 4 zero patterns with the least possible number of ~ entries. In general, it is an open question

as to the minimum number of ~ entries in an inertially or a refined inertially arbitrary pattern. It is

known [3] that an irreducible spectrally arbitrary pattern of order n requires at least 2n− 1 nonzero entries.

In Lemma 7.1, we determine that an order 4 refined inertially arbitrary pattern requires at least seven ~
entries. Then, in Theorem 7.4, we determine which of the irreducible patterns with seven ~ entries are

refined inertially arbitrary.

Lemma 7.1. If A is an irreducible refined inertially arbitrary pattern of order 4, then A must have at

least seven ~ entries.

Proof. Suppose A is an irreducible refined inertially arbitrary pattern of order 4. By Lemma 2.3 and

Lemma 2.4, D = D(A) must have a loop and a proper 2-cycle. If D had only 2-cycles and no proper cycles

of higher order, then the underlying graph of D is a tree (having 3 edges). Thus, since A is irreducible, D

would have at least 3× 2 + 1 = 7 edges, including at least one loop. Therefore, assume that D has a proper

k-cycle for some k > 2.

Suppose A has less than seven ~ entries.

First suppose that D has a proper 4-cycle. Since D also has a proper 2-cycle and a loop, A has at least

six nonzero entries and hence exactly six nonzero entries. If the loop is incident to a proper 2-cycle, then

D does not have a composite 3-cycle and so would fail to be inertially arbitrary by Lemma 2.3. Thus, the

loop is not incident to the 2-cycle in D. The resulting pattern does not allow refined inertia (0, 2, 0, 2). In

particular, if A ∈ Q(A) has inertia (0, 2, 0, 2), then the characteristic polynomial of A is of the either of the
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form

(x2 + 2αx+ α2 + β2)(x2 + ω2) = x4 + 2αx3 + (α2 + β2 + ω2)x2 + 2αω2x+ (α2 + β2)ω2

for some positive real numbers α and ω, and non-negative real number β, or of the form

(x+ γ)(x+ κ)(x2 + ω2) = x4 + (γ + κ)x3 + (γκ+ ω2)x2 + (γ + κ)ω2x+ γκω2,

for some positive real numbers γ, κ and ω. However, the only composite 3-cycle in D is obtained by combining

the loop with the 2-cycle, and hence by Lemma 2.1, the coefficient of x must be the product of the coefficients

of x3 and x2. This would imply that 2α(α2 + β2) = 0 in the first case, and (γ + κ)(γκ) = 0 in the latter

case. Both of these would be contradictions since α, γ and κ are positive.

Suppose that D does not have a proper 4-cycle, but instead has a proper 3-cycle. Assuming A has less

than seven ~ entries, then D can not have two proper 3-cycles as well as a loop and a proper 2-cycle. Thus,

D must have exactly one proper 3-cycle and since A is irreducible, D must have the digraph in Figure 1,

with the loop placed so that D has a composite 4-cycle (as required by Lemma 2.3). However, in this case,

if the coefficient of x3 is zero in the characteristic polynomial of A ∈ Q(A), then det(A) = 0. This would

Figure 1.

imply that A does not allow refined inertia (0, 0, 0, 4). Therefore, an irreducible refined inertially arbitrary

pattern must have at least seven ~ entries.

Figure 2. Digraphs of spectrally arbitrary patterns in C4.

Let Cn be the set of zero patterns with a digraph D satisfying:

1. D has exactly one k-cycle for each k, 1 ≤ k ≤ n,

2. D has a directed Hamilton path, and

3. each proper cycle of D contains exactly one arc not on the Hamilton path.

Figure 2 lists the digraphs corresponding to the patterns in C4. Each of these patterns are spectrally

arbitrary:

Lemma 7.2. [10, Theorem 2.2] If A is a pattern in Cn, then A is spectrally arbitrary.
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Remark 7.3. The first digraph in Figure 3 corresponds to the spectrally arbitrary pattern Y4(3, 1) from

[10]. The second digraph in Figure 3 has the same cycle adjacency structure as Y4(3, 1), and hence by

Lemma 2.1, it is also spectrally arbitrary.

Figure 3. Digraphs of Y4(3, 1) and a related spectrally arbitrary pattern.

The next theorem references the tables in the Appendix.

Theorem 7.4. If A is an irreducible order 4 pattern with 7 nonzero entries, then the following hold:

1. A is spectrally arbitrary if and only if A is equivalent a pattern with a digraph in Figure 2 or Figure 3.

2. A is refined inertially arbitrary, but not spectrally arbitrary, if and only if A is equivalent to P4,1,

P4,2, or a pattern in Table 1.

3. A is inertially arbitrary, but not refined inertially arbitrary, if and only if A is equivalent to A4, a

pattern in Table 2 or a pattern in Table 3.

Proof. The tables in the Appendix, along with Lemma 7.2, Remark 7.3, and Theorem 4.9, provide

justification for part of the characterization. That the patterns in (2) are not spectrally arbitrary and the

patterns in (3) are not refined inertially arbitrary will be noted in the casework as we justify the converse of

the characterization.

Let A be an irreducible inertially arbitrary pattern of order 4 with 7 ~ entries. Then the digraph of A

has at least one loop and at least one 2-cycle by Lemma 2.3.

Case 1: Suppose D(A) has exactly one loop. Then D(A) has a proper 2-cycle.

(A) Suppose D(A) has exactly one proper 2-cycle.

(I) Suppose the loop is incident to the proper 2-cycle. By Lemma 2.1, D(A) must have a composite

4-cycle in order to realize inertia (4, 0, 0).

(a) Suppose D(A) has a proper 4-cycle.

(i) Suppose the proper 2-cycle shares an arc with a proper 4-cycle. Then A is in C4 and A
is spectrally arbitrary by Lemma 7.2. These are the first four patterns from Figure 2.

(ii) Suppose the proper 2-cycle does not share an arc with a proper 4-cycle. Then A is

equivalent to B1 in Table 2. B1 is not refined inertially arbitrary since it does not allow

the refined inertia (0, 0, 0, 4) since there exists a superpattern (see [3, Example 2.16]) of

this pattern that does not allow refined inertia (0, 0, 0, 4).

(b) Suppose D(A) has no proper 4-cycle. Then A is equivalent to B2 in Table 2. B2 does not

realize the refined inertia (0, 0, 0, 4) since for any A ∈ Q(B2), if the trace of A is zero, then

det(A) = 0.

(II) Suppose the loop of D(A) is not incident to the 2-cycle.

(a) Suppose D(A) has a proper 4-cycle.

(i) Suppose the proper 2-cycle shares an arc with a 4-cycle. Then A is in C4 and A is

spectrally arbitrary by Lemma 7.2. These correspond to the second four digraphs in

Figure 2.
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Figure 4. Digraphs of patterns that are not inertially arbitrary.

(ii) Suppose the proper 2-cycle does not share an arc with a 4-cycle. Then A is equivalent to

B3 in Table 2. B3 does not allow refined inertia (0, 0, 0, 4) and so is not refined inertially

arbitrary. In particular, one can check that if A ∈ Q(B3) has characteristic polynomial

p(x) = x4 + E2x
2 + E4, with E2 and E4 nonzero, then E2 and E4 must have opposite

signs.

(b) Suppose D(A) has no proper 4-cycle. Then A is equivalent to either B4 or B5 in Table 2.

There is no matrix A ∈ Q(B4) ∪Q(B5) with refined inertia (0, 0, 0, 4) since if the trace of A

is zero, then det(A) = 0. Thus, these two patterns are not refined inertially arbitrary.

(B) Suppose D(A) has exactly two proper 2-cycles.

(I) Suppose both proper 2-cycles are incident to the loop. Considering A is irreducible and has seven

nonzero entries, A would need to be equivalent to one of the first two patterns in Figure 4. But

the digraph of first pattern has no composite 3-cycle and the digraph of the second pattern has

no composite 4-cycle. Thus, by Lemma 2.3, neither of these patterns are inertially arbitrary.

(II) Suppose D(A) has one proper 2-cycle incident to the loop and the proper 2-cycles are incident to

each other. Since D(A) must have a composite 4-cycle, A must be equivalent to R1 in Table 1

or B6 Table 2. R1 is not spectrally arbitrary since if A ∈ Q(R1) with trace zero, then the sum

of the composite 3-cycles is zero. B6 is not refined inertially arbitrary, since if A ∈ Q(B6) with

trace zero, then det(A) = 0.

(III) Suppose one proper 2-cycle of D(A) is incident to the loop and the proper 2-cycles are not incident

to each other. Then A is equivalent to one of the four patterns R2,R3,R4,R5 in Table 1. The

patterns R2 and R5 are not spectrally arbitrary since if A ∈ Q(R2) ∪ Q(R5), with the sum of

the composite 2-cycles zero, then det(A) 6= 0. The pattern R3 is not spectrally arbitrary since

if A ∈ Q(R3) has trace zero, then the sum of the composite 3-cycles is zero. The pattern R4

is not spectrally arbitrary since if A ∈ Q(R4) with trace zero, det(A) 6= 0, and the sum of the

composite 2-cycles is zero, then det(A) < 0.

(IV) Suppose both proper 2-cycles are not incident to the loop. Then, since A is irreducible, D(A)

must be the third or fourth digraph in Figure 4. The fourth digraph has no composite 4-cycle, so

its corresponding pattern is not inertially arbitrary by Lemma 2.3. One can check that the third

digraph corresponds to a pattern that does not allow inertia (2, 0, 2).

(C) Suppose D(A) has three proper 2-cycles. In this case, the underlying graph of D(A) must be a tree.

If the tree is a star, then the digraph will have no composite 4-cycle, thus the tree must be a path. In

this case, A is equivalent to either the refined inertially arbitrary pattern P4,1 or P4,2.

Case 2: Suppose D(A) has exactly two loops. Note that there can be at most one proper 2-cycle in this

case, since there are only seven arcs and the digraph must be strongly connected.

(A) Suppose D(A) has a proper 2-cycle, and it is incident to both loops. Since D(A) must have a composite

3-cycle, A will be equivalent to B7 in Table 2. In this case, if A ∈ Q(B7) and the sum of the composite

3-cycles of A is zero, then det(A) = 0. Thus, A does not allow refined inertia (0, 0, 0, 4).
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(B) Suppose D(A) has a proper 2-cycle, and it is incident to exactly one loop. Then A is equivalent to

either one of the spectrally arbitrary patterns in Figure 3 or the pattern R6 in Table 1. If A ∈ Q(R6),

and if the characteristic polynomial of A is x4 + c, then c ≥ 0. Thus, R6 is not spectrally arbitrary.

(C) Suppose D(A) has a proper 2-cycle, and it is not incident to either loop. Then A is equivalent to either

R7 in Table 1 or B8 in Table 2. If A ∈ Q(R7) with trace zero, then the sum of the composite 3-cycles

is zero too and so R7 is not spectrally arbitrary. If A ∈ Q(R8) with trace zero and the sum of the

composite 3-cycles is zero, then the sums of the composite 2-cycles and 4-cycles cannot both be positive.

Thus, R8 does not allow refined inertia (0, 0, 0, 4).

(D) Suppose D(A) has no proper 2-cycle. Then A is not refined inertially arbitrary by Lemma 2.4.

(I) Suppose D(A) has a proper 4-cycle. Then D(A) will have exactly one proper 3-cycle. If only one

loop is incident to the proper 3-cycle, then D(A) is equivalent to one of the patterns J1 and J4 in

Table 3. If both loops are incident to the 3-cycle, then D(A) is equivalent to J2 or J3.

(II) Suppose D(A) has no proper 4-cycle. If both loops are incident to both 3-cycles, then D(A) has

no composite 4-cycle in which case A is not inertially arbitrary by Lemma 2.3. If both loops are

on one of the proper 3-cycles, then D(A) is equivalent to J5 in Table 3. If each 3-cycle is incident

to exactly one loop, then D(A) is equivalent to J6 in Table 3.

Case 3: Suppose D(A) has exactly three loops. Then A is equivalent to A4 and A is inertially arbitrary

but not refined inertially arbitrary by Theorem 3.1.

8. Concluding remarks. In Section 6, we characterized the refined inertially arbitrary patterns of

order three. In Section 7, we determined which of the sparse irreducible patterns of order 4 are spectrally

arbitrary, which are refined inertially arbitrary and which are simply inertially arbitrary. Characterizing all

irreducible refined inertially arbitrary patterns of order 4 is still an open problem. Such a project would be

of interest especially if it involved a development of new techniques to determine a refined inertially arbitrary

pattern. It would also be of interest to explore characteristics of reducible refined inertially arbitrary patterns.

These could be important for building irreducible patterns, since, for zero patterns, the eigenvalue properties

that a pattern allows are preserved for superpatterns.

9. Appendix. This appendix provides the data for Theorem 7.4. Table 1 lists digraphs of patterns

which are refined inertially arbitrary; for each pattern, we list specific matrices that realize the various

refined inertias. Since a pattern is preserved under matrix negation, we only list matrices having inertias

with n+ ≥ n−. Refined inertially arbitrary patterns P4,1 and P4,2 are not represented in Table 1, nor are

spectrally arbitrary patterns. Table 2 and Table 3 list digraphs of patterns which are inertially arbitrary

but not refined inertially arbitrary; for each pattern we list specific matrices that realize the various inertias.

This data is used in the proof of Theorem 7.4.

Table 1: Refined inertially arbitrary patterns.

Pattern Matrix Inertia

R1

[ 1 1 0 0; −1 0 1 0; 0 −2 0 1; −1 0 0 0] (4, 0, 0, 0)

[ -1 1 0 0; 1 0 1 0; 0 −2 0 1; 1 0 0 0] (3, 1, 0, 0)

[ 1 1 0 0; −1 0 1 0; 0 −1 0 1; 0 0 0 0] (3, 0, 1, 0)

[ -1 1 0 0; −1 0 1 0; 0 −1 0 1; −2 0 0 0] (2, 2, 0, 0)

[ -1 1 0 0; 1 0 1 0; 0 −1 0 1; 0 0 0 0] (2, 1, 1, 0)

[ 1 1 0 0; −1 0 1 0; 0 0 0 1; 0 0 0 0] (2, 0, 2, 0)

[ 1 1 0 0; −1 0 1 0; 0 −1 0 1; −1 0 0 0] (2, 0, 0, 2)

[ -1 1 0 0; 1 0 1 0; 0 0 0 1; 0 0 0 0] (1, 1, 2, 0)

[ -1 1 0 0; 1 0 1 0; 0 −1 0 1; 1 0 0 0] (1, 1, 0, 2)

[ 1 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 0 0] (1, 0, 3, 0)
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[ 1 1 0 0; 0 0 1 0; 0 −1 0 1; 0 0 0 0] (1, 0, 1, 2)

[ 0 1 0 0; −1 0 1 0; 0 1 0 1; 0 0 0 0] (0, 0, 4, 0)

[ 0 1 0 0; −1 0 1 0; 0 −1 0 1; 0 0 0 0] (0, 0, 2, 2)

[ 0 1 0 0; −1 0 1 0; 0 −1 0 1; −1 0 0 0] (0, 0, 0, 4)

R2

[ 2 1 0 0; −1 0 −1 0; 1 0 0 −2; 0 0 1 0] (4, 0, 0, 0)

[ -1 1 0 0; 1 0 −1 0; 1 0 0 −1; 0 0 1 0] (3, 1, 0, 0)

[ 1 1 0 0; 0 0 −1 0; 1 0 0 −2; 0 0 1 0] (3, 0, 1, 0)

[ -1 1 0 0; −1 0 −1 0; 1 0 0 −1; 0 0 1 0] (2, 2, 0, 0)

[ -1 1 0 0; −1 0 −2 0; 1 0 0 0; 0 0 1 0] (2, 1, 1, 0)

[ 1 1 0 0; −1 0 0 0; 1 0 0 0; 0 0 1 0] (2, 0, 2, 0)

[ 1 1 0 0; −1 0 −1 0; 1 0 0 −2; 0 0 1 0] (2, 0, 0, 2)

[ -1 1 0 0; 0 0 −1 0; 1 0 0 1; 0 0 1 0] (1, 1, 2, 0)

[ -1 1 0 0; −1 0 −2 0; 1 0 0 1; 0 0 1 0] (1, 1, 0, 2)

[ 1 1 0 0; 0 0 0 0; 1 0 0 0; 0 0 1 0] (1, 0, 3, 0)

[ 1 1 0 0; −1 0 1 0; 1 0 0 0; 0 0 1 0] (1, 0, 1, 2)

[ 0 1 0 0; 0 0 0 0; 1 0 0 0; 0 0 1 0] (0, 0, 4, 0)

[ 0 1 0 0; −1 0 0 0; 1 0 0 0; 0 0 1 0] (0, 0, 2, 2)

[ 0 1 0 0; −1 0 0 0; 1 0 0 −1; 0 0 1 0] (0, 0, 0, 4)

R3

[ 1 1 0 0; −1 0 1 0; 0 0 0 1; 1 0 −2 0] (4, 0, 0, 0)

[ -1 1 0 0; 1 0 −1 0; 0 0 0 1; 1 0 −2 0] (3, 1, 0, 0)

[ 1 1 0 0; −1 0 1 0; 0 0 0 1; 1 0 −1 0] (3, 0, 1, 0)

[ -1 1 0 0; −1 0 −1 0; 0 0 0 1; 1 0 −1 0] (2, 2, 0, 0)

[ -1 1 0 0; 1 0 −1 0; 0 0 0 1; 1 0 −1 0] (2, 1, 1, 0)

[ 1 1 0 0; −1 0 0 0; 0 0 0 1; 1 0 0 0] (2, 0, 2, 0)

[ 1 1 0 0; −1 0 0 0; 0 0 0 1; 1 0 −1 0] (2, 0, 0, 2)

[ -1 1 0 0; 1 0 0 0; 0 0 0 1; 1 0 0 0] (1, 1, 2, 0)

[ -1 1 0 0; 1 0 0 0; 0 0 0 1; 1 0 −1 0] (1, 1, 0, 2)

[ 1 1 0 0; 0 0 0 0; 0 0 0 1; 1 0 0 0] (1, 0, 3, 0)

[ 1 1 0 0; 0 0 0 0; 0 0 0 1; 1 0 −1 0] (1, 0, 1, 2)

[ 0 1 0 0; −1 0 −1 0; 0 0 0 1; 1 0 1 0] (0, 0, 4, 0)

[ 0 1 0 0; −1 0 0 0; 0 0 0 1; 1 0 0 0] (0, 0, 2, 2)

[ 0 1 0 0; −1 0 0 0; 0 0 0 1; 1 0 −1 0] (0, 0, 0, 4)

R4

[ 1 −1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 −2 0] (4, 0, 0, 0)

[ -1 1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 −2 0] (3, 1, 0, 0)

[ 2 −1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 −2 0] (3, 0, 1, 0)

[ -1 −1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 −1 0] (2, 2, 0, 0)

[ -1 1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 −1 0] (2, 1, 1, 0)

[ 1 −1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 −1 0] (2, 0, 2, 0)

[ 1 −1 0 0; 1 0 0 0; 0 0 0 1; 0 1 −1 0] (2, 0, 0, 2)

[ -1 −1 0 0; 1 0 −2 0; 0 0 0 1; 0 1 2 0] (1, 1, 2, 0)

[ -1 1 0 0; 1 0 0 0; 0 0 0 1; 0 1 −1 0] (1, 1, 0, 2)

[ 1 −1 0 0; 1 0 1 0; 0 0 0 1; 0 1 1 0] (1, 0, 3, 0)

[ 1 0 0 0; 1 0 0 0; 0 0 0 1; 0 1 −1 0] (1, 0, 1, 2)

[ 0 0 0 0; 1 0 0 0; 0 0 0 1; 0 1 0 0] (0, 0, 4, 0)

[ 0 −1 0 0; 1 0 0 0; 0 0 0 1; 0 1 0 0] (0, 0, 2, 2)

[ 0 −1 0 0; 1 0 0 0; 0 0 0 1; 0 1 −1 0] (0, 0, 0, 4)

R5

[ 2 −1 0 −1; 1 0 0 0; 1 0 0 −2; 0 0 1 0] (4, 0, 0, 0)

[ -1 1 0 −1; 1 0 0 0; 1 0 0 −1; 0 0 1 0] (3, 1, 0, 0)

[ 1 0 0 −1; 1 0 0 0; 1 0 0 −2; 0 0 1 0] (3, 0, 1, 0)

[ -1 −1 0 −1; 1 0 0 0; 1 0 0 −1; 0 0 1 0] (2, 2, 0, 0)

[ -1 −1 0 −2; 1 0 0 0; 1 0 0 0; 0 0 1 0] (2, 1, 1, 0)

[ 1 −1 0 0; 1 0 0 0; 1 0 0 0; 0 0 1 0] (2, 0, 2, 0)

[ 1 −1 0 −1; 1 0 0 0; 1 0 0 −2; 0 0 1 0] (2, 0, 0, 2)

[ -1 0 0 −1; 1 0 0 0; 1 0 0 1; 0 0 1 0] (1, 1, 2, 0)

[ -1 −1 0 −2; 1 0 0 0; 1 0 0 1; 0 0 1 0] (1, 1, 0, 2)

[ 1 0 0 0; 1 0 0 0; 1 0 0 0; 0 0 1 0] (1, 0, 3, 0)

[ 1 −1 0 1; 1 0 0 0; 1 0 0 0; 0 0 1 0] (1, 0, 1, 2)

[ 0 0 0 0; 1 0 0 0; 1 0 0 0; 0 0 1 0] (0, 0, 4, 0)

[ 0 −1 0 0; 1 0 0 0; 1 0 0 0; 0 0 1 0] (0, 0, 2, 2)

[ 0 −1 0 0; 1 0 0 0; 1 0 0 −1; 0 0 1 0] (0, 0, 0, 4)

R6

[ 1 −1 0 0; 1 0 1 0; 0 0 2 1; 0 1 0 0] (4, 0, 0, 0)

[ -1 1 0 0; 1 0 1 0; 0 0 2 1; 0 1 0 0] (3, 1, 0, 0)

[ 0 −1 0 0; 1 0 −1 0; 0 0 2 1; 0 1 0 0] (3, 0, 1, 0)

[ -1 −1 0 0; 1 0 −1 0; 0 0 0 1; 0 1 0 0] (2, 2, 0, 0)

[ -1 1 0 0; 1 0 0 0; 0 0 1 1; 0 1 0 0] (2, 1, 1, 0)

[ 0 −1 0 0; 1 0 −1 0; 0 0 1 1; 0 1 0 0] (2, 0, 2, 0)

[ 1 −1 0 0; 1 0 1 0; 0 0 1 1; 0 1 0 0] (2, 0, 0, 2)
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[ -1 0 0 0; 1 0 0 0; 0 0 1 1; 0 1 0 0] (1, 1, 2, 0)

[ -1 1 0 0; 1 0 1 0; 0 0 1 1; 0 1 0 0] (1, 1, 0, 2)

[ 0 0 0 0; 1 0 0 0; 0 0 1 1; 0 1 0 0] (1, 0, 3, 0)

[ 0 −1 0 0; 1 0 0 0; 0 0 1 1; 0 1 0 0] (1, 0, 1, 2)

[ 0 0 0 0; 1 0 0 0; 0 0 0 1; 0 1 0 0] (0, 0, 4, 0)

[ 0 −1 0 0; 1 0 0 0; 0 0 0 1; 0 1 0 0] (0, 0, 2, 2)

[ − 1
2 −2 0 0; 1 0 −1 0; 0 0 1

2 1; 0 1 0 0] (0, 0, 0, 4)

R7

[ 1 1 0 0; 0 1 1 0; 0 0 0 1; 1 0 −2 0] (4, 0, 0, 0)

[ -1 1 0 0; 0 2 1 0; 0 0 0 1; 1 0 −1 0] (3, 1, 0, 0)

[ 1 1 0 0; 0 1 1 0; 0 0 0 1; 1 0 −1 0] (3, 0, 1, 0)

[ -1 1 0 0; 0 −1 1 0; 0 0 0 1; −1 0 −1 0] (2, 2, 0, 0)

[ -1 1 0 0; 0 2 1 0; 0 0 0 1; 2 0 1 0] (2, 1, 1, 0)

[ 1 1 0 0; 0 1 1 0; 0 0 0 1; 0 0 0 0] (2, 0, 2, 0)

[ 1 1 0 0; 0 1 1 0; 0 0 0 1; 0 0 −1 0] (2, 0, 0, 2)

[ -1 1 0 0; 0 1 1 0; 0 0 0 1; 0 0 0 0] (1, 1, 2, 0)

[ -1 1 0 0; 0 1 1 0; 0 0 0 1; −1 0 −2 0] (1, 1, 0, 2)

[ 0 1 0 0; 0 1 1 0; 0 0 0 1; 0 0 0 0] (1, 0, 3, 0)

[ 0 1 0 0; 0 1 1 0; 0 0 0 1; 0 0 −1 0] (1, 0, 1, 2)

[ -1 1 0 0; 0 1 1 0; 0 0 0 1; −1 0 −1 0] (0, 0, 4, 0)

[ -1 1 0 0; 0 1 1 0; 0 0 0 1; −2 0 −2 0] (0, 0, 2, 2)

[ 0 1 0 0; 0 0 1 0; 0 0 0 1; −1 0 −2 0] (0, 0, 0, 4)

Table 2: Inertially arbitrary patterns with a proper 2-cycle.

Pattern Matrix Inertia

B1

[ 2 −1 2 0; 0 0 1 0; −2 0 0 1; 1 0 0 0] (4, 0, 0)

[ -1 −1 0 0; 0 0 1 0; 2 0 0 −1; 1 0 0 0] (3, 1, 0)

[ 1 −1 2 0; 0 0 1 0; −1 0 0 0; 1 0 0 0] (3, 0, 1)

[ -1 −1 −1 0; 0 0 1 0; −1 0 0 1; 1 0 0 0] (2, 2, 0)

[ -1 −1 0 0; 0 0 1 0; 1 0 0 0; 1 0 0 0] (2, 1, 1)

[ 1 0 −1 0; 0 0 1 0; 1 0 0 0; 1 0 0 0] (2, 0, 2)

[ -1 −1 0 0; 0 0 1 0; 1 0 0 −1; 1 0 0 0] (1, 1, 2)

[ 1 −1 −1 0; 0 0 1 0; 0 0 0 0; 1 0 0 0] (1, 0, 3)

[ 0 −1 −1 0; 0 0 1 0; 0 0 0 0; 1 0 0 0] (0, 0, 4)

B2

[ 8 1 0 0; −24 0 0 1; 0 2 0 0; 30 0 1 0] (4, 0, 0)

[ -1 1 0 0; 1 0 0 1; 0 1 0 0; −2 0 1 0] (3, 1, 0)

[ 1 1 0 0; −2 0 0 1; 0 0 0 0; 1 0 1 0] (3, 0, 1)

[ -1 1 0 0; −1 0 0 1; 0 −1 0 0; −1 0 1 0] (2, 2, 0)

[ -1 1 0 0; −1 0 0 1; 0 0 0 0; −2 0 1 0] (2, 1, 1)

[ 1 1 0 0; −1 0 0 1; 0 0 0 0; 0 0 1 0] (2, 0, 2)

[ -1 1 0 0; 0 0 0 1; 0 1 0 0; −2 0 1 0] (1, 1, 2)

[ 1 1 0 0; −1 0 0 1; 0 0 0 0; 1 0 1 0] (1, 0, 3)

[ 0 1 0 0; −1 0 0 1; 0 −1 0 0; 1 0 1 0] (0, 0, 4)

B3

[ 2 −1 0 0; 0 0 −1 2; 0 0 0 1; 2 −2 0 0] (4, 0, 0)

[ -1 −1 0 0; 0 0 −1 1; 0 0 0 1; 2 0 0 0] (3, 1, 0)

[ 1 −1 0 0; 0 0 −1 2; 0 0 0 1; 1 −1 0 0] (3, 0, 1)

[ -1 −1 0 0; 0 0 −1 −1; 0 0 0 1; −1 0 0 0] (2, 2, 0)

[ -1 −1 0 0; 0 0 −1 0; 0 0 0 1; 1 1 0 0] (2, 1, 1)

[ 1 −1 0 0; 0 0 0 −1; 0 0 0 1; −1 1 0 0] (2, 0, 2)

[ -1 −1 0 0; 0 0 −1 0; 0 0 0 1; 2 1 0 0] (1, 1, 2)

[ 1 −1 0 0; 0 0 −1 −1; 0 0 0 1; 0 0 0 0] (1, 0, 3)

[ 0 −1 0 0; 0 0 −1 −1; 0 0 0 1; 0 0 0 0] (0, 0, 4)

B4

[ 8 −162 0 0; 0 0 −24 1; 0 1 0 0; 1 0 2 0] (4, 0, 0)

[ -1 −2 0 0; 0 0 −1 1; 0 1 0 0; 1 0 1 0] (3, 1, 0)

[ 1 −1 0 0; 0 0 −2 1; 0 1 0 0; 1 0 0 0] (3, 0, 1)

[ -1 −1 0 0; 0 0 −1 1; 0 1 0 0; 1 0 −1 0] (2, 2, 0)

[ -1 −1 0 0; 0 0 −1 1; 0 1 0 0; 1 0 0 0] (2, 1, 1)

[ 1 −1 0 0; 0 0 −1 1; 0 1 0 0; 1 0 0 0] (2, 0, 2)

[ -1 −1 0 0; 0 0 1 1; 0 1 0 0; 1 0 0 0] (1, 1, 2)

[ 1 0 0 0; 0 0 −1 1; 0 1 0 0; 1 0 0 0] (1, 0, 3)

[ 0 −1 0 0; 0 0 −1 1; 0 1 0 0; 1 0 1 0] (0, 0, 4)

B5

[ 8 −162 0 0; 0 0 0 1; 0 2 0 0; 1 −24 1 0] (4, 0, 0)

[ -1 −2 0 0; 0 0 0 1; 0 1 0 0; 1 −1 1 0] (3, 1, 0)

[ 1 −1 0 0; 0 0 0 1; 0 0 0 0; 1 −2 1 0] (3, 0, 1)

[ -1 −1 0 0; 0 0 0 1; 0 −1 0 0; 1 −1 1 0] (2, 2, 0)
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[ -1 −1 0 0; 0 0 0 1; 0 0 0 0; 1 −1 1 0] (2, 1, 1)

[ 1 −1 0 0; 0 0 0 1; 0 0 0 0; 1 −1 1 0] (2, 0, 2)

[ -1 −1 0 0; 0 0 0 1; 0 0 0 0; 1 1 1 0] (1, 1, 2)

[ 1 0 0 0; 0 0 0 1; 0 0 0 0; 1 −1 1 0] (1, 0, 3)

[ 0 −1 0 0; 0 0 0 1; 0 1 0 0; 1 −1 1 0] (0, 0, 4)

B6

[ 1 −2 0 0; 1 0 1 0; 0 −1 0 1; 0 1 0 0] (4, 0, 0)

[ 1 −1 0 0; 1 0 1 0; 0 −1 0 −1; 0 1 0 0] (3, 1, 0)

[ 1 −1 0 0; 1 0 1 0; 0 −1 0 0; 0 1 0 0] (3, 0, 1)

[ -1 −1 0 0; 1 0 1 0; 0 −1 0 −1; 0 1 0 0] (2, 2, 0)

[ -1 1 0 0; 1 0 1 0; 0 −1 0 0; 0 1 0 0] (2, 1, 1)

[ 1 −1 0 0; 1 0 1 0; 0 0 0 0; 0 1 0 0] (2, 0, 2)

[ -1 1 0 0; 1 0 1 0; 0 0 0 0; 0 1 0 0] (1, 1, 2)

[ 1 0 0 0; 1 0 1 0; 0 −1 0 0; 0 1 0 0] (1, 0, 3)

[ 0 −1 0 0; 1 0 1 0; 0 −1 0 0; 0 1 0 0] (0, 0, 4)

B7

[ 1 −2 0 0; 1 1 1 0; 0 0 0 1; 0 1 0 0] (4, 0, 0)

[ 1 −1 0 0; 1 −1 −1 0; 0 0 0 1; 0 1 0 0] (3, 1, 0)

[ 0 −1 0 0; 1 2 1 0; 0 0 0 1; 0 1 0 0] (3, 0, 1)

[ -1 −1 0 0; 1 −1 −1 0; 0 0 0 1; 0 1 0 0] (2, 2, 0)

[ 0 −1 0 0; 1 −1 −2 0; 0 0 0 1; 0 1 0 0] (2, 1, 1)

[ 0 −1 0 0; 1 1 0 0; 0 0 0 1; 0 1 0 0] (2, 0, 2)

[ -1 −1 0 0; 1 2 0 0; 0 0 0 1; 0 1 0 0] (1, 1, 2)

[ -1 −2 0 0; 1 2 0 0; 0 0 0 1; 0 1 0 0] (1, 0, 3)

[ -1 −1 0 0; 1 1 0 0; 0 0 0 1; 0 1 0 0] (0, 0, 4)

B8

[ 1 −1 0 0; 0 1 1 0; 1 0 0 −2; 0 0 1 0] (4, 0, 0)

[ -1 −1 0 0; 0 1 1 0; 1 0 0 −1; 0 0 1 0] (3, 1, 0)

[ 0 −1 0 0; 0 1 1 0; 1 0 0 −2; 0 0 1 0] (3, 0, 1)

[ -1 −1 0 0; 0 −1 1 0; 1 0 0 −1; 0 0 1 0] (2, 2, 0)

[ -1 −1 0 0; 0 0 1 0; 1 0 0 −1; 0 0 1 0] (2, 1, 1)

[ 0 −1 0 0; 0 1 1 0; 1 0 0 −1; 0 0 1 0] (2, 0, 2)

[ -1 −1 0 0; 0 0 1 0; 1 0 0 1; 0 0 1 0] (1, 1, 2)

[ 0 0 0 0; 0 1 1 0; 1 0 0 −1; 0 0 1 0] (1, 0, 3)

[ 0 0 0 0; 0 0 1 0; 1 0 0 −1; 0 0 1 0] (0, 0, 4)

Table 3: Inertially arbitrary patterns with no proper 2-cycle.

Pattern Matrix Inertia

J1

[ 2 7 4 0; 0 2 1 0; 0 0 0 1; 1 0 0; 0] (4, 0, 0)

[ −1 0 −1 0; 0 1 1 0; 0 0 0 1; 1 0 0; 0] (3, 1, 0)

[ 1 1 1 0; 0 1 1 0; 0 0 0 1; 1 0 0; 0] (3, 0, 1)

[ −1 −1 −1 0; 0 −1 1 0; 0 0 0 1; 1 0 0; 0] (2, 2, 0)

[ −1 −1 −1 0; 0 1 1 0; 0 0 0 1; 1 0 0; 0] (2, 1, 1)

[ 1 0 0 0; 0 1 1 0; 0 0 0 1; 1 0 0; 0] (2, 0, 2)

[ −1 0 0 0; 0 1 1 0; 0 0 0 1; 1 0 0; 0] (1, 1, 2)

[ 0 0 0 0; 0 1 1 0; 0 0 0 1; 1 0 0; 0] (1, 0, 3)

[ 0 0 0 0; 0 0 1 0; 0 0 0 1; 1 0 0; 0] (0, 0, 4)

J2

[ 1 1 0 0; 0 3 1 0; 4 0 0 −1; 1 0 0; 0] (4, 0, 0)

[ −1 1 0 0; 0 1 1 0; −1 0 0 1; 1 0 0; 0] (3, 1, 0)

[ 1 1 0 0; 0 1 1 0; 1 0 0 0; 1 0 0; 0] (3, 0, 1)

[ −1 1 0 0; 0 −1 1 0; −1 0 0 −1; 1 0 0; 0] (2, 2, 0)

[ −1 1 0 0; 0 0 1 0; −1 0 0 0; 1 0 0; 0] (2, 1, 1)

[ 1 1 0 0; 0 1 1 0; 0 0 0 0; 1 0 0; 0] (2, 0, 2)

[ −1 1 0 0; 0 0 1 0; −1 0 0 1; 1 0 0; 0] (1, 1, 2)

[ 0 1 0 0; 0 1 1 0; 0 0 0 0; 1 0 0; 0] (1, 0, 3)

[ 0 1 0 0; 0 0 1 0; 0 0 0 0; 1 0 0; 0] (0, 0, 4)

J3

[ 3 −1 4 0; 0 0 1 0; 0 0 1 1; 1 0 0; 0] (4, 0, 0)

[ −1 1 −1 0; 0 0 1 0; 0 0 1 1; 1 0 0; 0] (3, 1, 0)

[ 1 0 1 0; 0 0 1 0; 0 0 1 1; 1 0 0; 0] (3, 0, 1)

[ −1 −1 −1 0; 0 0 1 0; 0 0 −1 1; 1 0 0; 0] (2, 2, 0)

[ −1 0 −1 0; 0 0 1 0; 0 0 0 1; 1 0 0; 0] (2, 1, 1)

[ 1 0 0 0; 0 0 1 0; 0 0 1 1; 1 0 0; 0] (2, 0, 2)

[ −1 0 0 0; 0 0 1 0; 0 0 1 1; 1 0 0; 0] (1, 1, 2)

[ 0 0 0 0; 0 0 1 0; 0 0 1 1; 1 0 0; 0] (1, 0, 3)

[ 0 0 0 0; 0 0 1 0; 0 0 0 1; 1 0 0; 0] (0, 0, 4)
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J4

[ 1 1 0 0; 0 0 11 4; 0 0 3 1; 1 0 0; 0] (4, 0, 0)

[ −1 1 0 0; 0 0 0 −1; 0 0 1 1; 1 0 0; 0] (3, 1, 0)

[ 1 1 0 0; 0 0 1 1; 0 0 1 1; 1 0 0; 0] (3, 0, 1)

[ −1 1 0 0; 0 0 −1 −1; 0 0 −1 1; 1 0 0; 0] (2, 2, 0)

[ −1 1 0 0; 0 0 −1 −1; 0 0 1 1; 1 0 0; 0] (2, 1, 1)

[ 1 1 0 0; 0 0 0 0; 0 0 1 1; 1 0 0; 0] (2, 0, 2)

[ −1 1 0 0; 0 0 0 0; 0 0 1 1; 1 0 0; 0] (1, 1, 2)

[ 0 1 0 0; 0 0 0 0; 0 0 1 1; 1 0 0; 0] (1, 0, 3)

[ 0 1 0 0; 0 0 0 0; 0 0 0 1; 1 0 0; 0] (0, 0, 4)

J5

[ 1 3 0 0; 0 3 0 1; 0 1 0 0; 1 0 1; 0] (4, 0, 0)

[ 1 −1 0 0; 0 −1 0 1; 0 −1 0 0; 1 0 1; 0] (3, 1, 0)

[ 1 1 0 0; 0 1 0 1; 0 0 0 0; 1 0 1; 0] (3, 0, 1)

[ −1 −1 0 0; 0 −1 0 1; 0 −1 0 0; 1 0 1; 0] (2, 2, 0)

[ −1 −1 0 0; 0 0 0 1; 0 0 0 0; 1 0 1; 0] (2, 1, 1)

[ 1 0 0 0; 0 1 0 1; 0 0 0 0; 1 0 1; 0] (2, 0, 2)

[ −1 −1 0 0; 0 1 0 1; 0 1 0 0; 1 0 1; 0] (1, 1, 2)

[ 0 −1 0 0; 0 1 0 1; 0 1 0 0; 1 0 1; 0] (1, 0, 3)

[ 0 −1 0 0; 0 0 0 1; 0 1 0 0; 1 0 1; 0] (0, 0, 4)

J6

[ 1 −3/2 0 0; 0 0 0 1; 0 11/2 3 0; 1 0 1; 0] (4, 0, 0)

[ −1 −1 0 0; 0 0 0 1; 0 0 1 0; 1 0 1; 0] (3, 1, 0)

[ 1 −1 0 0; 0 0 0 1; 0 2 2 0; 1 0 1; 0] (3, 0, 1)

[ −1 −1 0 0; 0 0 0 1; 0 −1 −1 0; 1 0 1; 0] (2, 2, 0)

[ −1 −1 0 0; 0 0 0 1; 0 −1 1 0; 1 0 1; 0] (2, 1, 1)

[ 1 −1 0 0; 0 0 0 1; 0 1 1 0; 1 0 1; 0] (2, 0, 2)

[ −1 −1 0 0; 0 0 0 1; 0 1 1 0; 1 0 1; 0] (1, 1, 2)

[ 0 0 0 0; 0 0 0 1; 0 0 1 0; 1 0 1; 0] (1, 0, 3)

[ 0 −1 0 0; 0 0 0 1; 0 1 0 0; 1 0 1; 0] (0, 0, 4)
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