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SPECTRAL BOUND FOR SEPARATIONS IN EULERIAN DIGRAPHS∗

KRYSTAL GUO†

Abstract. The spectra of digraphs, unlike those of graphs, is a relatively unexplored territory. In a digraph, a separation

is a pair of sets of vertices D and Y such that there are no arcs from D and Y . For a subclass of Eulerian digraphs, a bound

on the size of a separation is obtained in terms of the eigenvalues of the Laplacian matrix. An infinite family of tournaments,

namely, the Paley digraphs, where the bound holds with equality, is also given.
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1. Introduction. The theory of graph spectra is a rich and interesting field of study. There has been

extensive study about the interplay of eigenvalues of a graph and various graph parameters, such as the

diameter [4, 12] or the chromatic number [5, 9, 10]; see also [14]. The relationship between symmetries of a

graph and its eigenvalues has also been investigated extensively, for example in [3, 16, 17]. The eigenvalues

of the Laplacian matrix of a graph determine the number of connected components. For connected graphs,

the eigenvalues of the adjacency matrix determine whether the graph is bipartite. There are spectral bounds

on the independence number and many other parameters.

For digraphs, in contrast, there are relatively few results. There is a directed analogue of Wilf’s bound

on chromatic number [13], however other directed analogues are yet to be found. The adjacency matrix of a

digraph is usually difficult to work with; it is not always diagonalizable and may have complex eigenvalues.

In addition, the interlacing theorem does not hold for the adjacency matrices of digraphs, in general. The

digraphs we consider here are also known as mixed graphs in the literature.

The interlacing theorem is a powerful tool for studying the eigenvalues of graphs; see [9] for standard

applications to graph eigenvalues. We would like to extend its usage to some classes of digraphs, with

possibly different choices of matrices. First, we have a few preliminary definitions. The adjacency matrix of

a digraph D is a matrix A(D), with rows and columns indexed by the vertices of D, such that A(u, v) = 0

if uv is an arc and A(u, v) = 0 otherwise. Let ∆+(D) be the diagonal matrix with diagonal entries equal to

the out-degrees of vertices of the digraph. The Laplacian matrix of D, is L(D) = ∆+(D)−A(D). We prove

a result which generalizes the following theorem of Haemers for graphs to the class of digraphs with normal

Laplacian matrices.
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Theorem 1.1 ([9]). Let D be a connected graph on n vertices and let (X,Y ) be a separation in D.

Then

|Y ||X|
(n− |Y |)(n− |X|)

≤ |α+ σn|2

α2
,

where α = − 1
2 (σ2 + σn) and 0 = σ1 < σ2 ≤ · · · ≤ σn are the Laplacian eigenvalues of D.

We give the following generalization of this theorem to digraphs whose Laplacian matrix is normal.

Theorem 1.2. Let D be a connected digraph on n vertices where L(D) is normal and (X,Y ) be a

separation in D. Then

|Y ||X|
(n− |Y |)(n− |X|)

≤ |α+ θ|2

α2
,

where

α =

{
−f(θ)− f(ν) if Re(λ) ≥ Re(θ) for all λ /∈ {0, θ};
−f(θ)− g(µ) otherwise

and

• f(λ) = |λ|2
2Re(λ) ,

• θ 6= 0 is the eigenvalue of L(D) which maximizes f amongst non-zero eigenvalues of L(D),

• ν 6= 0 is the eigenvalue of L(D) which minimizes f amongst non-zero eigenvalues of L(D),

• g(λ) = Re(λ)(f(θ)−f(λ))
Re(θ)−Re(λ) , and

• µ is the eigenvalue of L(D) which minimizes g such that g(µ) > 0, if such an eigenvalue exists, and

µ = 0 otherwise.

In Section 2, we will give a combinatorial description of digraphs whose Laplacian matrices are normal.

For example, any Cayley digraph of an abelian group will have a normal Laplacian matrix. In Section 3, we

will prove some preliminary facts about the eigenvalues of digraphs with normal Laplacian. We will give the

proof of the main theorem, Theorem 5.2, in Section 5, as well as a corollary for tournaments. In Section 6, we

show that this bound holds with equality for an infinite family of tournaments, namely the Paley digraphs.

2. Directed graphs with normal Laplacian matrix. We are interested in digraphs whose Laplacian

matrix is normal. We will assume our digraphs have no loops or parallel arcs (arcs with the same orientation

between the head and tail vertices), but we allow two oppositely oriented arcs between a pair of vertices.

We can easily give a combinatorial description of digraphs whose Laplacian is normal. Let D be a

digraph. We denote by d(u) the out-degree of a vertex u. Let d+(u, v) be the number of common out-

neighbours of u and v; that is

d+(u, v) = |{w | uw, vw ∈ E(D)}|.

Similarly, let d−(u, v) = |{w | wu,wv ∈ E(D)}|.
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Lemma 2.1. Let D be a digraph. The Laplacian of D is normal if and only if, for every pair of vertices

u, v,

d−(u, v)− d+(u, v) =


0 if uv, vu ∈ E(D) or uv, vu /∈ E(D);

d(u)− d(v) if uv ∈ E(D) and vu /∈ E(D);

d(v)− d(u) if vu ∈ E(D) and uv /∈ E(D).

Proof. We will look at the (u, v) entry of the matrices LTL and LLT . We have that

(LTL)(u, v) =
∑

w∈V (D)

L(w, u)L(w, v) = d−(u, v) + d(u)L(u, v) + d(v)L(v, u).

Similarly,

(LLT )(u, v) =
∑

w∈V (D)

L(u,w)L(v, w) = d+(u, v) + d(u)L(v, u) + d(v)L(u, v).

Note that (LTL)(u, u) = (LLT )(u, u) for all u ∈ V (D). For u 6= v, we have that (LTL)(u, v) = (LLT )(u, v)

if and only if

d−(u, v)− d+(u, v) =


0 if L(v, u) = L(u, v);

d(u)− d(v) if L(u, v) = −1 and L(v, u) = 0;

d(v)− d(u) if L(v, u) = −1 and L(u, v) = 0.

whence the lemma follows.

D2D1

Figure 1. Examples of digraphs D1 and D2, where L(D1) and L(D2) are normal. Two oppositely oriented arcs between

two vertices (called a digon) are shown as a thick edge.

Figure 1 shows examples of digraphs with normal Laplacian matrices. We will now show the digraphs

with normal Laplacian are a subclass of Eulerian digraphs. A digraph D is weakly connected if the underlying

graph of D is connected. A digraph D is strongly connected if, for every pair of vertices x and y, there is a

directed walk from x to y in D.

Lemma 2.2. For a weakly connected digraph D, if L(D) is normal, then D is Eulerian.

Proof. We will expand LLT − LTL to obtain

(2.1) LLT − LTL = ∆+(A−AT ) + (AT −A)∆+ +AAT −ATA =: M.

For a square matrix N , let diag(N) denote the vector consisting of the diagonal entries of N (more precisely,

we mean that (diag(N))u = N(u, u)). Observe that ∆+ is a diagonal matrix and both A and AT have zero
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diagonal. Thus,

diag(∆+(A−AT )) = diag((AT −A)∆+) = 0.

Since L is normal, M = 0 and considering the diagonal of (2.1) gives that diag(AAT ) = diag(ATA).

Combinatorially, (ATA)u,u counts the number of in-neighbours of u and (AAT )u,u counts the number of

out-neighbours of u. Thus, the in-degree and out-degree are equal for every vertex and we obtain that D is

Eulerian by a standard theorem, see [1].

If a weakly connected digraph is Eulerian, then it is also strongly connected. Since there is no confusion,

we may say that such graphs are connected. We observe that, if the digraph is regular, then the Laplacian

matrix is normal if and only if the adjacency matrix is normal. We say that a digraph is normal if it has a

normal Laplacian matrix and a normal adjacency matrix.

Theorem 2.3. Every Cayley digraph on an abelian group is normal.

Proof. Consider a Cayley digraph D = Cay(G,C) where G is abelian and let A be the adjacency matrix

of D. Since D is regular, we need only check that A is normal.

Let u, v be vertices of D and suppose they have a common in-neighbour w. Let a1 6= a2 be elements

of the connection set C such that u = a1w and v = a2w. It is clear that a2u and a1v are out-neighbour of

u and v, respectively. Since the group is abelian, we have that a2u = a2a1w = a1a2w = a1v, and so a2u

is a common out-neighbour of u and v. Let φu,v(w) be a mapping taking w, a common in-neighbour of u

and v, to the uniquely defined common out-neighbour of u and v by the process above. We see that φu,v is

injective onto the set of common out-neighbours of u and v.

Conversely, following the same argument, we can find an injective mapping from common out-neighbours

of u and v to the common in-neighbour of u and v. We have shown combinatorially that (ATA)u,v =

(AAT )u,v.

In general, the adjacency matrix being normal does not have to coincide with the Laplacian matrix being

normal. We present some data on all digraph on 4, 5 and 6 vertices. Note that if D has a normal adjacency

matrix or a normal Laplacian, it must be Eulerian.

Table 1

Small digraphs with normal Laplacian and adjacency matrices.

4 vertices 5 vertices 6 vertices

number of digraphs 218 9608 1540944

Eulerian 17 107 2269

regular 5 10 52

normal Laplacian 14 43 194

normal adjacency matrix 14 45 212

normal 14 43 190

connected and Eulerian 12 90 2162

undirected 10 31 43

3. Eigenvalues of normal Laplacian matrices. To prove the main results, we need the following

lemma. Lemma 3.1 can be proved by considering L + LT as the Laplacian of a multi-graph and appealing
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to known results about Laplacians of graphs, so we will omit the proof here. Parts (a) and (b) of Lemma

3.1 follow from well-known results on M -matrices, see [2] and part (c) is true for all normal matrices, see,

for example, [11].

Lemma 3.1. If D is a connected digraph and L(D) is normal, then

(a) L(D) has eigenvalue 0 with multiplicity 1;

(b) Re(λ) > 0 for λ 6= 0 an eigenvalue of L(D);

(c) if L(D)v = λv, then L(D)Tv = λv.

Observe that if D is not connected, then we may consider the spectrum for each connected component

of D to obtain the following corollary.

Corollary 3.2. If D is a digraph and L(D) is normal, then Re(λ) > 0 for all eigenvalues λ of L(D)

except λ = 0.

4. Interlacing. Since we make use of the interlacing theorem, we will state it here. If λ1 ≥ · · · ≥ λn
and µ1 ≥ · · · ≥ µm are real numbers with m < n, then we say that (µi)

m
i=1 interlaces (λi)

n
i=1 if

λi ≥ µi ≥ λn−m+i

for i = 1, . . . ,m.

Let A be a Hermitian matrix. Let P be a partition of the rows of A which induces a partitioning of A

into block matrices as follows:

A =

A11 · · · A1m

...
. . .

...

Am1 · · · Amm

 ,

where the Aij are block matrices and the corresponding partition of the rows and columns is P = {P1,

. . . , Pm}, as a partition of [n]. Note that since we are interested in the eigenvalues of A, which are preserved

under permuting the rows and columns simultaneously, we may assume all partitions of the rows of A are of

this form. The quotient matrix of A with respect to partition P is a m×m matrix B where the ijth entry

is the average row sums of the blocks of A.

Theorem 4.1 ([9]). Let A be a Hermitian matrix and B be its partition matrix with respect to partition

P. The eigenvalues of B interlace those of A.

We note that the quotient matrix B is not symmetric, in general, but is diagonalizable with real eigen-

values.

5. Interlacing with the Laplacian. We would like to use interlacing to find bounds of combinatorial

parameters of digraph D using eigenvalues of the Laplacian matrix. In particular, we would like to use the

same method as the proof of Lemma 6.1 in [9], which is stated here as Theorem 1.1. We prove a result

which generalizes the original lemma of Haemers to a sub-class of digraphs. However, as this matrix is not

symmetric like in the case for graphs, we need to restrict to digraphs D whose the Laplacian matrices are

normal and we also need a few technical lemmas in order to prove Theorem 5.2, the main result.

We denote by σ(L) the multiset of eigenvalues of L. If L is a normal matrix, then so is αI + L for any

α ∈ R. For L, we see that the singular values of LTL are {|λ| : λ ∈ σ(L)}. Thus, the singular values of

αI + L are {|α+ λ| : λ ∈ σ(L)}.
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Lemma 5.1. Let D be a digraph such that L(D) is normal. Let

f(λ) =
|λ|2

2 Re(λ)
,

and let θ 6= 0 be the eigenvalue of L(D) which maximizes f amongst non-zero eigenvalues of L(D). Let

g(λ) =
Re(λ)(f(θ)− f(λ))

Re(θ)− Re(λ)
,

and let µ be the eigenvalue of L(D) which minimizes g such that g(µ) ≥ 0, if such an eigenvalue exists in the

domain of g, and µ = 0 otherwise. Let L̃ = αI + L(D), where α ≤ −f(θ). Then |α| is the largest singular

value of L̃. Further,

(a) if D is connected and Re(λ) ≥ Re(θ) for all λ /∈ {0, θ}, then |α+ θ| is the second largest singular value

of L̃;

(b) if D is connected and −f(θ)− g(µ) ≤ α, then |α+ θ| is the second largest singular value of L̃.

Proof. Note that f is well-defined for non-zero eigenvalues λ of L, since Re(λ) > 0 by Lemma 3.1.

Observe also that f is positive real-valued and α ∈ R. The function g is well-defined for λ when Re(λ) 6=
Re(θ). If there exists an eigenvalue λ /∈ {0, θ}, such that Re(λ) < Re(θ), then, we can see that g(λ) ≥ 0, and

so µ is non-zero. Also, the range for α in part (b), [−f(θ)− g(µ),−f(θ)], is non-empty.

Since 0 is an eigenvalue of L, we have that |α| is a singular value of L̃. The singular values of L̃ are of

form |α+ λ| where λ is an eigenvalue of L. Let λ be a non-zero eigenvalue of L. Consider

(5.2) |α|2 − |α+ λ|2 = α2 − (α+ λ)(α+ λ) = α2 − (α+ λ)(α+ λ) = −2αRe(λ)− |λ|2.

By definition of α, we have that

(5.3) − α ≥ f(θ) ≥ f(λ) =
|λ|2

2 Re(λ)

for all nonzero λ ∈ σ(L). From (5.2) and (5.3), we obtain: |α|2 − |α + λ|2 ≥ 0 and we have shown that |α|
is the largest singular value of L̃.

To prove statements (a) and (b), we let δ = |α + θ|2 − |α + λ|2 for λ ∈ σ(L). Since D is connected, L

has only one eigenvalue whose real part is equal to 0 by Lemma 3.1. It suffices to show that δ(λ) ≥ 0 for all

nonzero λ ∈ σ(L). We expand δ(λ) to obtain

δ(λ) = |θ|2 − |λ|2 + 2α(Re(θ)− Re(λ)).

If Re(θ) = Re(λ), then δ(λ) = |θ|2 − |λ|2. In this case,

f(θ) =
|θ|2

2 Re(θ)
=

|θ|2

2 Re(λ)
≥ f(λ) =

|λ|2

2 Re(λ)

and, since Re(λ) and Re(θ) are positive, |θ|2 ≥ |λ|2 and δ(λ) ≥ 0. Otherwise, we have that Re(θ) < Re(λ),

and, recalling that −α ≥ f(θ) ≥ 0, we may simplify as follows:

δ(λ) ≥ |θ|2 − |λ|2 + 2f(θ)(Re(λ)− Re(θ))

= −|λ|2 +
|θ|2 Re(λ)

Re(θ)
= 2 Re(λ)(f(θ)− f(λ)) ≥ 0.
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We have shown part (a) and also part (b) when Re(λ) ≥ Re(θ).

For part (b), we need only consider eigenvalues λ such that Re(θ) > Re(λ). In this case, we will use

that g(λ) ≥ g(µ) ≥ 0 and obtain

δ(λ) = |θ|2 − |λ|2 + 2α(Re(θ)− Re(λ))

≥ |θ|2 − |λ|2 + (−2f(θ)− 2g(µ))(Re(θ)− Re(λ))

= |θ|2 − |λ|2 − |θ|2 + 2f(θ) Re(λ)− 2g(µ)(Re(θ)− Re(λ)).

Since Re(θ)− Re(λ) > 0 and −2g(µ) ≥ −2g(λ), we obtain

δ(λ) ≥ −|λ|2 + 2f(θ) Re(λ)− 2g(λ)(Re(θ)− Re(λ)) = −|λ|2 + 2 Re(λ)f(λ) = 0,

and hence, δ(λ) ≥ 0, as required.

It is worth observing that if we take α = −f(θ), then

|α+ θ|2 = α2 + α2 Re(θ) + |θ|2 = |α|2.

We can now prove the main theorem.

Theorem 5.2. Let D be a connected digraph on n vertices where L := L(D) is normal. Let f , g, θ and

µ be as defined in Lemma 5.1. Also, let ν 6= 0 be the eigenvalue of L which minimizes f amongst non-zero

eigenvalues of L. Let Y and X be disjoint vertex sets in D with no arcs from X to Y . Then,

|Y ||X|
(n− |Y |)(n− |X|)

≤ |α+ θ|2

α2
,

where

α =

{
−f(θ)− f(ν) if Re(λ) ≥ Re(θ) for all λ /∈ {0, θ};
−f(θ)− g(µ) otherwise.

Proof. Let α = −f(θ)− g(µ) and let L̃ = αI +L. In L and L̃, there is an off-diagonal block of 0s, where

the rows are indexed by X and columns are indexed by Y . This follows directly from hypothesis that there

are no arcs from X to Y . We wish to use interlacing to bound the size of such an off-diagonal block of 0s.

Let

C =

(
0 αI + L

αI + LT 0

)
=

(
0 L̃

L̃T 0

)
.

Note that we use 0 in matrices to represent the zero matrix of the appropriate dimensions. We see that C

is symmetric and the eigenvalues of C are {±|α+λ| : λ eigenvalue value of L}. By Lemma 5.1, we see that

|α| is the biggest eigenvalue of C and |α+ θ| is the second largest eigenvalue of C.

Since D is Eulerian, each row and column of L sums to 0 and so each row and column of L̃ sum to α.

We may partition the rows of L̃ into rows indexed by {X,V (D) \ X} and the columns of L̃ into columns

indexed by {V (D) \Y, Y }. This partition of L̃ induces a partition of C where all diagonal blocks are square;
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we can write C as a block matrix with blocks corresponding to the partition,

C =


0 0 L̃11 0

0 0 L̃21 L̃22

L̃T11 L̃T21 0 0

0 L̃T22 0 0

 .

We let B be the quotient matrix of C with respect to this partition. Recall from Theorem 4.1 that the

entries of B are the average row sums of the corresponding blocks of C. We will index the rows and columns

of B with [4], for convenience. Since the row and column sums of L̃ are all equal to α, we see that each

row and column sum of L̃11 and of the matrix
(
L̃21 L̃22

)
is equal to α. Then B(1, 3) = B(4, 2) = α and

B(2, 3) +B(2, 4) = B(3, 1) +B(3, 2) = α.

Observe that L̃22 is a n−z×y matrix, where the lower y×y submatrix is a principal submatrix of L̃. For

S, T ⊆ V (D), let E(S, T ) denote the set of edges e such that t(e) ∈ S and h(e) ∈ T . Let W = V (D)\(Y ∪X).

We will find B(2, 4) by taking the sum over all of the entries of L̃22 as follows:

(5.4) (n− 2)B(2, 4) =

n∑
j=1

n∑
`=1

L̃22(j, `) = yα+
∑
y inY

d+(y)− |E(Y, Y )| − |E(W,Y )|.

Since there are no arcs from X to Y , we have that

(5.5) |E(Y, Y )|+ |E(W,Y )| = |E(V (D), Y )| =
∑
y∈Y

d−(y).

Since D is Eulerian, we see that
∑
y∈Y d

−(y) =
∑
y∈Y d

+(y). Then, from (5.4) and (5.5), we obtain that

B(2, 4) = yα/n−z, which implies that B(2, 3) = α − yα/n−z. By an analoguous argument, we find that

B(3, 1) = zα/n−y and B(3, 2) = α− zα/n−y. Thus, we have

B =


0 0 α 0

0 0 α− yα
n−z

yα
n−z

zα
n−y α− zα

n−y 0 0

0 α 0 0

 .

Let the eigenvalues of B be µ1 ≥ µ2 ≥ µ3 ≥ µ4. Let λ1 ≥ λ2 ≥ · · · ≥ λ2n−1 ≥ λ2n be the eigenvalues

of C. Observe that C is similar to −C and B is similar to −B by construction of C. Then, we have that

µ4 = −µ1, µ3 = −µ2, λ2n = −λ1 and λ2n−1 = −λ2. Applying the interlacing theorem gives

λ1 ≥ µ1, λ2 ≥ µ2, µ3 ≥ λ2n−1 and µ4 ≥ λ2n.

Recalling that (λ1, λ2) = (|α|, |α+ θ|), we have that

(5.6) µ1µ2µ3µ4 = (−1)2(µ1µ2)2 ≤ (λ1λ2)2 = (|α||α+ θ|)2 .

On the other hand, we see that

(5.7) µ1µ2µ3µ4 = det(B) =
α2y

n− z
α2z

n− y
.
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From (5.6) and (5.7), we obtain that

α2y

n− z
α2z

n− y
≤ (|α||α+ θ|)2 ⇔ y

n− z
z

n− y
≤ |α+ θ|2

α2

as claimed.

Observe that if D is a graph, then the Laplacian is the usual Laplacian matrix of a graph. In this case,

the Laplacian is symmetric and hence normal, and so, all eigenvalues are real and non-negative. Thus, for λ

an eigenvalue of L(D), we see that f(λ) = g(λ) = λ/2. Then, we can recover the original theorem of Haemers

[9, Lemma 6.1] for graphs as a corollary of Theorem 5.2.

A tournament has normal adjacency matrix if and only if it is regular (see [6]). Then, the Laplacian

matrices of regular tournaments are normal matrices. Let D be a regular tournament on n vertices. In this

case, all of the non-zero eigenvalues have real part equal to n/2. We see that

f(λ) =
|λ|2

2n2
=
|λ|2

n
.

Then, α = −|θ|2/n − |ν|2/n, where θ and ν are the largest and smallest eigenvalues of L(D) in magnitude.

Theorem 5.2 gives the following corollary.

Corollary 5.3. Let D be a regular tournament on n vertices and (X,Y ) be a separation in D. Then

|Y ||X|
(n− |Y |)(n− |X|)

≤ |α+ θ|2

α2
,

where α = −|θ|2/n − |ν|2/n where θ and ν are the largest and smallest non-zero eigenvalues of L(D) in

magnitude.

6. Tight examples. In this section, we will give an infinite family of regular tournaments where the

bound in Corollary 5.3 holds with equality. For q a prime power such that q = 3 mod 4, the Paley digraph

of order q is the digraph whose vertices are the elements of GF (q) and xy is an arc when y− x is a non-zero

square in GF (q). Figure 2 shows the Paley digraph of order 7. The Paley digraph is a well-known regular

tournament, see [7] and [8].

0

1

2

34

5

6

Figure 2. The Paley digraph of order 7.

Let Q = A−AT for a Paley digraph D of order q, where A := A(D). Paley showed that QQT = qI − J
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in [15]. Since AT = J − I −A, we obtain that

A2 +A+
q + 1

4
I +
−q − 1

4
J = 0.

From this we see that A has an eigenvalue q−1
2 , corresponding to the all ones eigenvector, and the other eigen-

values are −1±
√
−q

2 , each with multiplicity q−1
2 . Thus, Paley digraph of order q have Laplacian eigenvalues

0 with multiplicity 1 and
q±√qi

2 each with multiplicity q−1
2 .

Let D be the Paley digraph of order q. Corollary 5.3 gives that if (X,Y ) is a separation in D, then

|Y ||X|
(n− |Y |)(n− |X|)

≤ 1

q + 1
.

If we take X to be a singleton vertex u and Y be the set of the q−1
2 out-neighbours of u, we see for this

choice of X and Y ,

|Y ||X|
(n− |Y |)(n− |X|)

=
( q−12 )

( q+1
2 )(q − 1)

=
1

q + 1
,

and the inequality of Corollary 5.3 holds with equality.

Acknowledgment. The author would like to thank the reviewers for their thorough review and helpful

suggestions, which has significantly improved the quality of the paper.

REFERENCES

[1] J. Bang-Jensen and G.Z. Gutin. Digraphs: Theory, Algorithms and Applications, second edition. Springer-Verlag, Berlin,

2008.

[2] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics,

Vol. 9, Society for Industrial and Applied Mathematics, Philadelphia, 1994.

[3] A. Chan and C.D. Godsil. Symmetry and eigenvectors. In: G. Hahn and G. Sabidussi (editors), Graph Symmetry,

Algebraic Methods and Applications, Kluwer, 497:75–106, 1997.

[4] F.R.K. Chung. Diameters and eigenvalues. J. Amer. Math. Soc., 2:187–196, 1989.
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