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EULER-RICHARDSON METHOD PRECONDITIONED BY WEAKLY

STOCHASTIC MATRIX ALGEBRAS: A POTENTIAL CONTRIBUTION

TO PAGERANK COMPUTATION∗

S. CIPOLLA† , C. DI FIORE† , AND F. TUDISCO‡

Abstract. Let S be a column stochastic matrix with at least one full row. Then S describes a Pagerank-like random

walk since the computation of the Perron vector x of S can be tackled by solving a suitable M-matrix linear system Mx = y,

where M = I − τA, A is a column stochastic matrix and τ is a positive coefficient smaller than one. The Pagerank centrality

index on graphs is a relevant example where these two formulations appear. Previous investigations have shown that the Euler-

Richardson (ER) method can be considered in order to approach the Pagerank computation problem by means of preconditioning

strategies. In this work, it is observed indeed that the classical power method can be embedded into the ER scheme, through

a suitable simple preconditioner. Therefore, a new preconditioner is proposed based on fast Householder transformations and

the concept of low complexity weakly stochastic algebras, which gives rise to an effective alternative to the power method

for large-scale sparse problems. Detailed mathematical reasonings for this choice are given and the convergence properties

discussed. Numerical tests performed on real-world datasets are presented, showing the advantages given by the use of the

proposed Householder-Richardson method.
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1. Introduction. Markov chains are used to model many different real world systems which evolve

in time. When the total number of states which the system may occupy is finite, the chain is typically

represented by a column stochastic matrix S. The state of equilibrium is described by the ergodic distribution

p, defined as the solution of the eigenproblem Sp = p. Under suitable hypotheses on S, for example

irreducibility, the solution p is unique and entry-wise positive. The problem of computing such p is one of

the crucial issues in Markov processes analysis.

The power method is one of the simplest iterative schemes that converges to the solution p (provided

that the eigenvalues of S different from one have absolute value smaller than one). The rate of convergence

of this method is well known to be proportional to the magnitude of the subdominant eigenvalue of S. Due

to its simplicity and its well understood limit behaviour, this method is often used in practice, especially for

large-scale unstructured problems.

Examples of growing interest in recent literature are connected with the analysis of complex networks

where the pattern of the edges of the network is used for localizing important nodes or group of nodes. Many

important models, based on matrices or functions of matrices and describing certain features of the network,

are related with a random walk defined on the graph and thus exploit extremal eigenvectors and eigenvalues

of such matrices (see, for example, [20, 21, 31, 32, 33, 34]). A popular example to which we are particularly

interested in is the centrality index problem on graphs known as the Pagerank problem (see [1] for instance).

In that case the web surfer moves randomly on the web graph W = (V,E) and the importance of each node
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in V is given by the ergodic distribution w = Gw of the random walk defined on W by the Google engine

web matrix G (see Section 1.2 for more details). The dimension of w in that case is the number of web pages

that populate the World Wide Web, thus w roughly has 109 entries. The power method can be performed

on G in a relatively cheap way by means of the transition matrix of the graph, which is typically sparse. On

the other hand, the original formula by Brin and Page [8] defines the same Pagerank vector w as the solution

of a linear system whose coefficient matrix is an M-matrix and, as a consequence, the ergodic Pagerank

distribution w can be computed either by solving the eigenproblem or by solving such linear system. Thus,

one can use any linear system solver to approximate w, and several approaches have been investigated and

compared to the power method, e.g., [13, 22, 23, 40]. Although such methods sometimes have a convergence

rate greater than the one achieved by the power method, they are often more demanding in terms of memory

storage and number of operations per step.

The equivalence between the eigenproblem Sp = p and a linear system problem holds in general for a

large set of stochastic matrices, not only the Google matrix. Indeed, it has been observed in [39] that, if S

is a column stochastic matrix having at least one full row, then 1 is a simple and dominant eigenvalue of S,

the ergodic distribution Sp = p is well defined and p is also a solution of an M-matrix linear system problem

associated to S. In this work, we propose a class of simple iterative schemes, named preconditioned Euler-

Richardson, to solve such linear system. These methods can be seen as a subset of the class of stationary

iterative methods often introduced in terms of a splitting of the coefficient matrix, e.g., [30, 43]. Here we

observe that this kind of methods provides a natural generalization of the power method and of the well

known Jacobi iterative scheme, which correspond to two particular choices of the preconditioner. Then

we introduce the concept of weakly stochastic matrix algebra in order to define a new fast and efficient

preconditioner, based on Householder unitary transformations. We discuss the relation among the new

preconditioned method, the original power method and the Jacobi iterations by providing, in particular,

an analysis of the convergence and a number of results on the spectral radius of the respective iteration

matrices. Finally we present several numerical tests on synthetic datasets and matrices coming from real-

world models. Although the proposed Householder preconditioner does not preserve the nonnegativity of the

entries of the original matrix and despite we cannot provide an exhaustive convergence theorem when the

coefficient matrix is not assumed symmetric, the analysis made in Section 5 and the experiments proposed

in Section 6 show that the Householder preconditioner reduces significantly the number of iterations without

significantly affecting the computational cost nor the memory storage. Thus, it stands as a preconditioned

version of the power method, well suited for large-scale stochastic M-matrix problems with sparsity structure.

1.1. Preliminary notation. For an integer n, the linear space of square n×n real matrices is denoted

by Mn. The symbols O and I denote the zero and the identity matrices, respectively. A matrix is called

nonnegative (resp. positive), if its entries are nonnegative (resp. positive) numbers, in symbols A ≥ O (resp.,

A > O); for real matrices A,B we write A ≥ B if A− B ≥ O; the cone of nonnegative matrices is denoted

by M+
n , the one of nonnegative vectors by Rn+.

Given A ∈Mn we use standard spectral notations, in particular σ(A) denotes the spectrum of A, ρ(A)

denotes its spectral radius and λi(A) its i-th eigenvalue, according to the reverse magnitude ordering

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)| .

The symbol 1 denotes the vector whose components are all ones, 1 = (1, . . . , 1)T, whereas ei is the i-th

canonical vector, for i ∈ {1, . . . , n}. Scalar products are always meant to be Euclidean (componentwise)

products. Thus, (A,B) =
∑
ij aijbij for a generic pair of complex matrices A and B, and similarly for
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vectors. When a matrix A satisfies the equality AT
1 = 1, we say that A is a weakly (column) stochastic

matrix. If both A and AT are weakly stochastic we say that A is doubly weakly stochastic. Note that a

nonnegative weakly stochastic matrix is a stochastic matrix in the standard sense, that is a matrix having

the set of discrete probability distributions as an invariant.

1.2. A generalization of the Pagerank linear system formulation. We say that M ∈ Mn is a

(column) stochastic M-matrix if it can be decomposed as M = I− τA, with A ≥ O, AT
1 = 1 and 0 < τ < 1.

We let SKn denote the set of such matrices, namely,

SKn = {I − τA | τ ∈ (0, 1), A ≥ O, AT
1 = 1}.

If S ∈Mn is any stochastic matrix having at least one full row we say that S belongs to Σn,

Σn = {A ∈Mn : A ≥ O,AT
1 = 1,maxi minj aij > 0} .

The following theorem is a collection of results proved in [35, 39]. It shows that the two sets of matrices SKn

and Σn are strictly related.

Given S stochastic (nonnegative, weakly stochastic) define τ(S) ∈ R+ and yS ∈ Rn+ as

τ(S) = 1−
n∑
i=1

min
j=1,...,n

sij , (yS)i = min
j=1,...,n

sij

and, for nonzero τ(S), let AS ∈Mn be

AS = τ(S)−1(S − yS 1T) .

Theorem 1.1.

(i) Let S be a stochastic matrix. The quantity τ(S) belongs to the interval [0, 1] and τ(S) ≥ |λ|, for all

λ ∈ σ(S) \ {1}.
(ii) Let S ∈ Σn and p be the ergodic distribution of S (i.e., p ≥ 0, p 6= 0, Sp = p, pT1 = 1). Then

τ(S) ∈ [0, 1), yS 6= 0, (I−(S−yS1T))p = yS. If moreover τ(S) > 0 then I−(S−yS1T) = I−τ(S)AS
with τ(S) ∈ (0, 1), AS ≥ 0 and AS stochastic (by columns), that is, I − (S − yS1T ) ∈ SKn.

(iii) Let M = I − τA ∈ SKn, y ≥ 0 nonzero and let x be such that Mx = y. Define ỹ = (1− τ)/(yT1)y

and x̃ = (1− τ)/(yT1)x. Then

(1.1) S := ỹ1T + τA ∈ Σn,

τ(S) ∈ [0, τ ] ⊂ [0, 1), and x̃ is the ergodic distribution of S (i.e x̃ ≥ 0, x̃ 6= 0, Sx̃ = x̃, x̃T1 = 1).

If S ∈ Σn, then Theorem 1.1 shows that the eigenproblem Sp = p can be solved by solving the linear

system (I − τ(S)AS)x = yS , and vice-versa, if M ∈ SKn, then the solution of Mx = y is a multiple of the

ergodic distribution p = Sp (where S is obtained from M = I − τA through (1.1)).

It is worth noting that this generalizes to any matrix S ∈ Σn a famous property of the Google’s Pagerank

index, where the particular structure of the problem allows to recast the stationary distribution problem in

terms of a linear system problem [29].

Let W = (V,E) be the direct graph where nodes correspond to web-pages and edges to hyperlinks

between pages. The Pagerank index vector p of W is the solution of the equation

(1.2) Gp = p,
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where G = αTT + (1− α)v1T is the Google engine web matrix, T is the row stochastic transition matrix of

W , v is a real positive personalization vector such that vT1 = 1 and 0 < α < 1. Due to the huge dimension of

G, several algorithms essentially based on the power method have been proposed to compute the stationary

distribution of (1.2). However the original formula by Brin and Page [29] defines the Pagerank vector p as

the solution of a M-matrix linear system of the type

(1.3) γ(I − αT )Tp = v, γ ∈ R .

In fact, such system follows immediately from (1.2), by the particular form of G, but can be also recovered

by means of Theorem 1.1, as we show now:

Since maxi minj(G)ij ≥ (1−α) maxi vi > 0 we deduce that G ∈ Σn and p = (I− τ(G)AG)−1yG. For the

sake of simplicity, suppose that each column of T has at least one zero entry. Then τ(G) = 1−
∑
i minj(G)ij =

α, yG = (1 − α)v and AG = α−1(G − yG1T) = TT. This shows, indeed, that p is both the solution of the

eigenvector problem (1.2) and of the Pagerank linear system (1.3), with γ = (1− α)−1.

1.3. The Euler-Richardson method. We assume from now on that any random walk considered

is described by a stochastic matrix S ∈ Σn. We discuss a method which computes the solution of the

eigenproblem p = Sp by solving the associated stochastic M-matrix linear system. By virtue of Theorem 1.1

the two problems are equivalent, so for the sake of clarity and generality we always assume that a stochastic

M-matrix M ∈ SKn and a nonnegative vector y ≥ 0 are given, and we are interested in the solution of the

equation Mx = y.

The preconditioned Euler-Richardson method (briefly, PER method) for the solution of Mx = y is the

stationary iterative scheme based on the splitting M = P − (P −M) and defined by the following sequence

(for example, see [43])

(1.4) xk+1 = P−1y + (I − P−1M)xk, k = 0, 1, 2, 3, . . . ,

where P is a suitable nonsingular preconditioner. The iteration matrix of such method is evidently I−P−1M ,

thus we write

H(P ) = I − P−1M

to denote such matrix, underlining the dependence upon the chosen preconditioner P . Since the eigenvalues

of any M ∈ SKn have positive real part, the standard Euler-Richardson method (ER), obtained by setting

P−1 = ωI inside (1.4), is convergent for all ω ∈ (0,min 2<(λi)
|λ2
i |

) and its rate of convergence is optimized by

setting ω0 = arg minω∈R ρ(H(ωI)). This is the simplest iterative method and it may not be the best choice in

terms of efficiency. However, its simplicity allows its easy implementation for problems that are unstructured

and have huge dimension, as for instance the Pagerank problem. In particular, as for the power method,

the ER scheme requires only one real vector to store the data. Moreover, the analysis made throughout this

paper shows that (1.4) can be seen as a preconditioned power method. This opens the way to a number of

further investigations and improvements, as, for instance, the variety of techniques proposed to speed-up the

power method for Pagerank computation can be potentially applied to (1.4) (e.g., extrapolation [6, 7, 9, 28]

or structural adaptive methods [25, 26, 27]). More precisely, when M ∈ SKn, one can show that ω0 = 1

(for example, see [40, Thm. 4.2]). It is therefore easy to realize that, if M = I − τ(S)AS is defined as in

Theorem 1.1, then the ER, with ω = 1, and the power methods are very close. In particular, we show in

the sequel that there exists a simple choice Ppm for the preconditioner P in (1.4) that gives rise exactly to

the same convergent sequence as the one defined by the power method applied to the original eigenproblem
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Sp = p. To this aim we initially devote Section 2 to define and investigate the concept of weakly stochastic

matrix algebra, then we show that the power method preconditioner Ppm is indeed defined in terms of such

algebras. In Section 4, we consider a new preconditioner chosen in a suitable weakly stochastic and low

complexity Householder algebra, giving rise to a competitive method that can be implemented with linear

memory storage allocation (two real vectors) and with the same order of operations per step of the power

method. Besides its direct application to the iterative scheme (1.4), the analysis made in Sections 2 and 4

provides a number of interesting relations among matrix algebras, stochastic and nonnegative matrices, and

in our opinion it is of self interest.

2. Low complexity matrix subspaces. Given J1, . . . , Jm ∈ Mn linearly independent, the subspace

L = span(J1, . . . , Jm) is said to be of low complexity if for any L ∈ L, the order of complexity required to

multiply L times a vector or to solve a linear system with L as coefficient matrix, is much less then O(n2)

(typically O(n log n), see examples in Section 2.2). A preconditioner for (1.4) can thus be chosen inside L.

A popular choice for P ∈ L is the so called optimal fit preconditioner obtained by projecting the coefficient

matrix over L. For any given matrix X ∈ Mn, we write LX to denote its projection over L. Note that,

by definition of projection, one has that ‖LX − X‖F ≤ ‖Y − X‖F , for any Y ∈ L, with ‖ · ‖F being the

Frobenius norm. A possible representation of LX is as follows

(2.5) LX =
∑m
i=1(B−1c)iJi,

where B is the Gram matrix bij = (Ji, Jj) and c is the vector ci = (Ji, X). Of course the number of

arithmetic operations required to identify such LX in L should be “not too large”, that is the linear system

Bx = c should be easily solvable. It is shown in [14, 18] that, under suitable hypotheses on L, the matrix

B is in L itself or belongs to other low complexity classes, and thus, the projection LX can be obtained

with a small amount of computations whenever L is of low complexity. Typical examples of such spaces are

the algebras of matrices simultaneously diagonalized by a unitary transform, henceforth briefly called SDU

spaces. Fix any unitary matrix U ∈Mn, any such space is denoted by sdU and is defined by

U = sdU = {Udiag(λ)U∗ | λ ∈ Cn} .

Any U = sdU is an n-dimensional matrix algebra, thus a commutative set of matrices closed under addition,

multiplication and inversion. Moreover, the following further representation for UX holds for U = sdU :

(2.6) UX = Udiag(U∗XU)U∗,

where, for a matrix M , diag(M) denotes the diagonal matrix with diagonal entries m11, . . . ,mnn. As

I ∈ sdU , the linearity of the projection operator implies that UM = I − τUA, for any M ∈ SKn. Therefore,

the problem of defining a preconditioner for (1.4) reduces to the problem of identifying the projection of the

nonnegative and weakly stochastic matrix A, and solving low complexity systems with I− τUA as coefficient

matrix.

Note that in many cases, if UA is a weakly stochastic matrix, then UM is invertible. Indeed if ‖A‖2 ≤ 1,

and this is true at least for all A ≥ O which are stochastic and normal, then, using the Cauchy-Schwarz

inequality, we get

ρ(UA) = max
i=1,...,n

|uTi Aui| ≤ max
‖x‖2=1

|xTAx| ≤ max
‖x‖2=1

‖Ax‖2 = ‖A‖2 ≤ 1 ,

where ui are the columns of U , defining U . Thus, UM = I − τUA is evidently invertible.
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Next, Section 2.1 contains a theorem characterizing the SDU spaces U such that A weakly stochastic

implies UA weakly stochastic as well. Then in Section 4.1 we show that Ppm can be defined in terms of such

spaces, and finally we introduce a new SDU space where we select a different preconditioner for (1.4).

2.1. Weakly stochastic matrix algebras. This subsection is devoted to characterize the SDU matrix

algebras U which preserve the weakly stochasticity of A, when projecting A on them. For a vector u such

that uTU has no zero entries, define the map Lu : Cn −→ U that associates to a vector x the matrix Lu(x)

of U such that uTLu(x) = xT. As uTU has no zero entries, it is not difficult to see that Lu is a well defined

bijection, for any SDU matrix algebra U = sdU . However, it is worth pointing out that the class of spaces

for which the operator Lu is a well defined bijection contains properly the set of SDU spaces (see [18]). A

direct computation shows that the following representation of Lu(x) ∈ U = sdU holds

(2.7) Lu(x) = Udiag(UTx)diag(UTu)−1U∗.

Definition 2.1. If there exists a column of U which has all constant entries then we call U = sdU a

weakly stochastic SDU matrix algebra.

The reason of such name is made evident by the following Theorem 2.2 which completely characterizes

those SDU spaces U with the property that the projection over U of a weakly stochastic matrix, is still

weakly stochastic.

Theorem 2.2. Let U = sdU for some unitary U , and let u be any vector such that uTU has no zero

entries. The following statements are equivalent.

1. There exists an index k s.t. the kth column of U has constant entries.

2. 11
T ∈ U .

3. For any vector x ∈ Cn, it holds Lu(x)1 = Lu(x)T1 =
(
xT1/uT1

)
1.

4. For any matrix A ∈Mn, it holds UA1 = UT
A1 = 1

n (1TA1)1.

In particular if A or AT are weakly stochastic then UA is doubly weakly stochastic.

Proof. (1)=⇒(2) Let Di be the diagonal rank one matrix whose only nonzero entry is (Di)ii = 1
T
1. The

rank one matrices Ri = UDiU
∗ = (1T1)(Uei)(Uei)

∗ clearly all belong to U , and in particular Rk = 11
T ∈ U .

(2) =⇒ (3) Since Lu is a bijection and since 11T ∈ U , we have Lu(1) = 11
T/1Tu. Thus, formula (2.7) implies

1
T
(
1
Tu
1Tx

)
Lu(x) =

(
1
Tu
1Tx

)
xTLu(1) =

(
1
Tu
1Tx

)(
xT

1

1Tu

)
1
T = 1

T ,

that is, Lu(x)T1 = (xT1/uT1)1, for any x ∈ Cn. Now using the hypothesis 11T ∈ U and the fact that ma-

trices in U commute, we have the equality Lu(x)11T−11TLu(x) = O implying that Lu(x)1 =
(
xT1/1Tu

)
1.

(3) =⇒ (4) Since UA ∈ U , there exists a vector zA ∈ Cn such that UA = Lu(zA). It is enough to

show that 1
Tu/1TzA = n/1TA1. Matching the representations (2.7) and UA = Udiag(U∗AU)U∗ we get

zTA = uTUdiag(U∗AU)U∗. Thus, since U∗1 = αek, with |α|2 = 1/n, it holds

zTA1 = αuTUek(U∗AU)kk = uT1(U∗AU)kk = uT1
(
1
TA1/n

)
.

(4)=⇒(1) The eigenvectors of any matrix L ∈ U = sdU are the columns of U . The fact that 1 is an

eigenvector of UA for any A ∈Mn, implies that there exists k such that Uek = α1, with |α|2 = 1/n.

2.2. Examples. Low complexity matrix algebras have been studied extensively in relatively recent

years in the context of preconditioning, displacement and optimization, for example, see [10, 14, 16, 17, 18,
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41, 42] and the references therein. Among the best known matrix algebras developed in past literature, we

recognize several weakly stochastic matrix algebras. For the sake of completeness, we briefly discuss some

relevant examples in the following. Other examples can be found among the Hartley-type algebras and the

matrix algebras associated with trigonometric transforms, for example, see [3, 4, 5]. In particular, it is not

difficult to observe that the Hartley [3] and the τ11 [5] algebras are weakly stochastic.

Circulants. The discrete Fourier transform is realized through the action of the Fourier matrix Fn =

1/
√
n (exp(2πi(ij)/n))

n−1
i,j=0. It is easy to check that Fn is unitary and that Fne1 = 1/

√
n, that is, the first

column of Fn is constant. The matrix algebra C = sd(Fn) is usually referred to as the circulant algebra. If

Σ is the modulo-n shift backward matrix

Σ =


1

. . .

1

1


then {I,Σ ,Σ 2, . . . ,Σn−1} is a basis for C and this basis is made by nonnegative and mutually orthogonal

matrices. It follows that the computation of the projection CA only requires additive operations among the

entries of A.

Haar. The discrete Haar transform is realized trough the action of the Haar matrix Wn, which can be

described recursively in terms of two matrices Qn and Dn. Let S1 = Q1 = D1 = 1, then for n = 2, 4, 8, . . . , 2m

let Sn = diag
(
1/
√

2, 1, . . . , 1
)

and

Qn =

[
1eT1 Qn/2
Qn/2 −1eT1

]
, Dn =

[
Dn/2Sn/2 0

0 Dn/2Sn/2

]
.

Thus, the Haar matrix is given by

Wn = QnDn =

[
1√
n
1eT1 Wn/2Sn/2

Wn/2Sn/2 − 1√
n
1eT1

]
.

Other equivalent definitions of this matrix can be found in the literature (e.g., [24, §1.4.3]) obtained by

permuting rows and columns of Wn. Using the proposed construction, it is not difficult to check that such

Wn is unitary, that its first column is (1/
√
n)1 and that its multiplication times a generic vector can be

performed very cheaply. The generated algebra W = sd(Wn) is called Haar matrix algebra.

Eta. Consider the matrix U defined as follows:

Ui,1 = 1/
√
n,

Uij =
√

2
n

{
cos
(

(2i−1)(j−1)π
n

)
+ sin

(
(2i−1)(j−1)π

n

)}
, j = 2, . . . , dn2 e

Ui,n2 +1 = (−1)i−1

√
n

, if n is even

Uij =
√

2
n

{
cos
(

(2i−1)(j−1)π
n

)
+ sin

(
(2i−1)(j−1)π

n

)}
, j = bn2 + 2c, . . . , n

for i = 1, . . . , n. The matrix U is unitary and real, moreover Ue1 = 1√
n
1. As a consequence, setting η = sdU ,

we obtain a weakly stochastic SDU low complexity matrix algebra (see [4, 18, 36, 37] for the fast sine-cosine
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transforms used in the computations involving U). For the sake of completeness let us recall the following

representation [4]: η = Cs +JCs where Cs is the algebra of symmetric circulant matrices and J is the reverse

identity matrix, (J)ij = 1 if i + j = n + 1, and (J)ij = 0 otherwise. It follows that any matrix A in η is

symmetric and persymmetric and satisfies the cross-sum rule

ai−1,j + ai+1,j = ai,j−1 + ai,j+1, i, j = 1, . . . , n

with border conditions a0,i = a1,n+1−i, i = 1, . . . , n. See also [14, 18, 41] and the references therein.

Hadamard. The Sylvester-Hadamard orthogonal matrix of order n = 2m is defined recursively by the

rule Hm = H1 ⊗Hm−1, where

H1 =

[
1 1

1 −1

]
and ⊗ is the Kronecker product. As the first column of H1 has all ones entries, we immediately see that

the first column of Hm has constant entries as well. The associated unitary matrix is 1√
2
mHm and the

associated matrix algebra sd( 1√
2
mHm) is therefore a weakly stochastic SDU algebra. The Hadamard matrix

has relevant applications both in statistics, where it is used, for instance, to uncover the dependencies in a

multivariable data set, and in error correcting codes theory. We refer to [44] for a detailed description of

applications and properties of the Hadamard matrix.

3. Preserving the nonnegativity of the entries. As the original matrix A is both nonnegative and

weakly stochastic, one ideally would like to have LA both nonnegative and weakly stochastic. The following

theorem characterizes the subspaces L which preserve the nonnegativity of a matrix A, when projecting A

onto them.

Definition 3.1. We say that L is a nonnegative matrix space if LA ≥ O for any A ≥ O, i.e., if the

projection A 7→ LA preserves the cone of nonnegative matrices.

Theorem 3.2. L is a nonnegative matrix space if and only if L has a basis of orthonormal nonegative

matrices.

Proof. It is straightforward to see that if L has a basis of orthogonal nonnegative matrices, then L is a

nonnegative space. Let π :Mn → L be the projection operator. If L is a nonnegative matrix space, we have

that π(M+
n ) ⊆M+

n , that is the projection leaves the cone of nonnegative matrices invariant. For the sake of

simplicity let us consider the vectorization operator which realizes the standard isomorphism between Mn

and Rn
2

. We have vec(M+
n ) ≡ Rn2

+ , Π = vec(π) ∈M+
n2 and σ(Π) = {0, 1}. The multiplicity of 1 = ρ(Π) is

the dimension of L. If dim(L) = 1 then the proof is trivial. If dim(L) = k > 1 then ρ(Π) is not simple; thus,

due to the Perron-Frobenius theorem, Π is reducible and there exists a permutation matrix Q ∈ M+
n2 such

that

QΠQT = Π1 ⊕ · · · ⊕Πk ⊕N,

where each Πi is irreducible and N is nilpotent. Therefore, there exist k positive vectors x1, . . . , xk such

that Πixi = xi. Let x̃i be the embedding of xi into Rn
2

, obtained by filling xi with zero entries, and set

yi = QTx̃i. Then Πyi = yi and yTi yj = 0 for i = 1, . . . , k and any j 6= i. Finally note that, if Yi ∈Mn is the

matrix such that yi = vec(Yi), we have Yi ≥ O, Yi ∈ L and (Yi, Yj) = yTi yj so that Y1, . . . , Yk is a basis for

L made by orthogonal nonnegative matrices.

It is immediate to note that the algebra of diagonal matrices D = sdI is a nonnegative matrix space. If

we define the preconditioner for PER as the projection of M on D then we have P = DM = diag(M) and the
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method in (1.4) coincides with the Jacobi iterative scheme. The convergence properties of such method are

well known (see for instance [30, 43]). We analyze them in more details in Section 5, taking into account the

structure of the matrices M ∈ SKn. Despite its simple formulation and cheap implementation, the diagonal

preconditioner does not preserve the weakly stochasticity of the original matrix. This has two drawbacks:

on the one hand the use of P = DM in (1.4) has a less clear relation to the power method, since the power

method preconditioner Ppm is weakly stochastic, as we will show in the next section; on the other hand,

the numerical implementations in Section 6 show that the property of being weakly stochastic ensures faster

convergence.

To our knowledge, if we exclude the multilevel generalizations, the only low complexity matrix algebra

satisfying the hypothesis of both Theorems 2.2 and 3.2 is the circulant algebra. The use of a circulant

preconditioner in this context has been analyzed in details in [40]. Although the analysis in [40] shows

a reduction of the number of iterations with respect the classical power method, the use of the circulant

algebra requires one Fourier transform and two complex vectors to be stored per each step. In Section 4.3 we

will introduce a new preconditioner based on a weakly stochastic matrix algebra diagonalized by a suitable

Householder transform. We propose a convergence analysis of PER with such novel preconditioner under

the assumption that A is symmetric. Although an exhaustive convergence analysis for the more realistic

case where A is generic is still missing, we point out that the low memory storage and the linear order of

operations per step required by the new technique make it effectively applicable also when the dimension of

the problem is huge. This is further highlighted by the numerical tests proposed in Section 6.

4. The choice of the preconditioner. In this section, we show that the power method preconditioner

Ppm for the PER scheme is a matrix belonging to a class of weakly stochastic SDU matrix algebras. Then

we develop a new matrix algebra defined in terms of Householder unitary transformations, leading to a new

cheap preconditioner for PER. In the subsequent sections we analyze the convergence of PER method and

we provide numerical evidences of the advantages obtained by using the new Householder preconditioner.

4.1. The power method embedded into a PER iterative scheme. Recall that the unprecon-

ditioned Euler-Richardson method is obtained by chosing P = I. Given M = I − τA ∈ SKn, the power

method preconditioner Ppm for the solution of Mx = y, instead, is the following rank-one correction of the

identity matrix

Ppm = I − τ

n
11

T .

We observe that Ppm belongs to any weakly stochastic SDU matrix algebra. In other words such

preconditioner belongs to the intersection ∩{sdU | U has a constant column}. Indeed, let U be any unitary

matrix such that Uek has constant entries, and consider the diagonal matrix D = diag(1, . . . , 1, 1−τ, 1, . . . , 1),

where 1 − τ lies in the k-th diagonal position, then Ppm = UDU∗. It is worth noting that this is somehow

analogous to the property shown in point 2 of Theorem 2.2. Indeed observe that, as for the projection

UM = I − τLA, the matrix Ppm has the structure Ppm = I − τE, where E is the weakly stochastic matrix

E = 11
T/n which indeed belongs to any weakly stochastic SDU algebra. Note moreover that

(4.8) P−1pm = I +

(
τ

1− τ

)
11

T

n
.

In view of Theorem 1.1, we can show the connection between the PER method applied to M ∈ SKn and the

power method for the ergodic distribution of a Markov chain described by S ∈ Σn.
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Theorem 4.1. Given S ∈ Σn let τ(S), AS and yS be defined as before Theorem 1.1. When the pre-

conditioner is P = Ppm, the PER method for the solution of Mx = (I − τ(S)AS)x = yS coincides with the

power method applied to S.

Proof. Let {xk} be the sequence defined by the PER method (1.4). By Theorem 1.1 and equation (4.8),

it follows that yTS1 = 1 − τ(S) and P−1pm1 = (1 − τ(S))−11. As a consequence we observe that 1
Txk = 1

implies

1
Txk+1 = 1

TP−1pmyS + 1
T(I − P−1pmM)xk = 1 .

Therefore, we can assume that the entries of the initial x0 sum up to 1, and that 1Txk = 1 for all k ≥ 0. We

have

xk+1 = P−1pmyS + (I − P−1pmM)xk

= yS +
τ(S)

n
1 + xk −Mxk −

1
TMxk

1− τ(S)

τ(S)

n
1

= yS + τ(S)ASxk

and, by Theorem 1.1, S = τ(S)AS + yS1
T, therefore xk+1 = Sxk, and the proof is complete.

Let λi(X) for i = 1, 2, . . . , n be the eigenvalues of the matrix X ordered as |λ1(X)| ≥ |λ2(X)| ≥ · · · ≥
|λn(X)|. As S ∈ Σn, by Theorem 1.1, we have |λ2(S)| < 1 and, by the well known behaviour of the power

method, we have that xk converges to the solution of Mx = yS as O(|λ2(S)|k). However, a different bound

can be observed by using the equivalence shown in Theorem 4.1 as indeed we will show in Section 5 that

xk converges to x as O(τ(S)k|λ2(AS)|k). Note that S ∈ Σn implies, by Theorem 1.1, that τ(S) < 1 and

AS is stochastic too, thus |λ2(S)| < 1 and τ(S)|λ2(AS)| < 1. However in several cases (for instance if AS
is primitive, i.e., AkS > O for some integer power k > 0), one has |λ2(AS)| < 1, thus τ(S)|λ2(AS)| < τ(S)

whereas |λ2(S)| ≤ τ(S), thus suggesting that τ(S)|λ2(AS)| could provide a better bound on the convergence

rate.

4.2. The Householder weakly stochastic matrix algebra. Let U be any weakly stochastic SDU

algebra. The power method is obtained by applying PER and choosing P inside U as the matrix with

the following eigenvalues: 1 − τ , with multiplicity one, and 1 with multiplicity n − 1. To improve the

performances of the power method, we define a new preconditioner by replacing the eigenvalues 1 with

the spectrum of the projection UM of M onto U . Note that the eigenvalue 1 − τ is an invariant, that is

1 − τ ∈ σ(UM ) for any weakly stochastic SDU algebra U . In fact, as AT
1 = 1 implies UT

A1 = 1, we have

UT
M1 = (I − τUA)T1 = (1− τ)1. Also note that UM minimizes the distance ‖X −M‖F among the matrices

X ∈ U , with ‖X‖F =
√

(X,X) being the Frobenius norm. Therefore, ‖UM −M‖F ≤ ‖Ppm −M‖F for any

weakly stochastic SDU space U , and the inequality is strict up to trivial cases. This motivates the choice

P = UM , in place of the classical P = Ppm, to improve the performances of the method.

The example spaces shown in Section 2.2 are defined in terms of fast transformations U whose space and

time complexities are O(n log n). In order to keep the complexity of the PER iterations as low as possible, we

define a weakly stochastic SDU algebra diagonalized by a Householder transformation. As we prove in the

next section this allows us to keep the time and space complexity per step linear in n. It is worth mentioning

that, due to their linear computational complexity, matrix algebras diagonalized by Householder unitary

transforms have been already involved in a number of applications. In particular they have been recently

used to define competitive iterative optimization algorithms, whose space and time per step complexity is
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O(n), c.f. [11, 19]. Let us introduce a linear space H of the form

H = {H(w)diag(z)H(w) | z ∈ Cn}, H(w) = I − 2ww∗, ‖w‖ = 1,

where H(w) is a Householder unitary matrix such that H(w)ek =
(
eiθ/
√
n
)
1, for some θ ∈ R. We shall

observe that all the Householder matrices of this kind are of the form H(w±), where w+ and w−, are

two suitable vectors in Rn. We firstly look at the k-th column of H(w), and we get (I − 2ww∗)ek =

ek − 2w(w∗ek) =
(
eiθ/
√
n
)
1. Therefore,

(4.9) 2wk w = ek −
eiθ√
n
1.

The k-th component of equation (4.9) implies 2wkwk = 1−
(
eiθ/
√
n
)
, so that wk 6= 0, θ ∈ {0, π}, and thus,

|wk|2 = (1±1/
√
n)/2. As a consequence the k-th entry of w is given by either of the two following formulas,

corresponding to θ = 0 and θ = π, respectively:

wk =

(√
n− 1

2
√
n

)1/2

eiφ, or wk =

(√
n+ 1

2
√
n

)1/2

eiφ, φ ∈ R .

Writing now the j-th component of (4.9) for j 6= k we obtain an analogous formula also for the other entries

of w:

wj = − eiφ
√

2 4
√
n
√√

n− 1
, or wj =

eiφ
√

2 4
√
n
√√

n+ 1
, φ ∈ R .

The previous relations can be written in compact form, showing that any vector w such that H(w) defines

a weakly stochastic algebra is either w = w+
φ or w = w−φ , where

w−φ = eiφ · β−n (
√
nek + 1), w+

φ = eiφ · β+
n (
√
nek − 1), β±n =

1
√

2 4
√
n
√√

n∓ 1
.

This finally shows an explicit formula for all the possible weakly stochastic Householder algebras. Note indeed

that the Householder matrices H(w+
φ ) and H(w−φ ) do not depend on φ ∈ R therefore, setting w± = w±0 , we

see that H(w+) and H(w−) are the only two Householder matrices which define a weakly stochastic SDU

algebra. They are both real unitary matrices and such that H(w±)ek = (±1/
√
n)1.

4.3. The Householder PER method. We use the notation

χ(B) = computational cost of the product B × vector .

It is not difficult to check that, when P = UM and U = sdU , the overall computational cost of the PER

method for the solution of Mx = y, M = I − τA ∈ SKn, is

(4.10) χ(A) + χ(U) + χ(U∗) +O(n)

for each step, plus a preprocessing phase which is required essentially for the computation of the eigenvalues

λ1, . . . , λn of UA, and whose computational complexity highly depends on the chosen U as, by (2.6), λi =

(U∗AU)ii.

The Householder PER method (HPER in short) is obtained by projecting M over one of the two

Householder SDU algebras introduced above. As we can freely choose either w+ or w−, in what follows we



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 254-272, July 2017.

265 Euler-Richardson Method Preconditioned by Weakly Stochastic Matrix Algebras

set w = w+ and assume for simplicity that the constant column of H(w) is the first one (i.e., k = 1 in the

construction of Section 4.2). Then we let H = sdH(w). Let us briefly analyze the computational cost of

HPER.

Set H(w) = I − 2wwT, where w = βn(
√
ne1 − 1) and β2

n = 1
2

1√
n(
√
n−1) . We immediately see that

χ(H(w)) = O(n). Therefore, for this choice, even if A is a sparse or a strongly structured matrix, the

complexity per step of HPER is dominated by χ(A) as the estimate (4.10) becomes χ(A) + O(n) when

U = H(w). Note that this is the same complexity required by the standard power method iterations.

Note that a preprocessing phase is required for the computation of the diagonal entries of H(w)AH(w)

(that is, the eigenvalues of HA), as well as to compute Aw, ATw and H(w)y = y + 2βn(n−1/2 − y1)w.

Observe that

(4.11) H(w)AH(w) = A− 2(AwwT + wwTA− 2γnww
T),

where

(4.12) γn = wTAw = nβ2
n

(
(A)11 −

1√
n
− 1√

n
(A1)1 + 1

)
.

Therefore, from (4.11), we obtain the equalities

diag(H(w)AH(w))ii = (A)ii − 2wi

(
(Aw)i + (wTA)i − 2γnwi

)
,

i = 1, . . . , n, which, together with (4.12), show that χ(A) operations are sufficient to compute the diagonal

entries of H(w)AH(w). We conclude that the overall cost of the preprocessing phase is χ(A)+χ(AT)+O(n).

Let us point out that even in the worst case, when A is a general, non structured and dense matrix, by the

particular form of w, O(n2) additive operations and O(n) multiplicative operations are sufficient to compute

Aw and wTA.

5. Convergence analysis. In this section, we analyze the convergence of the preconditioned Euler-

Richardson method applied to the linear system Mx = y when M ∈ SKn and the preconditioner P is the

optimal fit of M onto a matrix algebra sdU . First of all we state the following simple but somewhat general

theorem. We shortly outline a possible proof.

Theorem 5.1. Let M ∈ SKn and L be a subspace of Mn such that I ∈ L and A ≥ LA ≥ O, then

ρ(H(LM )) < 1. That is the PER scheme (1.4) with P = LM converges.

Proof. The linearity of the projection and the fact that I ∈ L imply that LM = I − τLA. Since

A ≥ LA ≥ O, the Perron-Frobenius theorem implies ρ(LA) ≤ ρ(A) = 1. Thus, LM is an M-matrix as

well, and L−1M ≥ O. Moreover clearly LM − M = τ(A − LA) ≥ O. We have as a consequence that

both H(LM ) and (I − H(LM ))−1 are nonnegative matrices. Indeed H(LM ) = L−1M (LM −M) ≥ O and

(I − H(LM ))−1 = M−1(LM −M + M) = M−1(LM −M) + I ≥ O. Let ρ = ρ(H(LM )) and let z ≥ 0,

z 6= 0 be such that H(LM )z = ρz. We have that y = (I − H(LM ))−1z is nonzero and nonnegative, and

z = (1− ρ)(I −H(LM ))−1z = (1− ρ)y. But z is nonzero and nonnegative, that is (1− ρ) > 0.

It is worth noting that Theorem 5.1 is related with the concept of regular splitting of M-matrices, for

example, see [43]. In fact, under the hypothesis of Theorem 5.1, letting N = LM −M , we observe that

M = LM −N is a regular splitting of M , that is N ≥ 0 and L−1M ≥ 0.
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Corollary 5.2. Let M = I − τA ∈ SKn and let {J1, . . . , Jm} be a set of nonnegative mutually orthog-

onal matrices such that

1. #{nonzero entries of Jk} = 1 for any k ∈ {1, . . . ,m}, and

2. I ∈ L = span{J1, . . . , Jm}.

Then LM is invertible and the PER method with P = LM is convergent.

Proof. To prove this corollary we simply show that the hypothesis of the previous theorem are all

satisfied. First of all, since J1, . . . , Jm are orthogonal and nonnegative, L satisfies the hypothesis of Theorem

3.2 by construction, thus LA ≥ O.

Now, for any k ∈ {1, . . . ,m}, let (Jk)ik,jk be the unique nonzero element of Jk. We can obviously

assume (Jk)ik,jk = 1 without losing generality. Then, in the notation of (2.5), we have B = I, ck = aik,jk
and LA =

∑
k aik,jkJk, implying that for any i ∈ {1, . . . , n} it holds

n∑
j=1

|(LA)ij | ≤
n∑
j=1

|(
m∑
k=1

aik,jkJk)ij | =
∑

j,k:(ik,jk)=(i,j)

|aik,jk | ≤
n∑
j=1

|ai,j |,

and hence,

ρ(LA) ≤ ‖LA‖∞ = max
i

n∑
j=1

|(LA)ij | ≤ max
i

n∑
j=1

|ai,j | ≤ ‖A‖∞ = 1 = ρ(A).

Therefore, ρ(LA) ≤ ρ(A). It follows that LM = I − τLA is invertible and L−1M ≥ O. Finally, note that

(A− LA)ij =

{
aij ij /∈ {i1j1, . . . , imjm}
0 otherwise

which implies A ≥ LA. The thesis follows.

The set {e1eT1 , e2eT2 , . . . , eneTn} is a simple example of nonnegative matrices satisfying the hypothesis of

Corollary 5.2. Their linear span is the algebra of diagonal matrices D = sdI, the PER method applied

with P = DM coincides with the classical Jacobi method and it is well known to be convergent (e.g., see

[43, §3]). Nonetheless the next Theorem 5.3 shows that a more precise control on the rate of convergence

can be achieved. Recall that the classical unpreconditioned ER scheme is obtained for P = I and one has

ρ(H(I)) ≤ τ .

Theorem 5.3. Let D = sdI be the algebra of diagonal matrices and let M = I − τA ∈ SKn. If

ε = arg max
{
λ ≥ 0 | mini aii ≥ 1−τλ

1−τ1+λ

}
, then ρ(H(DM )) ≤ τ1+ε. In particular ρ(H(DM )) ≤ τ for any

M ∈ SKn and if mini aii ≥ (1 + τ)−1 then ρ(H(DM )) ≤ τ2.

Proof. By exploiting the entries of H = I −D−1M M we have

(H)ij =

{
τaij

1−τaii if i 6= j,

0 if i = j.

By Gershgorin localization theorem, the eigenvalues of H are contained inside the ball in C centered over

the origin and with radius R = maxi
∑
j 6=i(H)ij . By using the identity

∑
j aij = 1 and by observing that

aii ≥ 1−τε
1−τ1+ε if and only if 1−aii

1−τaii ≤ τ
ε, we get

∑
j 6=i(H)ij = τ 1−aii

1−τaii ≤ τ
1+ε, thus ρ(H) ≤ R ≤ τ1+ε.
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Note that the Theorem 5.3 shows that the larger the diagonal entries of A are, the smaller ρ(H(DM ))

can be.

For the sake of completeness let us point out that other examples of a set of matrices satisfying the

hypotheses of Corollary 5.2 have been considered in the literature. For example the authors of [15] define the

set of matrix spaces (and matrix algebras) {U∆U∗ : ∆ ∈M(E)}, where U is a unitary matrix, E ∈ {0, 1}n×n
is a non-degenerate mask matrix,M(E) = {E ◦A s.t. A ∈Mn} and ◦ is the Hadamard entry-wise product.

It is not difficult to observe that any space L = M(E) indeed admits a basis of matrices {J1, . . . , Jm}
satisfying the hypothesis of the corollary. Of course, for such space L, the matrix LM is LM = E ◦M .

5.1. Projecting over a weakly stochastic algebra. The results presented in this section give a

further and more detailed intuition on why, when M ∈ SKn, a preconditioner for (1.4) based on weakly

stochastic matrix algebras behaves well. We assume for the remaining part of this section that any stochastic

matrix A, defining the given stochastic M-matrix M = I − τA ∈ SKn, has a simple dominant eigenvalue

ρ(A) = 1.

Let U = sdU be a weakly stochastic matrix algebra. For a matrix M = I − τA ∈ SKn we have

UM = I − τUA = I − τUdiag(zA)U∗ (which we assume invertible) and

H(UM ) = I − (I − τUdiag(zA)U∗)−1(I − τA),

where zA is the vector whose entries are the eigenvalues of UA, ordered as usual. Recall that the components

of zA are the diagonal entries of U∗AU .

We claim that, for any such algebra U , the spectrum of the iteration matrix H(UM ) only depends on

the eigenvalues λi(A) and λi(UA), for i 6= 1. In other words when the preconditioner is chosen projecting M

over a weakly stochastic algebra, the leading eigenvalues λ1(A) = λ1(UA) = 1 of A and its projection, are

not involved in the analysis of the convergence.

To this end let us observe that, since U is weakly stochastic, there exists an index k ∈ {1, . . . , n} such

that Uek has constant elements, that is Uek = α1 for some α ∈ C such that nαα = 1. Therefore, the k-th

entry of zA is

(zA)k = (U∗AU)kk = eTkU
∗AUek = α1TAUek = α1TUek = ααn = 1.

Observe analogously that eTkU
∗(I − τA)U = (1 − τ)eTk , that is, the k-th entry of the k-th row of U∗MU

is 1 − τ and the remaining components are all zeros. The same holds for U∗UMU . It follows that the two

matrices U∗MU and U∗UMU have the same block structure, which we represent here when k = 1 for ease

of notation:

(5.13) U∗MU =

(
1− τ 0T

f I − τV ∗AV

)
, U∗UMU =

(
1− τ 0T

0 I − τdiag(V ∗AV )

)
,

where V is the partial isometry given by the last n − 1 columns of U and f is a suitable n − 1 vector. Of

course, also U∗H(UM )U= I − (U∗UMU)−1(U∗MU) has the same structure.

Now consider the matrix A2 = A− q1T/
√
n, where q is any vector such that q ≥ 0, qT1 =

√
n. Also, let

A = XJX−1 be the Jordan decomposition of A. As ρ(A) = 1 is a simple eigenvalue of A, the k-th row of

X−1 is constant. That is eTkX
−1 = 1

T/
√
n and Jek = JTek = ek. Note moreover that eTkX

−1q = 1. Then

(5.14) X−1A2X = X−1
(
A− qeTkX−1

)
X = J −X−1qeTk =

(
1 0T

0 J̃

)
−
(

1 0T

q̃ O

)
,
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where J̃ is the Jordan form of A except for the 1× 1 block associated with ρ(A), q̃ is the n− 1 vector made

by the entries of X−1q except for the k-th one, and the right most block representation has been shown for

the case where k = 1, for notational convenience.

We deduce that, for any q ≥ 0 with qT1 =
√
n, we have σ(A2) = σ(X−1A2X) = σ(J̃) ∪ {0} =

{σ(A) \ {1}}∪ {0}. Moreover note that this shows that the eigenvalues of A2 and V ∗AV coincide except for

the 0 eigenvalue. In fact U∗MU and X−1MX are similar and thus, comparing (5.13) and (5.14), the blocks

I − τV ∗AV and I − τ J̃ have same eigenvalues. The same holds for the eigenvalues of UA2 and diag(V ∗AV ).

Therefore, for any weakly stochastic algebra U , the spectrum of the iteration matrix H(UM ) of the PER

method (1.4), can be decomposed as

σ(H(UM )) = σ(I − (I − τUA2
)−1(I − τA2))

which finally shows our claim.

It is worth noting that the observations did so far apply to the choice P = Ppm. Precisely, from (4.8)

we get

H(Ppm) = I − P−1pmM = τ(A− 11
T/n)

and therefore, choosing q = 1/
√
n,

σ(H(Ppm)) = σ(τA− τ

n
11

T) = σ(τX−1AX − τ

n
X−111TX) = σ(τA2).

By using Theorems 1.1 and 4.1, we deduce a new upper-bound on the convergence rate of the power method

applied to S ∈ Σn. Namely, we have that the sequence Sxk converges to the ergodic distribution of S with

a rate of convergence bounded by O(τ(S)|λ2(AS)|), where τ(S) and AS are defined in terms of S as in

Theorem 1.1.

As a matter of fact, when the preconditioner in U is not Ppm, but instead is chosen in U as the matrix

with smaller Euclidean distance from M , we cannot provide a theoretical control on the eigenvalues of

I− (I− τUA2
)−1(I− τA2). However, both intuition and numerical tests shown in Section 6 suggest that the

spectral radius of H(UM ) is significantly smaller than the one of H(Ppm).

For the sake of completeness, we observe that, when A is stochastic nonnegative and symmetric, further

results hold as stated in the following Theorem 5.4, where the eigenvalues of W (symmetric) are ordered as

λ1(W ) ≥ · · · ≥ λn(W ).

Theorem 5.4. Let M = I − τA ∈ SKn be such that A is symmetric and ρ(A) is simple. Let U = sdU

be a weakly stochastic matrix algebra. Then

ρ(H(UM )) ≤ τ max

{
λ2(UA)− λn(A)

1− τλ2(UA)
,
λ2(A)− λn(UA)

1− τλn(UA)

}
.

Proof. To lighten the notation, we denote with M2 the matrix I−τA2, where A2 is the matrix such that

A = 11
T/n+A2. Note that the symmetry of A implies that both M and UM are positive definite matrices.

In fact, M is clearly real symmetric and σ(M) ∈ R+, whereas UM has the form UM = Udiag(U∗MU)U∗.

Therefore, the eigenvalues of UM are inside the convex hull of σ(M), so they are real and positive, implying

that UM is positive definite. A known consequence of the Weyl’s inequalities states that, for any two positive

definite matrices X and Y , the following inequalities hold (see for instance [2])

λn(X)λn(Y ) ≤ λn(XY ) ≤ λ1(XY ) ≤ λ1(X)λ1(Y ).
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Collecting such inequalities, the considerations we did shortly above the statement of this theorem, and the

fact that λi(U−1M ) = λi(UM )−1 for any i ∈ {1, . . . , n}, we get

ρ(H(UM )) = max
{
λ1(U−1M2

M2)− 1, 1− λn(U−1M2
M2)

}
≤ max

{
λ2(M)

λn(UM )
− 1, 1− λn(M)

λ2(UM )

}
= τ max

{
λ2(UA)− λn(A)

1− τλ2(UA)
,
λ2(A)− λn(UA)

1− τλn(UA)

}
and the thesis follows.

In particular, under the same hypotheses of Theorem 5.4, we have

ρ(H(UM )) <
2τ

1− τ
,

and hence, if τ is small enough, precisely τ ≤ 1/3, then PER with P = UM and A symmetric, converges for

any choice of the weakly stochastic algebra U .

6. Numerical comparisons. In this final section we present a number of numerical tests comparing

the behaviour of three methods on several synthetic and real-world datasets. The linear system solved is

Mx = (I − τA)x = y where y is a random vector with entries in [0, 1], τ = 0.9 and A is a stochastic

matrix defined as follows. We consider X, the adjacency matrix of the dataset, then we normalize it into the

associated transition matrix T = D−1X, with D being the diagonal matrix dii = eTi X1. In order to force

a lower bound on the diagonal entries, we introduce a further parameter 0 < β < 1, and finally define the

matrix A as the convex combination A = βI + (1− β)TT. The standard Pagerank random walk is retrieved

for β = 0. The methods are defined by different choices of the preconditioner P in (1.4):

HPER. The Euler-Richardson method preconditioned via the optimal fit P = HM , where H = sdH(w)

is the Householder weakly stochastic matrix algebra discussed in Section 4.3. This method consists of a

preprocessing phase in which the quantities βn, γn, Aw, H(w)y and diag(H(w)AH(w)) must be computed.

The overall cost of this initial computation is O(χ(A) + χ(AT)) + O(n). Then each step of the method is

performed by the recursive computation of xk+1 = H−1M y+(I−H−1M M)xk, and thus requires O(χ(A))+O(n)

operations.

Jacobi. The Euler-Richardson method preconditioned with the diagonal optimal fit matrix P = DM =

I − τdiag(A). The rate of convergence is given here by Theorem 5.3. Note that D can be seen as the

span of n orthogonal nonnegative rank-one matrices, and thus, accordingly with Theorem 3.2, both DA and

D−1M maintain the nonnegativity of the entries. On the other hand this choice for P does not ensure any

stochasticity property of P−1, in the general case. We recall that this method coincides with the standard

Jacobi iterations.

Power method. The Euler-Richardson method preconditioned with the power method matrix Ppm

defined as the following rank-one correction of the identity Ppm = I − τ
n11

T. As discussed in Section 4.1,

this method coincides with the power method applied to the stochastic eigenproblem Sp = p, where S is

obtained from A as discussed in Theorem 1.1.

It is worth mentioning that both the Jacobi and the power methods can count on a convergence theorem

with an explicit upper bound on the convergence rate. The spectral radius of the iteration matrix for the
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Random matrix of order n = 107

β HPER Jacobi power method

#
it

er
a
ti

o
n

s 0.1 11 104 37

0.2 8 99 32

0.5 6 60 54

0.9 4 19 141

Table 1

The table shows the number of iterations required by the three methods to achieve a precision of 10−7 on the residual

‖Mx− y‖, when β ranges from 0.1 to 0.9. The coefficient matrix here is defined in terms of a random binary matrix of order

107. The number of iterations shown is the median over 10 tests.

Jacobi method is upper-bounded by τ1+ε, where ε is defined as in Theorem 5.3 and increases with the

magnitude of the diagonal entries of A. We have introduced the parameter β to appreciate the acceleration

gained by this method when the aii are close to 1.

Similarly, the spectral radius of the iteration matrix for the power method is upper-bounded by τ |λ2(A)|.
Note that this convergence rate is linear in τ , but the method can be sensibly faster than the Jacobi one,

when the second eigenvalue of A is small. This property is essentially given by the use of a weakly stochastic

preconditioner.

Unfortunately, we do not have an explicit convergence theorem for HPER for non-symmetric problems.

However note that the use of a weakly stochastic preconditioner combines somehow the two previous con-

vergence properties. In fact, on the one hand, as for the power method, the dominant eigenvalue of A is

deflated and does not influence the spectral radius of the iteration matrix, on the other hand, as for the

Jacobi scheme, the preconditioner is related with the diagonal entries of the matrix U∗AU , that is similar

to A. The tests that we present in Tables 1 and 2 show that HPER runs faster than the Jacobi and power

methods and, in particular, its convergence rate increases with β (as the Jacobi iterations do) and increases

when the magnitude of the subdominant eigenvalue of A decreases (as for the power method).

We point out that the choice τ = 0.9 has been done accordingly with typical network applications, as

for instance the Google’s Pagerank centrality. It is worth pointing out that the smaller τ is, the simpler the

problem is, thus we do not consider small values of τ in the numerical experiences.

Table 1 shows the results for a randomly generated binary matrix X. The eigenvalues of X in this case

cluster around the origin (e.g., [38, 40]). As the value of β increases, the number of iterations shown is the

median over 10 tests. The HPER method significantly outperforms the other ones. The subsequent Table 2

shows, instead, the behaviour of the three methods on a number of real world datasets. The test matrices

considered are part of the University of Florida sparse matrix collection [12]. The matrices considered are

both symmetric (undirected) and unsymmetric (directed).
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the paper and their insightful suggestions.
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Network n β
# iterations

HPER Jacobi power method

U
n

d
ir

ec
te

d Delaunay19 524 288 0.1 156 184 172

Delaunay21 2 097 152 0.2 178 206 221

Italy OSM 6 686 493 0.2 201 214 241

Europe OSM 50 912 018 0.2 159 167 186

D
ir

ec
te

d

Indian web crawl 1 382 908 0.2 187 209 235

Wikipedia 2006 3 148 440 0.1 159 177 175

Wikipedia 2007 3 566 907 0.1 157 178 173

LJournal 2008 5 363 260 0.1 154 192 185

Table 2

The table shows the number of iterations required by the three methods to achieve a precision of 10−7 on the residual

‖Mx − y‖. Tests here have been made on real world matrices of different sizes, and the value of β has been chosen between

0.1 and 0.2. Tests for larger values of β (here omitted) show a significant acceleration of HPER over the other two methods.
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