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THE COMBINATORIAL STRUCTURE OF EVENTUALLY
NONNEGATIVE MATRICES∗
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Abstract. In this paper it is shown that an eventually nonnegative matrix A whose index of
zero is less than or equal to one, exhibits many of the same combinatorial properties as a nonnegative
matrix. In particular, there is a positive integer g such that Ag is nonnegative, A and Ag have the
same irreducible classes, and the transitive closure of the reduced graph of A is the same as the
transitive closure of the reduced graph of Ag. In this instance, many of the combinatorial properties
of nonnegative matrices carry over to this subclass of the eventually nonnegative matrices.
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1. Introduction. The Perron–Frobenius Theorem for irreducible nonnegative
matrices has spawned a wealth of interesting ideas in the study of nonnegative ma-
trices. Graph–theoretic spectral theory of matrices continues to develop, and in this
paper we are interested in extending many of these ideas to the class of eventually
nonnegative matrices. The relationship between the combinatorial structure of a non-
negative matrix and its spectrum, eigenvectors, and Jordan structure is surprisingly
elegant and beautiful, as well as useful. Surveys of results of this type can be found
in Berman and Plemmons [1], Hershkowitz [5], and Schneider [13].

Friedland [3], Handelman [4], Zaslavsky and Tam [16], and Zaslavsky and Mc-
Donald [15] have looked at extending some of these combinatorial ideas to eventually
positive matrices and eventually nonnegative matrices. In their study they found
examples of eventually nonnegative matrices for which the relationship between the
combinatorial structure of the matrix, and its spectrum, eigenvectors, and Jordan
structure was inconsistent with that of nonnegative matrices. For example, there are
irreducible eventually nonnegative matrices for which the spectral radius is a multiple
eigenvalue. Even when the spectral radius is a simple eigenvalue of an irreducible even-
tually nonnegative matrix, the associated eigenvector need not be positive. Moving to
properties of reducible eventually nonnegative matrices, we see that the combinatorial
spectral properties exhibited by reducible nonnegative matrices need not carry over
to eventually nonnegative matrices.

In this paper we show that it is really the contributions from the nilpotent part
of an eventually nonnegative matrix that determine whether or not the combinatorial
structure will be an accurate predictor of its spectral properties. In Section 3, we
show that if A is an eventually nonnegative matrix that is nonsingular, or if all the
Jordan blocks in the Jordan form of A associated with the eigenvalue zero are 1× 1,
then there is a positive integer g such that the transitive closure of the reduced graph
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of A is the same as the transitive closure of the reduced graph of Ag.
In Section 4, we show that many of the combinatorial properties of reducible

nonnegative matrices carry over to reducible eventually nonnegative matrices provided
the index of zero is less than or equal to one.

Section 2 contains a list of the definitions and notation used in this paper.

2. Definitions and Notation. For the set {1, ..., n}, we write 〈n〉. The matrix
A ∈ Mn(R) (the n× n matrices with real entries) is called:
(strictly) positive (A � 0) if alj > 0 for all l, j ∈ 〈n〉;
semipositive (A > 0) if alj ≥ 0 for all l, j ∈ 〈n〉 and A 	= 0; and
nonnegative (A ≥ 0) if alj ≥ 0 for all l, j ∈ 〈n〉.

We say the matrix A is eventually nonnegative if there exists a positive integer
N such that for all integers g ≥ N , Ag ≥ 0. The matrix A is eventually positive if, in
addition, Ag � 0 for all integers g ≥ N .

Let K,L ⊆ 〈n〉. The matrix AKL is the submatrix of A whose rows are indexed
by K and whose columns are indexed by L. The sets K1,K2, ...,Kk partition a set K
if they are pairwise disjoint and

⋃k
j=1 Kj = K. We allow Kj = ∅ for ease of notation

in some places. If κ = (K1, ...,Kk) is an ordered partition of a subset of 〈n〉, we write

Aκ =



AK1K1 AK1K2 . . . AK1Kk

AK2K1 AK2K2 . . . AK2Kk

...
...

...
AKkK1 AKkK2 . . . AKkKk


 .

We say Aκ is block lower triangular if AKlKj = 0 whenever l < j.
Let A be a square, complex matrix. The spectrum of A, σ(A), is the multiset

consisting of the eigenvalues of the matrix. The spectral radius of A, ρ(A), is the
maxλ∈σ(A) |λ|.

Consider the multiset σ = {λ1, ..., λn}. Let σ̄ be the multiset {λ̄1, ..., λ̄n}, where
λ̄ is the complex conjugate of λ. If σ̄ = σ, then we say the multiset is self-conjugate.
Let ρ(σ) = maxλ∈σ |λ|.

We let multλ(A) denote the degree of λ as a root of the characteristic polynomial
of A, and indexλ(A) denote the degree of λ as a root of the minimal polynomial of
A. Let t = index0(A), and for each i ∈ 〈t〉, set ηi(A) = nullity(Ai)−nullity(Ai−1).
The sequence η(A) = (η1(A), η2(A), . . . , ηt(A)) is referred to as the height or Weyr
characteristic of A.

Let η = (η1, η2, . . . , ηt) and ν = (ν1, ν2, . . . , νt) be two sequences of nonnegative
integers. (Append zeros if necessary to the end of the shorter sequence so they are
the same length.) We say ν is majorized by η if

∑j
l=1 νl ≤

∑j
l=1 ηl for all 1 ≤ j ≤ t

and
∑t
l=1 νl =

∑t
l=1 ηl. We write ν � η.

The generalized eigenspace of the matrix A corresponding to λ, denoted Eλ(A),
is the nullspace of (A− λI)r, where r = indexλ(A).

A Jordan chain corresponding to Eλ(A) is a set of nonzero vectors {x, (λI −
A)x, ..., (λI − A)r−1x}, where (λI − A)rx = 0. A Jordan basis for the generalized
eigenspace of A is a basis of Eλ(A) consisting of the union of Jordan chains.
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We denote the l× l lower triangular Jordan block associated with the eigenvalue
λ by Jl(λ) and write J(A) to represent the Jordan canonical form of the matrix A.
In order to make the distinction between a collection of Jordan blocks and a matrix
in Jordan form, we denote the collection of Jordan blocks associated with the matrix
A by J (A). Notice that for λ 	= 0, Jl(λ) ∈ J (A) if and only if Jl(λg) ∈ J (Ag) and
appears the same number of times. If the index0(A) ≥ 2, then the Jordan structure
corresponding to the eigenvalue 0 will be different between the two matrices.

Let J be a matrix in Jordan canonical form. The collection of Jordan blocks J (J)
is self-conjugate if whenever Jl(λ) ∈ J (J), the matrix Jl(λ̄) ∈ J (J) and appears the
same number of times.

All graphs in this paper are directed graphs. Let Γ = (V,E) be a graph where V
is a finite vertex set and E ⊆ V × V is an edge set. A path from j to m is a sequence
of vertices j = v1, v2, ..., vt = m with (vl, vl+1) ∈ E for l = 1, ..., t− 1. A simple path
is a path where the vertices are pairwise distinct. The empty path will be considered
to be a simple path linking every vertex to itself. The path v1, v2, ..., vt is a cycle if
v1 = vt and v1, v2, . . . , vt−1 is a simple path.

Let Γ = (V,E) be a graph. We say a vertex l has access to a vertex j if there
is a path from l to j in Γ. A vertex is final if it does not access any other vertex in
Γ. A vertex is initial if it is not accessed by another vertex. We define the transitive
closure of Γ by Γ = (V,E) where E = {(j, l) | j has access to l in Γ}. If l has access
to j and j has access to l, we say j and l communicate. The communication relation
is an equivalence relation. Thus we can partition V into equivalence classes which we
will refer to as the classes of Γ.

We define the graph of a matrix A by G(A) = (V,E) where V = 〈n〉 and (l, j) ∈ E
whenever alj 	= 0.

A graph Γ is said to be cyclically h-partite if there exists a partition of V into
h nonempty sets, V1, .., Vh, such that each edge of Γ is from Vi to Vi+1 for some
i = 1, ..., h where Vh+1 is taken to be V1.

A square matrix A is called h-cyclic if G(A) is cyclically h-partite. In other words,
there is an ordered partition of 〈n〉 into ω = (V1, V2, ..., Vn) such that

Aω =




0 AV1V2 0 . . . 0
0 0 AV2V3 . . . 0
...

...
...

. . .
...

0 0 0 . . . AVh−1Vh

AVhV1 0 0 . . . 0



.

The largest possible h for which A is h-cyclic is called the cyclic index of A.
Let J be a matrix in Jordan canonical form with ρ(J) > 0. The collection J (J)

is h-cyclic if Jl(λ) ∈ J (J) implies Jl(e
2πi
h λ) ∈ J (J) and appears the same number of

times. For nonnegative matrices, this is equivalent to J = J(A), where A is h-cyclic.
The largest h for which J (J) is h-cyclic is called the cyclic index of J (J).

Let σ = {λ1, ..., λn} be a multiset of complex numbers. We say σ is a Frobenius
multiset if there exists h ≤ n such that
(i) ρ(σ) > 0.
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(ii) σ ∩ {z ∈ C : |z| = ρ(σ)} = {ρ(σ), e 2πi
h ρ(σ), e

4πi
h ρ(σ), ..., e

2(h−1)πi
h ρ(σ)}.

(iii) σ = e
2πi
h σ.

Let σ be a Frobenius multiset. Let h be the number of eigenvalues of maximum
modulus ρ(σ). Then h is called the index of cyclicity of σ. We say σ is a Frobenius
multiset with cyclic index h.

Let J be a matrix in Jordan canonical form. We say J (J) is a Frobenius collection
if there exists a positive h such that
(i) ρ(J) > 0, there is exactly one Jordan block corresponding to ρ(J), and this block
is 1× 1.
(ii) If λ ∈ σ(J) and |λ| = ρ(J), then λ = ρ(J) · (hth root of unity).
(iii) J (J) is h-cyclic.
We will refer to J (J) as a Frobenius collection with cyclic index h.

A square matrix A is reducible if there exists a permutation matrix P such that

PTAP =
[
B 0
C D

]
,

where B and D are nonempty square matrices. The matrix A is irreducible if it is not
reducible. Irreducibility is equivalent to the property that every two vertices in G(A)
communicate. The classes of G(A) are also referred to as the irreducible classes of A.

Given a matrix A, there exists an ordered partition κ = (K1,K2, ...,Kk) of 〈n〉
such that each Ki corresponds to a class of G(A) and Aκ is block lower triangular.
The matrix Aκ is referred to as the Frobenius normal form of A. A class Kj is said
to be singular if AKjKj is singular and nonsingular otherwise.

We define the reduced graph of A by R(A) = (V,E) where V = { K | K is an
irreducible class of A }, and E = { (K,L) | there is edge from a vertex j ∈ K to a
vertex l ∈ L in G(A) }.

The singular length of a simple path in R(A) is the sum of the indexes of zero
of each of the singular vertices it contains. The level of a vertex K is the maximum
singular length over all the simple paths in R(A) that terminate at K.

Let νi(A) be the number of singular vertices with level i in R(A) and let m be
the largest number for which νi(A) 	= 0. Then ν(A) = (ν1(A), . . . , νm(A)) is referred
to as the level characteristic of A.

3. The Relationship of the Frobenius Normal Form of an Eventually
Nonnegative Matrix to the Frobenius Normal Form of its Powers. The
nonnegative matrices exhibit many combinatorial properties that do not appear to
carry over to the eventually nonnegative matrices. In this section we begin by showing
how to construct an irreducible eventually nonnegative matrix for which the spectral
radius is a multiple eigenvalue. We then show the nilpotent part of an eventually
nonnegative matrix is the major contributor to the apparent lack of combinatorial
consistency between nonnegative and eventually nonnegative matrices.

Example 3.1. We take a reducible nonnegative matrix and turn it into an irre-
ducible eventually nonnegative matrix by adding an an appropriate nilpotent matrix.
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Let

B =




1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1


 .

Then B is a reducible nonnegative matrix with ρ(B) = 2, a double root. Notice
x = [1,−1, 0, 0]T is a right nullvector of A and yT = [0, 0, 1,−1] is a left nullvector A.
Let

C =




0 0 1 −1
0 0 −1 1
0 0 0 0
0 0 0 0


 .

Then BC = CB = C2 = 0. Let A = B + C. Then Aj = Bj for all j ≥ 2, so A is
eventually nonnegative. On the other hand,

A =




1 1 1 −1
1 1 −1 1
1 1 1 1
1 1 1 1




is irreducible with ρ(A) = 2 appearing as an eigenvalue with multiplicity two. Notice
index0(A) = 2.

Now consider

D =




1 1 0 0
1 1 0 0
1 1 2 2
1 1 2 2


 .

Then D+C is an irreducible eventually nonnegative matrix with the spectral radius 4
as a simple root. The associated eigenvector is z = [0, 0, 1, 1]T , which is not a positive
vector.

Using this technique, we can create reducible eventually nonnegative matrices for
which various combinatorial properties of nonnegative matrices fail, and we encourage
interested readers to experiment on their own. We also present a few more examples
at the end of our paper

We now investigate eventually nonnegative matrices for which the index of zero
is at most one.

First, we choose a g such that if a submultiset of σ(A) raised to the gth power
is a self-conjugate Frobenius multiset, then the submultiset itself is a self-conjugate
Frobenius multiset.

Let

DA = {d | θ − α = c
d , where re2πiθ ∈ σ(A), re2πiα ∈ σ(A), r > 0,

c ∈ Z
+, d ∈ Z \ {0}, gcd(c, d) = 1}.
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DA compares the rational portion of the exponent for nonzero eigenvalues of the same
modulus. Any nonrational differences are ignored. If no two eigenvalues of a matrix
A have the same modulus, or if the only eigenvalues of the same modulus are equal,
then DA = ∅.

By choosing a prime power g that is not an element of DA, the gth powers
of distinct elements in σ(A) are distinct elements in σ(Ag). For example, suppose
σ(A) = {1,−1} = {e0, e

(2πi)
2 }, then DA = {±2}. In this instance, σ(A) is a self-

conjugate Frobenius multiset. The even powers of the eigenvalues of A form two
Frobenius multisets each with a value of 1. The odd powers of the eigenvalues of A
are distinct and form a self-conjugate Frobenius multiset with the same cyclicity as
σ(A). In particular, if g is any odd prime, λ ∈ σ(A) and γ ∈ σ(A), then λg = γg if
and only if λ = γ.

Lemma 3.2. Let A ∈ Mn(R) . Let g be a prime number such that g 	∈ DA. If
λ ∈ σ(A) and γ ∈ σ(A) are such that λg = γg, then λ = γ.

Proof. Let λ = re2πiθ ∈ σ(A). Let γ be an element of σ(A) such that γg = λg =
rge2πigθ . Then we can write γ = re2πiθ+

2πik
g = re2πi(θ+

k
g ) where k ∈ {0, 1, ..., g− 1}.

If k = 0, then γ = λ. Suppose k 	= 0. Consider the difference θ − (θ + k
g ) = −kg ,

which is in simplified form since g is prime. Thus g ∈ DA, a contradiction. Therefore
γ = λ.

Lemma 3.3 takes advantage of the irreducibility of the lower block in the gth

power to show that the block above it is zero.

Lemma 3.3. Let A be an eventually nonnegative matrix such that index0(A) ≤ 1.
Let g be a prime number such that g 	∈ DA and As ≥ 0, for all s ≥ g. If Ag is
reducible, let ω = (W1,W2) be the ordered partition of 〈n〉 such that (Ag)ω is block
lower triangular and (Ag)W2W2 is irreducible or a 1×1 zero block. Then AW1W2 = 0.

Proof. Let G = Ag. Then

Gω =
[
GW1W1 0
GW2W1 GW2W2

]
,

with GW2W2 being irreducible. We will consider two cases: ρ(GW2W2) = 0 and
ρ(GW2W2) 	= 0.

If ρ(GW2W2) = 0, then GW2W2 is a 1× 1 block whose entry is zero. Thus there is
a nonzero eigenvector x such that GW2W2x = 0x = 0. Consider the vector

y =
[
0
x

]
,

where 0 is the (n − 1)× 1 all zeros vector. Since index0(A) ≤ 1, the vector y is also
an eigenvector of Aω corresponding to zero. Then

Aω

[
0
x

]
=

[
AW1W2x
AW2W2x

]
=

[
0
0

]
.

Since x 	= 0 and is a scalar, we can conclude AW1W2 = 0.
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If ρ(GW2W2) 	= 0, let rg = ρ(GW2W2), where by Lemma 3.2, r ∈ σ(A). Since
GW2W2 ≥ 0, there exists an x� 0 such that GW2W2x = rgx. This means the vector

y =
[
0
x

]

is an eigenvector of Gω corresponding to the eigenvalue rg. Notice the eigenspace of A
associated with the eigenvalue r is contained in the eigenspace of G = Ag associated
with the eigenvalue rg, and by the choice of g, the two eigenspaces have the same
dimension and hence must be equal. Thus y is an eigenvector of Aω corresponding to
r and y is an eigenvector of Ag+1

ω corresponding to rg+1.
Consider Ag+1

ω = AωGω . Then

Ag+1
ω

[
0
x

]
= rg+1

[
0
x

]
= AωGω

[
0
x

]
=

[
AW1W2GW2W2x
AW2W2GW2W2x

]
.

Thus AW1W2GW2W2x = 0. The submatrix AW1W2GW2W2 of Ag+1
ω is nonnegative and

x� 0. Thus we conclude AW1W2GW2W2 = 0 and

Ag+1
ω =

[
AW1W1GW1W1 +AW1W2GW2W1 0
AW2W1GW1W1 +AW2W2GW2W1 AW2W2GW2W2

]
.

Let {x1, ..., xp} be a union of Jordan bases for the generalized eigenspaces of
GW2W2 . Then {x1, ..., xp} is a basis for C

p. We want to show AW1W2xj = 0 for
all j ∈ 〈p〉. Let λg ∈ σ(GW2W2). Consider λg = 0. Because the Jordan blocks
corresponding to zero are 1× 1 in A, the corresponding vector xj is an eigenvector of
GW2W2 corresponding to zero. Similar to the preceding case above, we can see that
AW1W2xj = 0.

If λg 	= 0, then we consider

Ag+1
ω

[
0
xj

]
=

[
AW1W2GW2W2xj
AW2W2GW2W2xj

]
,

which is equal to

(i) λg
[
AW1W2xj
AW2W2xj

]
if xj is an eigenvector of GW2W2 ; or

(ii)
[
AW1W2(λgxj + xj+1)
AW2W2(λgxj + xj+1)

]
if xj is part of a Jordan chain of GW2W2 .

Let xj , xj+1, ..., xl−1, xl be a Jordan chain in the Jordan basis. We know
[

0
xl

]

is an eigenvector of Ag+1
ω . By (i) above, we can see that AW1W2xl = 0. Because

AW1W2xl = 0, AW1W2(λgxl−1+xl) = λgAW1W2xl−1+AW1W2xl = λgAW1W2xl−1 = 0.
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Hence AW1W2xl−1 = 0. Using this argument, it can be seen that AW1W2xj = 0 for
all xj in the Jordan chain. Therefore AW1W2xj = 0 for all xj in a basis for C

p. Thus

AW1W2 = 0. We conclude that Aω =
[
AW1W1 0
AW2W1 AW2W2

]
.

Let A be an eventually nonnegative matrix whose Jordan blocks corresponding
to zero are at most 1 × 1 . Applying Lemma 3.3 repeatedly, we find that A has the
same Frobenius normal form as Ag.

Theorem 3.4. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.
Let g be a prime number such that g 	∈ DA and As ≥ 0, for all s ≥ g. Let κ =
(K1,K2, ...,Kk) be the ordered partition of 〈n〉 such that Agκ is in Frobenius normal
form. Then Aκ is in Frobenius normal form.

Proof. Since AgKkKk
is irreducible, by the Lemma 3.3, we see that AKjKk

= 0 for
all j < k.

For 1 < l < k, let κ(l) be the ordered partition (K1, ...,Kk−l). Consider Aκ(l) .
The matrix Aκ(l) is eventually nonnegative. Because DA

κ(l) ⊆ DA, g 	∈ DA
κ(l) . Also

Ag
κ(l) = (Aκ(l))g. We have that Ag

κ(l) is in Frobenius normal form and AgKk−lKk−l
is

irreducible. Again by Lemma 3.3, AKjKk−l
= 0 for all j < k − l.

In fact, the matrix Aκ is in Frobenius normal form since, if there were to exist
an AKjKj that was reducible, then (Ag)KjKj would be reducible.

Theorem 3.5. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.
Let g be a prime number such that g 	∈ DA and As ≥ 0, for all s ≥ g. Then R(A) =
R(Ag) (i.e. they have the same transitive closures).

Proof. Choose κ = (K1,K2, . . . ,Kk) such that (Ag)κ is in Frobenius normal form.
By Theorem 3.4, Aκ is also in Frobenius normal form. Let j, l ∈ 〈k〉 with j > l. Since
j > l, we see that Kl does not access Kj in R(Ag) or in R(A).

If Kj has access to Kl in R(Ag) then there must be a path from some vertex Kj
to some vertex Kl in G(A) and hence Kj must have access to Kl in R(A).

If Kj does not have access to Kl in R(Ag) then let

Q = {q | Kq has access to Kl but not Kj in R(Ag)},
P = {p | Kp is accessed by Kj in R(Ag), but not by Kq for any q ∈ Q}.

Notice Kl ∈ Q and Kj ∈ P. Let p ∈ P and q ∈ Q. Suppose there is a path from Kp
to Kq in R(Ag). Then there are paths from Kj to Kp, from Kp to Kq, and from Kq
to Kl that together form a path from Kj to Kl, contradicting that Kj does not have
access to Kl in R(Ag). Thus (Ag)PQ = 0. By our definitions of P and Q, we see that
(Ag)QP = 0. It follows then that there is an ordering of the irreducible classes of Ag

such that Kj appears in the list before Kl, and for which Ag is in Frobenius normal
form. By Theorem 3.4, A would also be in Frobenius normal form with respect to
this new ordering. Thus if Kj does not have access to Kl in R(Ag), then Kj does not
have access to Kl in R(A).

Since the access relationships in the two graphs are the same, their transitive
closures are equal.
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4. The Combinatorial Structure of Eventually Nonnegative Matrices.
We now present a selection of combinatorial spectral properties of nonnegative ma-
trices, which carry over to eventually nonnegative matrices whose index of zero is
at most 1. Obviously any nonsingular eventually nonnegative matrix satisfies this
property. In Theorem 3.6 [16], they observe there is a decomposition of an eventu-
ally nonnegative matrix A into the sum of matrices B and C where C is nilpotent,
BC = CB = 0, and index0(B) ≤ 1. The results below hold for the matrix B. In the
instance where we have an eventually nonnegative matrix A with 1 < r = index0(A),
we can investigate the spectral properties of A by applying the Corollaries below to
the matrix Ar.

Let A be an eventually nonnegative matrix with index0(A) ≤ 1. Let g be a
prime number such that g 	∈ DA and λ ∈ σ(A). Observe Jl(λ) ∈ J (A) if and only
if Jl(λg) ∈ J (Ag) and moreover Eλ(A) = Eλg (Ag). The following results are true
for nonnegative matrices, and now extend easily to eventually nonnegative matrices
A with index0(A) ≤ 1.

We begin by observing that the size of the largest Jordan block associated with
ρ(A), in the Jordan form of A, is combinatorially determined.

Corollary 4.1. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.
Let ρ = ρ(A). Then the indexρ(A) is equal to the maximum level of a vertex in
R(ρI −A).

Proof. Follows from Theorem 3.5 and the nonnegative case as attributed to
Rothblum (1975) in [13, Theorem 7.1].

In [6], Hershkowitz and Schneider show the level characteristic of a nonnegative
matrix, reordered into nonincreasing order, is majorized by the height characteristic.

Corollary 4.2. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.
Let ρ = ρ(A) and ν̂ be the ordered sequence formed by listing the elements of ν(ρI−A)
in nonincreasing order. Then ν̂ � η(ρI −A).

Proof. Follows from Theorem 3.5 and the nonnegative case [6].
Our next result shows there is a nonnegative basis for the generalized eigenspace

of A, associated with ρ(A), and the positive entries are combinatorially determined.
Corollary 4.3. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.

Let ρ = ρ(A). Let κ = (K1,K2, . . . ,Kk) be such that Aκ is in Frobenius normal form.
Let p =multρ(A) and i1, . . . , ip be chosen such that ρ(AKij

Kij
) = ρ. Then there exists

a basis {x(1), x(2), . . . , x(p)} of Eρ(A) such that

x
(j)
Kl

{
� 0 if Kl has access to Kij in R(A),
= 0 if Kl does not have access to Kij in R(A).

Proof. Follows from Theorem 3.5 and the nonnegative case as attributed to
Rothblum (1975) in [13, Theorem 7.1].

Next we characterize the eventually nonnegative matrices A in our class that have
a positive right eigenvector associated with ρ(A).

Corollary 4.4. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.
Let ρ = ρ(A). The following are equivalent:
(i) There exists an x � 0 such that (ρI −A)x = 0.
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(ii) The set of singular vertices of R(ρI − A) is equal to the set of final vertices of
R(ρI −A).

Proof. Let g be a prime number such that g 	∈ DA and As ≥ 0, for all s ≥ g.
(i)⇒ (ii): Let x � 0 and (ρI − A)x = 0. Then (ρgI − Ag)x = 0. By [12, Theorem
2], the set of singular vertices of R(ρgI − Ag) is equal to the set of final vertices of
R(ρgI − Ag). Theorem 3.5 gives that the set singular vertices of R(ρI − A) is equal
to the set of final vertices of R(ρI −A).
(ii)⇒ (i): Assume the set of singular vertices of R(ρI −A) is equal to the set of final
vertices of R(ρI −A). By Theorem 3.5, the set of singular vertices of R(ρgI −Ag) is
equal to the set of final vertices of R(ρgI −Ag). Since Ag is nonnegative, there exists
x � 0 such that (ρgI −Ag)x = 0. Thus (ρI −A)x = 0.

In the next two corollaries we look at nonnegative eigenvectors associated with
eigenvalues in addition to the spectral radius.

Corollary 4.5. Let A be an eventually nonnegative matrix with index0(A) ≤ 1
and assume A is in Frobenius normal form. Let λ be a real number. The following
are equivalent:
(i) There exists an eigenvector x such that Ax = λx and x > 0.
(ii) There is a vertex Kl of R(A) such that whenever Kj has access to Kl in R(A),
then

λ = ρ(AKlKl
) > ρ(AKjKj ).

Proof. Follows from Theorem 3.5 and the nonnegative case as attributed to
Victory (1985) in [13, Theorem 3.7].

Corollary 4.6. Let A be an eventually nonnegative matrix with index0(A) ≤ 1
and assume A is in Frobenius normal form. Let λ be a real number. If there is a vertex
Kl of R(A) such that whenever Kj has access to Kl in R(A), then λ = ρ(AKlKl

) >
ρ(AKjKj ), there is a (up to scalar multiples) unique vector x that satisfies Ax = λx
and

xKj

{
� 0 if Kj has access to Kl in R(A).
= 0 if Kj does not have access to Kl in R(A).

Proof. Follows from Theorem 3.5 and the nonnegative case as attributed to
Victory (1985) in [13, Theorem 3.7].

We conclude our list of combinatorial properties of nonnegative matrices, which
carry over to our class of eventually nonnegative matrices, with one final corollary.
The combinatorial spectral properties of nonnegative matrices is a very rich area. We
recognize that our list is by no means exhaustive and encourage readers to check if
their favourite properties also hold.

Corollary 4.7. Let A be an eventually nonnegative matrix with index0(A) ≤ 1.
Let ρ = ρ(A). Then the following are equivalent:
(i) For any vector z, the vector (ρI −A)z ≥ 0 implies that the vector (ρI −A)z = 0.
(ii) The set of initial vertices of R(ρI − A) is equal to the set of singular vertices of
R(ρI −A).
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Proof. not (ii)⇒ not (i):
Case I: There exists an initial class K of R(A) such that λ = ρ(AKK) < ρ(A). Choose
x� 0 such that AKKx = λx. Let W = 〈n〉/K and ω = (W,K). Then

(ρI −Aω)
[
0
x

]
= ρ

[
0
x

]
− λ

[
0
x

]
= (ρ− λ)

[
0
x

]
> 0.

Set

zω =
[
0
x

]
.

Then (ρI −Aω)zω > 0 follows.

Case II: Every initial class has spectral radius ρ, but there exists a noninitial class
with spectral radius ρ. By Corollary 4.1 and Theorem 3.5, h = indexρ(A) ≥ 2 and
h = indexρg (Ag) ≥ 2. By [13, Corollary 7.6], there exists a Jordan chain for Ag

consisting of h nonnegative vectors. Let x generate the chain. Then (ρI −A)h−1x is
a positive scalar multiple of (ρgI −Ag)h−1x (look at the change of basis matrix that
takes (Jl(ρ))g to Jl(ρg)). So z = (ρI −A)h−2x has the property that (ρI −A)z > 0.

(ii)⇒ (i): The graph R(ρI −AT ) satisfies Corollary 4.4, so there exists a y � 0 such
that yT (ρI−A) = 0. If (ρI−A)z > 0, then yT [(ρI−A)z] > 0. But [yT (ρI−A)]z = 0,
a contradiction.

We conclude our paper with a few more examples.
Example 4.8. We now look at two eventually nonnegative matrices that appear

in [15]. The matrices

A(1) =




2 2 0 0 0 0
2 2 0 0 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 1 −1 2 2
0 0 −1 1 2 2




and A(2) =




2 2 0 0 0 0
2 2 0 0 0 0
1 1 2 0 −1 1
1 1 0 2 1 −1
0 0 1 −1 1 3
0 0 −1 1 3 1




have index0(A(j)) = 2. Both matrices have vertices in R(4I − A(j)) with level 2
even though index4(A(j)) = 1. If, however, we raise each matrix to the power of the
index0(A(j)) we see that

(A(1))2 = (A(2))2 =




8 8 0 0 0 0
8 8 0 0 0 0
6 6 2 2 0 0
6 6 2 2 0 0
0 0 0 0 8 8
0 0 0 0 8 8



,

which obviously exhibits the standard combinatorial structure of a nonnegative ma-
trix.
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Example 4.9. Consider the matrix A below that is 1-cyclic and eventually
nonnegative. The matrix A6 is the direct sum of six positive matrices. We will define
A to be the sum of two matrices B and C such that index0(B) ≤ 1, C is nilpotent,
and BC = CB = 0.

Let T be the 2× 2 matrix of all twos. Let

R =
[

1 −1
−1 1

]
.

We define B and C as follows:

B =




0 T 0 0 0 0
T 0 0 0 0 0
0 0 0 T 0 0
0 0 0 0 T 0
0 0 T 0 0 0
0 0 0 0 0 T



, C =




0 0 R R R −R
0 0 −R −R R −R
0 0 0 0 0 0
0 0 0 0 0 0
R −R 0 0 0 0
R −R 0 0 0 0




with A = B + C.
The matrix A is an irreducible eventually nonnegative matrix. Once A is raised

to power 3 =index0(A), A3 can be partitioned into the direct sum of nonnegative ma-
trices. In particular, any prime number g > 3 is not an element ofDA = {±2,±3,±6}
and so the Frobenius normal form of Ag is the same as the Frobenius normal form of
B in the decomposition of A.

For example, seven is not an element in DA. Consider

A7 = B7 =




0 0 213 213 0 0 0 0 0 0 0 0
0 0 213 213 0 0 0 0 0 0 0 0
213 213 0 0 0 0 0 0 0 0 0 0
213 213 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 213 213 0 0 0 0
0 0 0 0 0 0 213 213 0 0 0 0
0 0 0 0 0 0 0 0 213 213 0 0
0 0 0 0 0 0 0 0 213 213 0 0
0 0 0 0 213 213 0 0 0 0 0 0
0 0 0 0 213 213 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 213 213

0 0 0 0 0 0 0 0 0 0 213 213




.

This matrix has the same reducible structure as the matrix B in the decomposition
of A.

The focus of this paper has been combinatorial properties of reducible nonnega-
tive matrices, which carry over to eventually nonnegative matrices, where the index
of zero is at most 1. In our last example, we show how to construct nonsingular irre-
ducible eventually positive matrices A so the smallest g for which Ag � 0, depends
on quantitative rather than qualitative properties of A. Thus results on exponents
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of primitive matrices (see [1]) will not carry over to eventually nonnegative matrices
with index0 ≤ 1.

Example 4.10. Given any odd integer N > 0, we construct an n × n matrix
A such that AN is not positive, but As � 0 for all s > N . We use a method due
to Soules [14], and generalized in [2], to illustrate how to construct a matrix A with
prescribed eigenvalues. Let

Tn = {(λ1, λ2, . . . , λn) | 1 = λ1 ≥ λ2, . . . , λn ≥ −1, λ1 + λ2 + . . .+ λn ≥ 0}.

be a subset of R
n. Let D be the diagonal matrix

D =




λ1 0 . . . . . . 0
0 λ2 0 . . . 0
...

. . .
. . .

...
...

0 . . . 0 λn−1 0
0 . . . . . . 0 λn



.

Then from the work in [9], we know that for each Soules matrix R, there is a closed
convex polytope S(R) ⊆ Tn, for which A = RDRT ≥ 0 for (λ1, λ2, . . . , λn) ∈ Tn if and
only if (λ1, λ2, . . . , λn) ∈ S(R). The point (1, 0, . . . , 0) ∈ S(R), so if |λj | < 1 for all
1 < j ≤ n, then for any sufficiently large positive integer s, the point (1, λs2, . . . , λ

s
n) ∈

S(R), even though (λ1, λ2, . . . , λn) /∈ S(R). In this manner we can easily construct
symmetric eventually nonnegative matrices that become nonnegative matrices at a
prescribed exponent. We now pick a particular Soules matrix R, and choose our
eigenvalues for A such that AN is nonnegative, and this is the first odd exponent for
which this happens. For this particular example, we will go on to show that As � 0,
for s ≥ N +1, but the diagonal elements of AN are zero. Consider the Soules matrix

R =




1√
n

1√
n(n−1)

1√
(n−1)(n−2)

. . . . . . 1√
2

1√
n

1√
n(n−1)

1√
(n−1)(n−2)

. . . . . . − 1√
2

...
...

... 0

1√
n

1√
n(n−1)

1√
(n−1)(n−2)

...

1√
n

1√
n(n−1)

2−n√
(n−1)(n−2)

...

1√
n

1−n√
n(n−1)

0 . . . . . . 0




.
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Let δ be a positive parameter with 0 < δ ≤ 1, and let

D =




1 0 . . . . . . 0
0 −δ 0 . . . 0
...

. . . . . .
...

...
0 . . . 0 −δ 0
0 . . . . . . 0 −δ



.

Let A = RDRT . Then As = RDsRT

=




1+(n−1)(−δ)s

n
1−(−δ)s

n . . . . . . 1−(−δ)s

n

1−(−δ)s

n
1+(n−1)(−δ)s

n
1−(−δ)s

n . . . 1−(−δ)s

n
...

. . . . . . . . .
...

1−(−δ)s

n . . . 1−(−δ)s

n
1+(n−1)(−δ)s

n
1−(−δ)s

n

1−(−δ)s

n . . . . . . 1−(−δ)s

n
1+(n−1)(−δ)s

n



.

Setting δ = ( 1
n−1 )

1
N , we see that the diagonal elements of AN are zero. Notice AN ≥ 0

and As � 0, for s ≥ N + 1. The eigenvalues of As are {1, (−δ)s, . . . , (−δ)s}.
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