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DECOMPOSITION APPROACHES OF A CONSTRAINED GENERAL

LINEAR MODEL WITH FIXED PARAMETERS∗
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Abstract. The well-known ordinary least-squares estimators (OLSEs) and the best linear unbiased estimators (BLUEs)

under linear regression models can be represented by certain closed-form formulas composed by the given matrices and their

generalized inverses in the models. This paper provides a general algebraic approach to relationships between OLSEs and

BLUEs of the whole and partial mean parameter vectors in a constrained general linear model (CGLM) with fixed parameters

by using a variety of matrix analysis tools on generalized inverses of matrices and matrix rank formulas. In particular, it

establishes a variety of necessary and sufficient conditions for OLSEs to be BLUEs under a CGLM, which include many

reasonable statistical interpretations on the equalities of OLSEs and BLUEs of parameter space in the CGLM. The whole work

shows how to effectively establish matrix equalities composed by matrices and their generalized inverses and how to use them

when characterizing performances of estimators of parameter spaces in linear models under most general assumptions.
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1. Introduction. We consider the general linear model (GLM) defined by

M : y = Xβββ + εεε = X1βββ1 + · · ·+ Xkβββk + εεε, E(εεε) = 0, D(εεε) = σ2ΣΣΣ, (1.1)

where y is an n × 1 vector of observable random variables, X = [X1, . . . ,Xk ] is an n × p model matrix of

arbitrary rank, X1, . . . ,Xk are n× p1, . . . , n× pk known matrices of arbitrary ranks with p = p1 + · · ·+ pk,

βββ = [βββ′1, . . . ,βββ
′
k ]′ is a p × 1 vector of fixed but unknown parameters and βββ1, . . . ,βββk are p1 × 1, . . . , pk × 1

vectors, εεε is an n × 1 vector of randomly distributed error terms with the expectation E(εεε) = 0 and the

dispersion matrix D(εεε) = σ2ΣΣΣ, in which ΣΣΣ is an n× n known nonnegative definite matrix of arbitrary rank,

and σ2 is an arbitrary positive scaling factor. One of the main objectives in the statistical inference of a

GLM is to establish various estimators of the parameter space in the GLM and to characterize mathematical

and statistical properties and features of these estimators under various assumptions. During this approach,

statisticians are often interested in the connections of different estimators, and especially, are interested in

establishing possible equalities between estimators.

Assume further that the unknown parameter vector βββ in (1.1) satisfies a consistent linear matrix equation

Aβββ = A1βββ1 + · · ·+Akβββk = b, where A = [A1, . . . ,Ak ], A1, . . . ,Ak, and b are m× p, m× p1, . . . ,m× pk,

and m× 1 matrices, respectively. Then, we obtain a constrained general linear model (CGLM)

M̃ :

{
y = Xβββ + εεε = X1βββ1 + · · ·+ Xkβββk + εεε,

Aβββ = A1βββ1 + · · ·+ Akβββk = b, E(εεε) = 0, D(εεε) = σ2ΣΣΣ.
(1.2)
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The linear matrix equation in (1.2) is often available as extraneous information for the unknown param-

eter vector βββ to satisfy, which is therefore an integral part of the CGLM about the parameter vector βββ and

thus should ideally be utilized in any estimation procedure of the parameter space in (1.1). In regression

analysis, a linear regression model is often written as sums of partial regressors in order to identify the

most important regressors. Through the partitions of regressors in a regression model, it is quite convenient

to determine the roles of partial regressors, and to derive estimators of partial parameter spaces in such a

CGLM.

Eq. (1.2) is a standard form of linear statistical models with linear parameter restrictions. This kind of

CGLMs are a classic object of study in regression theory and occur in most textbooks on linear regression

models. In statistical analysis of CGLMs, parameter constraints are usually handled by transforming the

explicitly constrained model into an implicitly constrained model that takes the form of a reduced-parameter,

unconstrained model; see, e.g., [8, 9, 24, 37, 46, 48, 59, 61]. The commonly-used treatment of (1.2) is merging

the main model and the linear restriction equation as the following implicitly-constrained model

M̃ : ỹ = X̃βββ + ε̃εε = X̃1βββ1 + · · ·+ X̃kβββk + ε̃εε, E(ε̃εε) = 0, D(ε̃εε) = σ2Σ̃ΣΣ, (1.3)

where

ỹ =

[
y

b

]
, X̃ =

[
X

A

]
, X̃i =

[
Xi

Ai

]
, ε̃εε =

[
εεε

0

]
, Σ̃ΣΣ =

[
ΣΣΣ 0

0 0

]
, i = 1, . . . , k.

In the statistical inference of CGLMs, many estimators of parameter spaces can be defined from different

optimality criteria. So that people are often interested in the relationship between different estimators,

and especially, are interested in establishing various possible (decomposition) equalities between estimators.

In this paper, we reconsider a general problem of establishing connections between the two well-known

ordinary least-squares estimator (OLSE) and the best linear unbiased estimator (BLUE) of the full and

partial parameter vectors in (1.2). Because OLSEs and BLUEs of parameter spaces in CGLMs are defined

from two different optimality criteria, and thus, they have different performances in statistical inference.

It is well known that OLSEs and BLUEs can be represented in analytical formulas consisting of the given

matrices and their generalized inverses in linear models, and thus algebraic properties and performances of

OLSEs and BLUEs can easily be derived from the analytical formulas. It has been noticed that OLSEs and

BLUEs of the same parameter space in a linear regression model have some essential links, in particular,

OLSEs and BLUEs are equivalent under some conditions, and the equivalences of OLSEs and BLUEs have

many mathematical and statistical interpretations. The problem of establishing/characterizing relations

between OLSEs and BLUEs in linear regression theory was initialized and approached in the late 1940s from

theoretical and applied points of view by many authors. For more and detailed information on this topic

please refer to [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 35, 38, 41, 42,

43, 56, 57, 58, 60, 63, 66] and the references therein.

One of the fundamental problems in the theory of random vectors is to establish possible equalities

between two random vectors from mathematical and statistical aspects. Assume that L1y+c1 and L2y+c2

are two linear statistics of the random vector y in (1.2). In order to characterize equalities between L1y+c1

and L2y+c2, we use the following three well-known criteria, which were intuitively applied in the statistical

literature; see, e.g., [4, 10, 36, 41, 57, 58, 63, 64, 65].

Definition 1.1. Let y be a random vector.

(i) The equality L1y + c1 = L2y + c2 is said to hold definitely if L1 = L2 and c1 = c2.
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(ii) The equality L1y+c1 = L2y+c2 is said to hold with probability 1, i.e., both E(L1y+c1−L2y−c2) =

0 and D(L1y + c1 − L2y − c2) = 0 hold.

(iii) The expectation vectors and dispersion matrices of L1y + c1 and L2y + c2 are said to be equal,

respectively, if both E(L1y + c1) = E(L2y + c2) and D(L1y + c1) = D(L2y + c2) hold.

These three types of equality are not necessarily equivalent since they are defined from different cri-

teria. These, however, show that equalities of linear statistics under (1.2) can all be characterized by the

corresponding linear and quadratic matrix equations. Because of the non-commutativity of matrix algebra,

it is usually a challenging task to characterize various equalities of predictors/estimators in the statistical

analysis of linear regression models. However, we are able to derive satisfactory conclusions, as demonstrated

in Section 5, for many equalities between OLSEs and BLUEs under CGLMs.

Closed-form formulas of calculating OLSEs and BLUEs under GLMs can be established by some routine

matrix operations, which can be found in most books and articles on GLMs. In particular, it is easy to

verify from analytical expressions of OLSEs and BLUEs that the following two additive decompositions

OLSEM (Xβββ) = OLSEM (X1βββ1) + · · ·+ OLSEM (Xkβββk), (1.4)

BLUEM (Xβββ) = BLUEM (X1βββ1) + · · ·+ BLUEM (Xkβββk) (1.5)

hold naturally under the conditions that the X1βββ1, . . . ,Xkβββk are estimable under (1.1), respectively. On

the other hand, the equalities of OLSEs and BLUEs have many different statistical interpretations, and are

the criteria of comparing optimality of estimators in statistical inference. Under this consideration, it would

be of interest to compare both sides of the two additive decomposition equalities in (1.4) and (1.5) and to

establish possible links of OLSEs and BLUEs of the full and partial mean parameters. In this paper, we

approach the following two problems of establishing equalities between the OLSEs and BLUEs of the whole

and partial mean parameter vectors in (1.3):

(I) establishing necessary and sufficient conditions for the following equalities

OLSE
M̃

(Xiβββi) = BLUE
M̃

(Xiβββi), OLSE
M̃

(X̃iβββi) = BLUE
M̃

(X̃iβββi)

to hold definitely (with probability 1), i = 1, . . . , k;

(II) showing that the following four statistical assertions

(a) OLSE
M̃

(Xβββ) = BLUE
M̃

(Xβββ) holds definitely (with probability 1),

(b) OLSE
M̃

(X̃βββ) = BLUE
M̃

(X̃βββ) holds definitely (with probability 1),

(c) OLSE
M̃

(Xiβββi) = BLUE
M̃

(Xiβββi) holds definitely (with probability 1), i = 1, . . . , k,

(d) OLSE
M̃

(X̃iβββi) = BLUE
M̃

(X̃iβββi) holds definitely (with probability1), i = 1, . . . , k

are equivalent.

This kind of estimator equalities have many different valuable statistical interpretations, and are not rare

to see in the statistical inference of CGLMs. Because OLSEs and BLUEs of parameter spaces in CGLMs

can be calculated from given matrices and vectors in the models and are often represented by certain closed-

form formulas composed by given matrices and vectors in the CGLMs, the approaches we take to the above

problems is in fact to establish and characterize certain matrix equalities that involve the given matrices

and their generalized inverses in (1.2). Thus, we can use various matrix analysis tools to characterize the

equalities in (I) and (II). Approaches to the equivalences of OLSEs and BLUEs of full and partial mean

parameter vectors in GLMs were initiated in [64]; connections among OLSEs and BLUEs of whole and

partial parameters under multiple partitioned linear models were considered in [65]; equivalences of OLSEs
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and BLUEs of full and partial mean parameter vectors in CGLMs with separated parameter restrictions

were approached in [62]; whereas the above two problems for i = 2 were investigated in [27].

The following terminology and notation are used throughout the paper. The symbol Rm×n stands for

the collection of all m×n real matrices. The symbols A′, r(A), and R(A) stand for the transpose, the rank,

and the range (column space) of a matrix A ∈ Rm×n, respectively; Im stands for the identity matrix of order

m. Two symmetric matrices A and B of the same size are said to satisfy the inequality A < B in the Löwner

partial ordering if A − B is nonnegative definite. The Moore–Penrose generalized inverse of A ∈ Rm×n,

denoted by A+, is defined to be the unique solution G satisfying the four matrix equations AGA = A,

GAG = G, (AG)′ = AG, and (GA)′ = GA. Further, denote PA = AA+, A⊥ = EA = Im −AA+, and

FA = EA′ = In −A+A.

2. A useful inclusion on matrix rank and its importance. Much important statistical theory

and many statistical methods make use of linear algebra and matrix theory, and many statisticians have

contributed to the advancement of matrix theory from its very early days. In particular, formulas and

algebraic techniques for handling matrices in linear algebra and matrix theory play important roles in the

derivations of estimators and characterizations of performances of the estimators and predictors in statistical

analysis of linear regression models. As remarked in [49], a good starting point for the entry of matrices

into statistical sciences was in 1930s. It is now a routine procedure to use given vectors, matrices, and

their inverses/generalized inverses to formulate various estimators of parameter spaces and to make the

corresponding statistical inference.

Let’s recall that the rank of matrix is a core concept in linear algebra, which is the most significant

finite nonnegative integer in reflecting intrinsic properties of matrix, and thus is a cornerstone in matrix

theory. The mathematical prerequisites for understanding ranks of matrices are minimal and do not go

beyond elementary linear algebra, while many simple and classic formulas for calculating ranks of matrices

can be found in most textbooks of linear algebra. The whole work in this paper is based on the effective use

of the matrix rank formulas when simplifying various matrix expressions and establishing matrix equalities

occurred in statistical inference of CGLMs. In order to simplify various matrix equalities composed by the

Moore–Penrose inverses of matrices, we need to use the matrix rank formulas and the equivalent facts in the

following two lemmas.

Lemma 2.1 ([32]). Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n, and D ∈ Rl×k. Then

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.6)

r

[
A

C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.7)

r

[
AA′ B

B′ 0

]
= r[A, B ] + r(B). (2.8)

If R(B) ⊆ R(A) and R(C′) ⊆ R(A′), then

r

[
A B

C D

]
= r(A) + r(D−CA+B ). (2.9)

In addition, the following results hold.

(i) r[A, B ] = r(A)⇔ R(B) ⊆ R(A)⇔ AA+B = B⇔ EAB = 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 232-253, July 2017.

Bo Jiang and Yongge Tian 236

(ii) r

[
A

C

]
= r(A)⇔ R(C′) ⊆ R(A′)⇔ CA+A = C⇔ CFA = 0.

(iii) r[A, B ] = r(A) + r(B)⇔ R(A) ∩R(B) = {0} ⇔ R[(EAB)′] = R(B′)⇔ R[(EBA)′] = R(A′).

(iv) r

[
A

C

]
= r(A) + r(C)⇔ R(A′) ∩R(C′) = {0} ⇔ R(CFA) = R(C)⇔ R(AFC) = R(A).

(v) r(A + B ) = r(A) + r(B)⇔ R(A) ∩R(B) = {0} and R(A′) ∩R(B′) = {0} under A, B ∈ Rm×n.

Lemma 2.2 ([55]). Suppose that R(A) ⊆ R(B1), R(C2) ⊆ R(C1), R(A′) ⊆ R(C′1), and R(B′2) ⊆
R(B′1). Then

r(B2B
+
1 AC+

1 C2) = r

A B1 0

C1 0 C2

0 B2 0

− r(B1)− r(C1). (2.10)

Lemma 2.3 ([40]). The linear matrix equation AX = B is consistent if and only if r[A, B ] = r(A),

or equivalently, AA+B = B. In this case, the general solution of the equation can be written as X =

A+B + (I−A+A)U, where U is an arbitrary matrix.

With the supports of the formulas in Lemmas 2.1–2.3, we are able to covert Problems (I) and (II) in

Section 1 into certain algebraic problems of characterizing matrix equalities composed by the given matrices

in the models and their generalized inverses, and to derive analytical solutions of the problems by using the

methods of matrix equations, matrix rank formulas, and various tricky partitioned matrix calculations.

3. Consistency and estimability of parameter spaces in CGLMs. Without loss of generality,

we take σ2 = 1 in (1.1)–(1.3) for the convenience of presentation below, because it does’t involve in the main

results in this paper. In what follows, we assume that M̃ in (1.2) is consistent, namely,

ỹ ∈ R[ X̃, Σ̃ΣΣ ] holds with probability 1,

see [44, 45] for its expositions. In this case, (1.1) is consistent as well, that is, y ∈ R[X, ΣΣΣ ] holds with

probability 1. Let

Si = [0, . . . ,Ki, . . . ,0 ], Ti = [K1, . . . ,Ki−1,0, Ki+1, . . . ,Kk ],

Yi = [0, . . . ,Xi, . . . ,0 ], Zi = [X1, . . . ,Xi−1, 0, Xi+1, . . . ,Xk ],

Wi = [0, . . . , X̃i, . . . ,0 ], Vi = [ X̃1, . . . , X̃i−1, 0, X̃i+1, . . . , X̃k ]

for i = 1, . . . , k. Then, the arbitrary matrix K, the model matrix X, and X̃ in (1.2) and (1.3) can be

decomposed as

K = Si + Ti = S1 + · · ·+ Sk, X = Yi + Zi = Y1 + · · ·+ Yk and X̃ = Wi + Vi = W1 + · · ·+ Wk

for i = 1, . . . , k. Correspondingly, the vectors Kiβββi, Xiβββi, and X̃iβββi can be rewritten as

Kiβββi = Siβββ, Xiβββi = Yiβββ, X̃iβββi = Wiβββ, i = 1, . . . , k.

We next introduce the definitions of the estimability of the parameter spaces in (1.1) and (1.2).

Definition 3.1. Let M and M̃ be as given in (1.1) and (1.2), respectively, and let K ∈ Rt×p be given.

(i) The vector Kβββ of parameters is said to be estimable under (1.1) if there exists an L ∈ Rt×n such

that E(Ly) = Kβββ holds under (1.1).
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(ii) Kβββ is said to be estimable under (1.2) if there exist L ∈ Rt×n and c ∈ Rt×1 such that E(Ly+c) = Kβββ

holds under (1.2).

The unbiasedness of linear statistics with respect to given parameter spaces in CGLMs is an important

property, but usually there are many unbiased estimators for the same vector of parameters. Considerable

literature exists on the estimability of parameter spaces under CGLMs; see, e.g., [2, 34, 47, 50, 51, 52, 53, 61]

for its expositions. Under the assumptions in (1.1) and (1.2), a variety of known classic results on the

estimability of the vector Kβββ of parametric functions and its special cases are collected in the following

lemma.

Lemma 3.2. Let M and M̃ be as given in (1.1) and (1.2), respectively, and let K ∈ Rt×p be given.

Then, the following results hold.

(i) Kβββ is estimable under (1.1) ⇔ r

[
X

K

]
= r(X)⇔ R(K′) ⊆ R(X′).

(ii) Xβββ is always estimable under (1.1).

(iii) Kiβββi = Siβββ is estimable under (1.1) ⇔ R(S′i) ⊆ R(X′), i = 1, . . . , k.

(iv) If all Kiβββi are estimable under (1.1), then Kβββ = K1βββ1 + · · · + Kkβββk is estimable under (1.1) as

well.

(v) Xiβββi = Yiβββ is estimable under (1.1) ⇔ R(Y′i) ⊆ R(X′) ⇔ R(Yi) ∩R(Zi) = R(Xi) ∩R(Zi) =

{0} ⇔ r(X) = r(Yi) + r(Zi) = r(Xi) + r(Zi), i = 1, . . . , k.

(vi) X̃iβββi = Wiβββ is estimable under (1.1)⇔ R(W′
i) ⊆ R(X′)⇔ r(X) = r(Wi)+r(Zi) = r(X̃i)+r(Zi),

i = 1, . . . , k.

(vii) If all Xiβββi are estimable under (1.1) ⇔ r(X) = r(X1) + · · ·+ r(Xk).

(viii) Kβββ is estimable under (1.2) ⇔ R[(KFA)′] ⊆ R[(XFA)′]⇔ R(K′) ⊆ R(X̃′).

(ix) Xβββ and X̃βββ are always estimable under (1.2).

(x) Kiβββi = Siβββ is estimable under (1.2) ⇔ R(S′i) ⊆ R(X̃′), i = 1, . . . , k.

(xi) If all Kiβββi are estimable under (1.2), then Kβββ = K1βββ1 + · · · + Kkβββk is estimable under (1.2) as

well.

(xii) Xiβββi = Yiβββ is estimable under (1.2) ⇔ R(Y′i) ⊆ R(X̃′), i = 1, . . . , k.

(xiii) X̃iβββi = Wiβββ is estimable under (1.2) ⇔ R(W′
i) ⊆ R(X̃′)⇔ R(Wi)∩R(Vi) = R(X̃i)∩R(Vi) =

{0} ⇔ r(X̃) = r(Wi) + r(Vi) = r(X̃i) + r(Vi), i = 1, . . . , k.

(xiv) If all X̃iβββi are estimable under (1.2) ⇔ r(X̃) = r(X̃1) + · · ·+ r(X̃k).

(xv) If Kiβββi is estimable under (1.1), then Kiβββi is estimable under (1.2) as well, i = 1, . . . , k.

(xvi) If Xiβββi is estimable under (1.1), then Xiβββi is estimable under (1.2) as well, i = 1, . . . , k.

(xvii) If X̃iβββi is estimable under (1.1), then Xiβββi is estimable under (1.2) as well, i = 1, . . . , k.

Proof. Result (i) is well known; see, e.g., [2]. Results (ii)–(iv) and (vi) follow from (i). Results (v) and

(vii) follow from [65]. By the definition of estimability, Kβββ is estimable under (1.2) if there exists a linear

statistic Ly + c, where L ∈ Rt×n and c ∈ Rt×1, such that E(Ly + c) = LXβββ + c = Kβββ holds subject to

Aβββ = b. From Lemma 2.3, the general solution of the consistent matrix equation Aβββ = b is βββ = A+b+FAγγγ,

where γγγ is arbitrary. Hence, LXβββ + c = Kβββ is equivalent to LXA+b + LXFAγγγ + c = KA+b + KFAγγγ.

This equality holds for all γγγ if and only if LXA+b + c = KA+b and LXFA = KFA. From Lemma 2.3,

LXFA = KFA is consistent if and only if the last two statements in (viii) hold. Results (ix)–(xii) follow

from (viii). Results (xiii) and (xiv) are similar to (v) and (vii). Results (xv)–(xvii) follow from (iii), (v),

(vi), (x), (xii), and (xiii).
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4. Closed-form formulas of OLSEs and BLUEs under CGLMs. The purpose of this section is

to review the fundamentals of OLSEs and BLUEs in the context of linear regression analysis. The method

of least squares in statistics is a standard technique used for estimating unknown parameters in CGLMs,

which was first proposed as an algebraic procedure for solving overdetermined systems of equations by Gauss

(in unpublished work) in 1795 and independently by Legendre in 1805, as remarked in [1, 17, 39, 54]. The

notion of least-squares estimation is well established in the literature, and the definitions of the OLSEs and

the BLUEs of parameter spaces in (1.1) and (1.2) are presented below.

Definition 4.1. Let M and M̃ be as given in (1.1) and (1.2), respectively, and let K ∈ Rt×p be given.

(i) The OLSE of the parameter vector βββ in (1.1), denoted by OLSEM (βββ), is defined to be

OLSEM (βββ) = argmin
βββ

(y −Xβββ )′(y −Xβββ ). (4.11)

The OLSE of Kβββ under (1.1) is defined to be OLSEM (Kβββ) = KOLSEM (βββ).

(ii) The OLSE of the parameter vector βββ in (1.2), denoted by OLSE
M̃

(βββ), is defined to be

OLSE
M̃

(βββ) = argmin
Aβββ=b

(y −Xβββ )′(y −Xβββ ). (4.12)

The OLSE of Kβββ under (1.2) is defined to be OLSE
M̃

(Kβββ) = KOLSE
M̃

(βββ).

Under the situation that there exist non-unique unbiased estimators for the same parameter space, it

would seem naturally advantageous to seek such an unbiased estimator that has the smallest dispersion

matrix among all the unbiased estimators. Thus, the unbiasedness and the smallest dispersion matrix of an

estimator are two intrinsic requirements in statistical analysis and inference of linear regression analysis.

Definition 4.2. (i) If there exists an L ∈ Rt×n such that

E(Ly −Kβββ) = 0 and D(Ly −Kβββ) = min (4.13)

hold in the Löwner partial ordering, the linear statistic Ly is defined to be the BLUE of Kβββ under

(1.1), and is denoted by

Ly = BLUEM (Kβββ). (4.14)

(ii) If there exists an L ∈ Rt×n and c ∈ Rt×1 such that

E(Ly + c−Kβββ) = 0 and D(Ly + c−Kβββ) = min (4.15)

hold in the Löwner partial ordering, the linear statistic Ly + c is defined to be the BLUE of Kβββ

under (1.2), and is denoted by

Ly + c = BLUE
M̃

(Kβββ). (4.16)

It is well known that OLSEs and BLUEs are two widely-used estimators of parameter spaces in the

statistical inference of CGLMs. These two types of estimator have a variety of simple and remarkable

properties, and are regarded as orthodox representations of estimators under CGLMs. Notice from definitions

that the OLSEs of Kβββ are independent of the dispersion matrix ΣΣΣ in (1.1) and (1.2). Thus, it is of greatly

interest from the theoretical and applied points of view to compare the OLSEs and the BLUEs of Kβββ under

(1.1) and (1.2), as well as to give the efficiency for the OLSEs to be alternatives of the BLUEs of Kβββ under

(1.1) and (1.2).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 232-253, July 2017.

239 Decomposition Approaches of a Constrained General Linear Model With Fixed Parameters

To account for general estimation problems of unknown parameters in CGLMs, it is common practice to

first derive exact algebraic expressions of estimators of parameters spaces in the CGLMs. It is well known

that the normal equation associated with (1.1) is X′Xβββ = X′y; see, e.g., [18, p. 114] and [48, pp. 164–165].

From Lemma 2.3, the general solution of βββ of the equation and the corresponding Kβββ are given by

βββ = X+y + ( Ip −X+X )u, Kβββ = KX+y + (K−KX+X )u, (4.17)

where u is arbitrary. In particular, the coefficient matrix of u satisfies K − KX+X = 0 if and only if

R(K′) ⊆ R(X′) holds by Lemma 2.3. In this case, Kβββ can uniquely be written as KX+y. To sum up, we

have the following well-known results.

Lemma 4.3. Let K ∈ Rt×p be given and assume that Kβββ is estimable under (1.1). Then, the OLSE of

Kβββ under (1.1) and its expectation and covariance matrix can be written as

OLSEM (Kβββ) = KX+y, (4.18)

E[ OLSEM (Kβββ) ] = Kβββ, D[ OLSEM (Kβββ) ] = KX+ΣΣΣ(KX+)′. (4.19)

In particular,

OLSEM (Xβββ) = PXy, E[ OLSEM (Xβββ) ] = Xβββ, D[OLSEM (Xβββ) ] = PXΣΣΣPX. (4.20)

Linear models with parameter constraints are usually handled by transforming into certain implicitly

constrained model. The most popular transformations are based on model reduction and Lagrangian mul-

tipliers. From Lemma 2.3, the general solution to the matrix equation Aβββ = b is βββ = A+b + FAγγγ, where

γγγ is an arbitrary vector. Then,

Kβββ = KA+b + K̂γγγ, Xβββ = XA+b + X̂γγγ, X̃βββ = X̃A+b + Ẑγγγ, (4.21)

Xiβββi = Yiβββ = YiA
+b + Ŷiγγγ, X̃iβββi = Wiβββ = WiA

+b + Ŵiγγγ, (4.22)

where

Yi = [0, . . . ,Xi, . . . ,0 ], Wi = [0, . . . , X̃i, . . . ,0 ], (4.23)

K̂ = KFA, X̂ = XFA, Ẑ = X̃FA, Ŷi = YiFA, Ŵi = WiFA (4.24)

for i = 1, . . . , k. Substituting (4.21) into (1.2) yields the following reduced linear model

N : y −XA+b = X̂γγγ + εεε, E(εεε) = 0, D(εεε) = ΣΣΣ. (4.25)

Correspondingly,

OLSE
M̃

(Kβββ) = KA+b + OLSEN (K̂γγγ), (4.26)

BLUE
M̃

(Kβββ) = KA+b + BLUEN (K̂γγγ). (4.27)

The OLSE of K̂γγγ under (4.25) can be derived from Lemma 4.3. Substituting it into (4.26) yields the

OLSE of Kβββ under (1.2) as follows.

Lemma 4.4. Let M̃ and N be as given in (1.2) and (4.25), respectively, and let K ∈ Rt×p be given.

Then, the following results hold.
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(i) The following statements are equivalent:

(a) Kβββ is estimable under (1.2).

(b) K̂γγγ is estimable under (4.25).

(c) r

[
KFA

XFA

]
= r(XFA).

(d) R[(KFA)′] ⊆ R[(XFA)′].

(e) R(K′) ⊆ R[X′, A′ ].

(ii) Under (i), the OLSE of Kβββ under (1.2) can uniquely be written as

OLSE
M̃

(Kβββ) = (KA+ − K̂X̂+XA+)b + K̂X̂+y, (4.28)

E[ OLSE
M̃

(Kβββ) ] = Kβββ, D[ OLSE
M̃

(Kβββ) ] = K̂X̂+ΣΣΣ(K̂X̂+)′. (4.29)

(iii) The OLSE of Xβββ under (1.2) is

OLSE
M̃

(Xβββ) = (XA+ − X̂X̂+XA+)b + X̂X̂+y, (4.30)

E[ OLSE
M̃

(Xβββ) ] = Xβββ, D[ OLSE
M̃

(Xβββ) ] = X̂X̂+ΣΣΣX̂X̂+. (4.31)

(iv) The OLSE of X̃βββ under (1.2) is

OLSE
M̃

(X̃βββ) = (X̃A+ − ẐX̂+XA+)b + ẐX̂+y, (4.32)

E[ OLSE
M̃

(X̃βββ) ] = X̃βββ, D[ OLSE
M̃

(X̃βββ) ] = ẐX̂+ΣΣΣ(ẐX̂+)′. (4.33)

(v) Under the conditions that Xiβββi are estimable under (1.2), the OLSEs of Xiβββi under (1.2) are

OLSE
M̃

(Xiβββi) = OLSE
M̃

(Yiβββ) = (YiA
+ − ŶiX̂

+XA+)b + ŶiX̂
+y, (4.34)

E[ OLSE
M̃

(Xiβββi) ] = Xiβββi, D[ OLSE
M̃

(Xiβββi) ] = ŶiX̂
+ΣΣΣ(ŶiX̂

+)′ (4.35)

for i = 1, 2, . . . , k.

(vi) Under the conditions that X̃iβββi are estimable under (1.2), the OLSEs of X̃iβββi are

OLSE
M̃

(X̃iβββi) = OLSE
M̃

(Wiβββ) = (WiA
+ − ŴiX̂

+XA+)b + ŴiX̂
+y, (4.36)

E[ OLSE
M̃

(X̃iβββi) ] = X̃iβββi, D[ OLSE
M̃

(X̃iβββi) ] = ŴiX̂
+ΣΣΣ(ŴiX̂

+)′ (4.37)

for i = 1, 2, . . . , k.

The following group of results on closed-form formulas of BLUEs and their properties are well known;

see, e.g., [16, 42, 45].

Lemma 4.5. Let K ∈ Rt×p be given and assume that Kβββ is estimable under (1.1). Then

D(Ly −Kβββ) = min s.t. E(Ly −Kβββ) = 0⇔ L[X, ΣΣΣX⊥ ] = [K, 0 ]. (4.38)

The matrix equation on the right-hand side is consistent, i.e.,

[K, 0 ][X, ΣΣΣX⊥ ]+[X, ΣΣΣX⊥ ] = [K, 0 ]

holds under R(K′) ⊆ R(X′), while the general expression of L, denoted by PK;X;ΣΣΣ, and the corresponding

BLUEM (Kβββ) can be written as

BLUEM (Kβββ) = PK;X;ΣΣΣy =
(
[K, 0 ][X, ΣΣΣX⊥ ]+ + U[X, ΣΣΣ ]⊥

)
y, (4.39)

E[BLUEM (Kβββ)] = Kβββ, (4.40)

D[BLUEM (Kβββ)] = [K, 0 ][X, ΣΣΣX⊥ ]+ΣΣΣ([K, 0 ][X, ΣΣΣX⊥ ]+)′, (4.41)
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where U ∈ Rt×n is arbitrary. In particular,

BLUEM (Xβββ) = PX;ΣΣΣy =
(
[X, 0 ][X, ΣΣΣX⊥ ]+ + U[X, ΣΣΣ ]⊥

)
y, (4.42)

E[BLUEM (Xβββ)] = Xβββ, (4.43)

D[BLUEM (Xβββ)] = [X, 0 ][X, ΣΣΣX⊥ ]+ΣΣΣ([X, 0 ][X, ΣΣΣX⊥ ]+)′, (4.44)

where U ∈ Rn×n is arbitrary. Further, the following results hold.

(i) r[X, ΣΣΣX⊥ ] = r[X, ΣΣΣ ], R[X, ΣΣΣX⊥ ] = R[X, ΣΣΣ ], and R(X) ∩R(ΣΣΣX⊥) = {0}.
(ii) PK;X;ΣΣΣ is unique if and only if r[X, ΣΣΣ ] = n.

(iii) BLUEM (Kβββ) is unique with probability 1 if and only if M is consistent.

The BLUE of K̂γγγ under (4.25) can be derived from Lemma 4.5. Substituting it into (4.27) yields the

BLUE of Kβββ under (1.2) as follows.

Lemma 4.6. Let M̃ be as given in (1.2) and assume that Kβββ is estimable under (1.2). Then, the following

results hold.

(i) The BLUE of Kβββ is

BLUE
M̃

(Kβββ) = (K−PK̂;X̂;ΣΣΣX)A+b + PK̂;X̂;ΣΣΣy, (4.45)

E[BLUE
M̃

(Kβββ)] = Kβββ, (4.46)

D[BLUE
M̃

(Kβββ)] =
(

[ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+
)

ΣΣΣ
(

[ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+
)′
, (4.47)

where PK̂;X̂;ΣΣΣ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ + U[ X̂, ΣΣΣX̂⊥ ]⊥, in which U ∈ Rt×n is arbitrary.

(ii) The BLUE of Xβββ is

BLUE
M̃

(Xβββ) = ( In −PX̂;ΣΣΣ)XA+b + PX̂;ΣΣΣy, (4.48)

E[BLUE
M̃

(Xβββ)] = Xβββ, (4.49)

D[BLUE
M̃

(Xβββ)] = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′, (4.50)

where PX̂;ΣΣΣ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ + U[ X̂, ΣΣΣX̂⊥ ]⊥, in which U ∈ Rn×n is arbitrary.

(iii) The BLUE of X̃βββ is

BLUE
M̃

(X̃βββ) = ( X̃−PẐ;X̂;ΣΣΣX)A+b + PẐ;X̂;ΣΣΣy, (4.51)

E[BLUE
M̃

(X̃βββ)] = X̃βββ, (4.52)

D[BLUE
M̃

(X̃βββ)] = [ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′, (4.53)

where PẐ;X̂;ΣΣΣ = [ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+ + V[ X̂, ΣΣΣX̂⊥ ]⊥, and V ∈ R(m+n)×n is arbitrary.

(iv) Under the conditions that Xiβββi are estimable under (1.2), the BLUEs of Xiβββi are

BLUE
M̃

(Xiβββi) = BLUE
M̃

(Yiβββ) = (Yi −PŶi;X̂;ΣΣΣX)A+b + PŶi;X̂;ΣΣΣy,

E[BLUE
M̃

(Xiβββi)] = Xiβββi,

D[BLUE
M̃

(Xiβββi)] = [ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′,

where PŶi;X̂;ΣΣΣ = [ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ + Ui[ X̂, ΣΣΣX̂⊥ ]⊥ and Ui ∈ Rn×n is arbitrary, i = 1, . . . , k.
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(v) Under the conditions that X̃iβββi are estimable under (1.2), the BLUEs of X̃iβββi are

BLUE
M̃

(X̃iβββi) = BLUE
M̃

(Wiβββ) = (Wi −P
Ŵi;X̂;ΣΣΣ

X)A+b + P
Ŵi;X̂;ΣΣΣ

y,

E[BLUE
M̃

(X̃iβββi)] = X̃iβββi,

D[BLUE
M̃

(X̃iβββi)] = [Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′,

where P
Ŵi;X̂;ΣΣΣ

= [Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ + Ui[ X̂, ΣΣΣX̂⊥ ]⊥, and Ui ∈ R(m+n)×n is arbitrary, i =

1, . . . , k.

(vi) r[ X̂, ΣΣΣX̂⊥ ] = r[ X̂, ΣΣΣ ], R[ X̂, ΣΣΣX̂⊥ ] = R[ X̂, ΣΣΣ ], and R(X̂) ∩R(ΣΣΣX̂⊥) = {0}.
(vii) PK̂;X̂;ΣΣΣ is unique if and only if r[ X̂, ΣΣΣ ] = n.

(viii) BLUE
M̃

(Kβββ) is unique with probability 1 if and only if M̃ is consistent.

5. Algebraic and statistical characterizations of equalities of OLSEs and BLUEs under

CGLMs. Because OLSEs and BLUEs under CGLMs are defined from two different optimality criteria,

they have different expressions and performances in the statistical inference of CGLMs. In fact, the lemmas

in the previous section show that OLSEs and BLUEs of parameter spaces in CGLMs can be written as

certain algebraic expressions composed by the observed response vectors, the given model matrices, and

the covariance matrices of the error terms in CGLMs. It is advantageous to obtain these exact algebraic

formulas of OLSEs and BLUEs of parameter spaces in CGLMs in the last section. From these exact algebraic

expressions of OLSEs and BLUEs, as well as various algebraic tools in matrix theory, people have derived

many valuable properties and features of OLSEs and BLUEs in the statistical literature, and have established

a systematic theory on OLSEs and BLUEs and their applications. Even so, there are many new problems

on OLSEs and BLUEs that can be proposed and approached from theoretical and applied points of view.

Especially, we are more interested in describing algebraic and statistical properties and features of the

estimators under various assumptions, and establishing relations between the OLSEs and BLUEs. Note

from Lemmas 4.4 and 4.6 that OLSEs and BLUEs under CGLMs all can be represented by the given vectors

and matrices in the models and their generalized inverses. Thus, to characterize the connections between

OLSEs and BLUEs is in fact to characterize matrix equalities associated with OLSEs and BLUEs. In this

case, we can use the formulas in Section 2 to establish and simplify various matrix expressions and matrix

equalities related to OLSEs and BLUEs under CGLMs.

Classic results on the equalities of OLSEs and BLUEs under general linear statistical models were widely

spread in the statistical literature. A group of latest results on the equality of the OLSE and BLUE of an

estimable parametric function Kβββ under (1.1) were collected or proved in [65]. As an extension, we derive

some necessary and sufficient conditions for the OLSE of Kβββ to be the BLUE of Kβββ under (1.2).

Theorem 5.1. Let K ∈ Rt×p be given and assume that Kβββ is estimable under (1.2). Then, the following

statistical and algebraic statements are equivalent:

(i) OLSE
M̃

(Kβββ) = BLUE
M̃

(Kβββ) holds definitely.

(ii) OLSE
M̃

(Kβββ) = BLUE
M̃

(Kβββ) holds with probability 1.

(iii) D
[
OLSE

M̃
(Kβββ)

]
= D

[
BLUE

M̃
(Kβββ)

]
.

(iv) Cov
{

OLSE
M̃

(Kβββ),y
}

= Cov
{

BLUE
M̃

(Kβββ),y
}
.

(v) Cov
{

OLSE
M̃

(Kβββ),y
}

= Cov
{

BLUE
M̃

(Kβββ),OLSE
M̃

(Xβββ)
}
.

(vi) Cov
{

OLSE
M̃

(Kβββ),y −OLSE
M̃

(Xβββ)
}

= 0.

(vii) K̂X̂+ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+.
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(viii) K̂X̂+ΣΣΣ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ.

(ix) K̂X̂+ΣΣΣ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣX̂X̂+.

(x) K̂X̂+ΣΣΣ(K̂X̂+)′ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′.

(xi) K̂X̂+ΣΣΣX̂⊥ = 0.

(xii) X̂⊥[ΣΣΣX̂,0]F[X̂′X̂,K̂′] = 0.

(xiii) r

[
X̂′X̂ 0 K̂′

ΣΣΣX̂ X̂ 0

]
= 2r(X̂).

(xiv) R

[
X̂′X̂ 0

ΣΣΣX̂ X̂

]
⊇ R

[
K̂′

0

]
.

(xv) r


X′X 0 A′ K′

ΣΣΣX X 0 0

A 0 0 0

0 A 0 0

 = 2r

[
X

A

]
+ r(A).

(xvi) R[(K̂X̂+ΣΣΣ)′] ⊆ R(X̂).

(xvii) R

[
X̂′ΣΣΣX̂⊥

0

]
⊆ R

[
X̂′X̂

K̂

]
.

(xviii) R


X′X 0 A′

ΣΣΣX X 0

A 0 0

0 A 0

 ⊇ R


K′

0

0

0

.
Proof. It is easy to see from (4.28), (4.45), and Definition 1.1(i) that the equality OLSE

M̃
(Kβββ) =

BLUE
M̃

(Kβββ) holds definitely if and only if the constant vectors and the coefficient matrices in (4.28) and

(4.45) are equal, respectively, i.e.,

(KA+ − K̂X̂+XA+)b = (K−PK̂;X̂;ΣΣΣX)A+b and K̂X̂+ = PK̂;X̂;ΣΣΣ. (5.54)

Combining the two equalities in (5.54) yields

PK̂;X̂;ΣΣΣ[ In, XA+b ] = [ K̂X̂+, K̂X̂+XA+b ]. (5.55)

Substituting PK̂;X̂;ΣΣΣ into (5.55) yields a matrix equation

U[ X̂, ΣΣΣX̂⊥ ]⊥[ In, XA+b ]

= [ K̂X̂+, K̂X̂+XA+b ]− [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+[ In, XA+b ]. (5.56)

From Lemma 2.3, the matrix equation in (5.56) is solvable for U if and only if

r

[
[ K̂X̂+, K̂X̂+XA+b ]− [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+[ In, XA+b ]

[ X̂, ΣΣΣX̂⊥ ]⊥[ In, XA+b ]

]
= r
(

[ X̂, ΣΣΣX̂⊥ ]⊥[ In, XA+b ]
)
, (5.57)

where by Lemma 2.1, (2.6), (2.7), (2.9), and elementary block matrix operations, the both sides of (5.57)
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reduce to

r

[
[ K̂X̂+, K̂X̂+XA+b ]− [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+[ In, XA+b ]

[ X̂, ΣΣΣX̂⊥ ]⊥[ In, XA+b ]

]

= r

[
[ K̂X̂+, K̂X̂+XA+b ]− [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+[ In, XA+b ] 0

[ In, XA+b ] [ X̂, ΣΣΣX̂⊥ ]

]
− r[ X̂, ΣΣΣX̂⊥ ]

= r

[
[ K̂X̂+, K̂X̂+XA+b ] [ K̂, 0 ]

[ In, XA+b ] [ X̂, ΣΣΣX̂⊥ ]

]
− r[ X̂, ΣΣΣ ]

= r

[
0 0 0 K̂X̂+ΣΣΣX̂⊥

In 0 0 0

]
− r[ X̂, ΣΣΣ ]

= n+ r(K̂X̂+ΣΣΣX̂⊥)− r[ X̂, ΣΣΣ ]

= r

[
X̂′X̂ X̂′ΣΣΣX̂⊥

K̂ 0

]
− r(X̂) + n− r[ X̂, ΣΣΣ ] (by (2.9))

= r

[
X̂′X̂ 0 K̂′

ΣΣΣX̂ X̂ 0

]
− 2r(X̂) + n− r[ X̂, ΣΣΣ ] (by (2.7))

= r

[
FAX′XFA 0 FAK′

ΣΣΣXFA XFA 0

]
− 2r(XFA) + n− r[ X̂, ΣΣΣ ]

= r


X′X 0 A′ K′

ΣΣΣX X 0 0

A 0 0 0

0 A 0 0

− 2r

[
X

A

]
− r(A) + n− r[ X̂, ΣΣΣ ] (by (2.6) and (2.7)), (5.58)

and

r
(

[ X̂, ΣΣΣX̂⊥ ]⊥[ In, XA+b ]
)

= r[X̂, ΣΣΣX̂⊥, In, XA+b ]− r[ X̂, ΣΣΣX̂⊥ ] = n− r[ X̂, ΣΣΣ ]. (5.59)

Substituting (5.58) and (5.59) into (5.57), we obtain the following equalities

r(K̂X̂+ΣΣΣX̂⊥) = 0, r

[
X̂′X̂ 0 K̂′

ΣΣΣX̂ X̂ 0

]
= 2r(X̂),

r


X′X 0 A′ K′

ΣΣΣX X 0 0

A 0 0 0

0 A 0 0

 = 2r

[
X

A

]
+ r(A),

so that (i) and (xi)–(xviii) are equivalent.

Since OLSE
M̃

(Kβββ) and BLUE
M̃

(Kβββ) are both unbiased for Kβββ, then we obtain from Definition 1.1(ii)

that OLSE
M̃

(Kβββ) = BLUE
M̃

(Kβββ) holds with probability 1 if and only if D[ OLSE
M̃

(Kβββ)−BLUE
M̃

(Kβββ) ] =
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0. From (4.28) and (4.45),

D[ OLSE
M̃

(Kβββ)− BLUE
M̃

(Kβββ) ]

=
(
K̂X̂+ − [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+

)
ΣΣΣ
(
K̂X̂+ − [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+

)′
.

Hence, D[ OLSE
M̃

(Kβββ)− BLUE
M̃

(Kβββ) ] = 0 is equivalent to the matrix equality

K̂X̂+ΣΣΣ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ,

where by (2.9) and elementary block matrix operations,

r
(
K̂X̂+ΣΣΣ− [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ

)
= r

[
[ X̂, ΣΣΣX̂⊥ ] ΣΣΣ

[ K̂, 0 ] K̂X̂+ΣΣΣ

]
− r[ X̂, ΣΣΣX̂⊥ ]

= r

[
[ X̂, 0 ] ΣΣΣ

[0, −K̂X̂+ΣΣΣX̂⊥ ] 0

]
− r[ X̂, ΣΣΣ ]

= r(K̂X̂+ΣΣΣX̂⊥). (5.60)

Setting the right-hand side of (5.60) equal to zero leads to the equivalences of (ii), (viii), and (xi).

Note that

R(K̂′) ⊆ R(X̂′), R([ K̂, 0 ]′) ⊆ R([ X̂, ΣΣΣX̂⊥ ]′), R(ΣΣΣ) ⊆ R([ X̂, ΣΣΣX̂⊥ ]).

Applying (2.10) to (4.29) and (4.47), and simplifying by (2.8) and elementary block matrix operations, we

obtain

r
(
D[OLSE

M̃
(Kβββ)]−D[BLUE

M̃
(Kβββ)]

)
= r
(
K̂(X̂′X̂)+X̂′ΣΣΣX̂(X̂′X̂)+K̂′ − [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ X̂, ΣΣΣX̂⊥ ]+)′[ K̂, 0 ]′

)
= r

[ K̂, K̂, 0 ]

[
X̂′X̂ 0

0 [ X̂, ΣΣΣX̂⊥ ]

]+[
X̂′ΣΣΣX̂ 0

0 −ΣΣΣ

][
X̂′X̂ 0

0 [ X̂, ΣΣΣX̂⊥ ]′

]+
K̂′K̂′

0



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= r


0

[
X̂′X̂ 0

0 [ X̂, ΣΣΣX̂⊥ ]′

] K̂′K̂′

0

[
X̂′X̂ 0

0 [ X̂, ΣΣΣX̂⊥ ]

] [
X̂′ΣΣΣX̂ 0

0 −ΣΣΣ

]
0

[ K̂, [ K̂, 0 ] ] 0 0


− 2r(X̂)− 2r[ X̂, ΣΣΣX̂⊥ ]

= r



0 0 0 X̂′X̂ 0 K̂′

0 0 0 0 X̂′ K̂′

0 0 0 0 X̂⊥ΣΣΣ 0

X̂′X̂ 0 0 X̂′ΣΣΣX̂ 0 0

0 X̂ ΣΣΣX̂⊥ 0 −ΣΣΣ 0

K̂ K̂ 0 0 0 0


− 2r(X̂)− 2r[ X̂, ΣΣΣ ]

= r


0 0 X̂′X̂ −X̂′ 0

0 0 0 X̂′ K̂′

X̂′X̂ 0 X̂′ΣΣΣX̂ 0 0

−X̂ X̂ 0 −ΣΣΣ 0

0 K̂ 0 0 0

+ r(X̂⊥ΣΣΣX̂⊥)− 2r(X̂)− 2r[ X̂, ΣΣΣ ]

= r


ΣΣΣ 0 ΣΣΣX̂ X̂ 0

0 0 X̂′X̂ 0 K̂′

X̂′ΣΣΣ X̂′X̂ 0 0 0

X̂′ 0 0 0 0

0 K̂ 0 0 0

− 3r(X̂)− r[ X̂, ΣΣΣ ]

= r

[
ΣΣΣ 0 ΣΣΣX̂ X̂ 0

0 0 X̂′X̂ 0 K̂′

]
+ r

X̂′ΣΣΣ X̂′X̂

X̂′ 0

0 K̂

− 3r(X̂)− r[ X̂, ΣΣΣ ] (by (2.8))

= r

X̂′ΣΣΣ X̂′X̂

X̂′ 0

0 K̂

− 2r(X̂). (5.61)

Setting the right-hand side of (5.61) equal to zero leads to the equivalences of (iii), (x), and (xiii).

r
(
K̂X̂+ − [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+

)
= r

(
K̂(X̂′X̂)+X̂′ − [ K̂, 0 ]([ X̂, ΣΣΣX̂⊥ ]′[ X̂, ΣΣΣX̂⊥ ])+[ X̂, ΣΣΣX̂⊥ ]′

)
= r

(K̂, [ K̂, 0 ])

(
X̂′X̂ 0

0 −[ X̂, ΣΣΣX̂⊥ ]′[ X̂, ΣΣΣX̂⊥ ]

)+ [
X̂′

[ X̂, ΣΣΣX̂⊥ ]′

]
= r

X̂′X̂ 0 X̂′

0 −[ X̂, ΣΣΣX̂⊥ ]′[ X̂, ΣΣΣX̂⊥ ] [ X̂, ΣΣΣX̂⊥ ]′

K̂ [ K̂, 0 ] 0

− r[ X̂, ΣΣΣX̂⊥ ]− r(X̂)
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= r


X̂′X̂ X̂′X̂ X̂′ΣΣΣX̂⊥ X̂′

0 0 0 X̂′

0 0 0 X̂⊥ΣΣΣ

K̂ K̂ 0 0

− r[ X̂, ΣΣΣ ]− r(X̂)

= r


X̂′X̂ X̂′ΣΣΣX̂⊥ 0

0 0 X̂′

0 0 X̂⊥ΣΣΣ

K̂ 0 0

− r[ X̂, ΣΣΣ ]− r(X̂)

= r

[
X̂′X̂ X̂′ΣΣΣX̂⊥

K̂ 0

]
− r(X̂) = r

X̂′X̂ X̂′ΣΣΣ

K̂ 0

0 X̂′

− 2r(X̂). (5.62)

Setting the right-hand side of (5.62) equal to zero leads to the equivalence of (vii) and (xiii).

Note that

[ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣX̂⊥ = 0⇔ [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ = [ K̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣX̂X̂+.

Hence, (viii) and (ix) are equivalent. The equivalences of (iv) and (viii), (v) and (ix), (vi) and (xi) follow

from the corresponding covariance matrix calculations.

Setting K = X and K = X̃ in Theorem 5.1, respectively, we obtain the following consequences.

Corollary 5.2. Let OLSE
M̃

(Xβββ) and BLUE
M̃

(Xβββ) be as given in (4.30) and (4.48), respectively.

Then, the following statements are equivalent:

(i) OLSE
M̃

(Xβββ) = BLUE
M̃

(Xβββ) holds definitely (with probability 1).

(ii) D
[
OLSE

M̃
(Xβββ)

]
= D

[
BLUE

M̃
(Xβββ)

]
.

(iii) D[y −OLSE
M̃

(Xβββ)] = D[y − BLUE
M̃

(Xβββ)].

(iv) D(y) = D[OLSE
M̃

(Xβββ)] + D[y −OLSE
M̃

(Xβββ)].

(v) Cov{OLSE
M̃

(Xβββ), y} = Cov{BLUE
M̃

(Xβββ), y}.
(vi) Cov{OLSE

M̃
(Xβββ), y} = Cov{BLUE

M̃
(Xβββ), OLSE

M̃
(Xβββ)}.

(vii) Cov{OLSE
M̃

(Xβββ), OLSE
M̃

(Xβββ)} = Cov{BLUE
M̃

(Xβββ),y}.
(viii) Cov{OLSE

M̃
(Xβββ), OLSE

M̃
(Xβββ)} = Cov{BLUE

M̃
(Xβββ), OLSE

M̃
(Xβββ)}.

(ix) Cov{OLSE
M̃

(Xβββ), y} = Cov{y, OLSE
M̃

(Xβββ)}.
(x) Cov{y −OLSE

M̃
(Xβββ), y} = Cov{y, y −OLSE

M̃
(Xβββ)}.

(xi) Cov{OLSE
M̃

(Xβββ),y −OLSE
M̃

(Xβββ)}
= Cov{y −OLSE

M̃
(Xβββ),OLSE

M̃
(Xβββ)}.

(xii) Cov{OLSE
M̃

(Xβββ), y −OLSE
M̃

(Xβββ)}+ Cov{y −OLSE
M̃

(Xβββ), OLSE
M̃

(Xβββ)} = 0.

(xiii) Cov{OLSE
M̃

(Xβββ), y −OLSE
M̃

(Xβββ)} = 0.

(xiv) PX̂ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+.

(xv) PX̂ΣΣΣ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ.

(xvi) PX̂ΣΣΣ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣPX̂.

(xvii) PX̂ΣΣΣPX̂ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′.

(xviii) PX̂ΣΣΣPX̂ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ.

(xix) PX̂ΣΣΣPX̂ = [ X̂, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣPX̂.

(xx) PX̂ΣΣΣX̂⊥ = 0.
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(xxi) X̂⊥ΣΣΣPX̂ = PX̂ΣΣΣX̂⊥.

(xxii) X̂⊥ΣΣΣPX̂ + PX̂ΣΣΣX̂⊥ = 0.

(xxiii) PX̂ΣΣΣ = ΣΣΣPX̂.

(xxiv) X̂⊥ΣΣΣ = ΣΣΣX̂⊥.

(xxv) r[ΣΣΣX̂, X̂ ] = r(X̂).

(xxvi) r[ΣΣΣX̂⊥, X̂⊥ ] = r(X̂⊥).

(xxvii) R(ΣΣΣX̂) ⊆ R(X̂).

(xxviii) R(ΣΣΣX̂⊥) ⊆ R(X̂⊥).

(xxix) R(ΣΣΣX̂) = R(ΣΣΣ) ∩R(X̂).

(xxx) R(ΣΣΣX̂⊥) = R(ΣΣΣ) ∩R(X̂⊥).

Proof. Results (i), (ii), (v), (vi), (xiii)–(xvii), (xx), (xxv) follow from Theorem 5.1. The proofs of the

equivalences of (iii), (vii), (viii), (ix), (xviii), (xix), (xxiii)–(xxv) are similar to those presented in [65].

From (1.1) and (4.30),

Cov
{

OLSE
M̃

(Xβββ), y −OLSE
M̃

(Xβββ)
}

+ Cov
{
y −OLSE

M̃
(Xβββ), OLSE

M̃
(Xβββ)

}
= PX̂ΣΣΣX̂⊥ + X̂⊥ΣΣΣPX̂, (5.63)

and

D(y)−D[OLSE
M̃

(Xβββ)]−D[Y −OLSE
M̃

(Xβββ)] = ΣΣΣ−PX̂ΣΣΣPX̂ − X̂⊥ΣΣΣX̂⊥

= PX̂ΣΣΣX̂⊥ + X̂⊥ΣΣΣPX̂, (5.64)

where by (2.6) and Lemma 2.1(v),

r
(
PX̂ΣΣΣX̂⊥ + X̂⊥ΣΣΣPX̂

)
= r
(
PX̂ΣΣΣX̂⊥

)
+ r
(
X̂⊥ΣΣΣPX̂

)
= 2r

(
X̂⊥ΣΣΣPX̂

)
= 2r[ X̂, ΣΣΣX̂ ]− 2r(X̂). (5.65)

Setting both sides of (5.65) equal to zero and combining it with (5.63) and (5.64) yield the equivalences of

(iv), (xii), (xxi), (xxii), (xxv), and (xxvii).

The equivalences of (xxiii)–(xxx) on matrix equalities and range equalities are well known; see [41].

The equivalence of (x) and (xxiv), and the equivalence of (xi) and (xxi) follow from the formulas for the

corresponding covariance matrix operations.

Corollary 5.3. Let OLSE
M̃

(X̃βββ) and BLUE
M̃

(X̃βββ) be as given in (4.32) and (4.51), respectively.

Then, the following statements are equivalent:

(i) OLSE
M̃

(X̃βββ) = BLUE
M̃

(X̃βββ) holds definitely (with probability 1).

(ii) D
[
OLSE

M̃
(X̃βββ)

]
= D

[
BLUE

M̃
(X̃βββ)

]
.

(iii) Cov
{

OLSE
M̃

(X̃βββ),y
}

= Cov
{

BLUE
M̃

(X̃βββ), y
}
.

(iv) Cov
{

OLSE
M̃

(X̃βββ), y
}

= Cov
{

BLUE
M̃

(X̃βββ),OLSE
M̃

(Xβββ)
}
.

(v) Cov
{

OLSE
M̃

(X̃βββ), y −OLSE
M̃

(Xβββ)
}

= 0.

(vi) ẐX̂+ = [ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+.

(vii) ẐX̂+ΣΣΣ = [ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ.

(viii) ẐX̂+ΣΣΣ = [ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣPX̂.
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(ix) ẐX̂+ΣΣΣ(ẐX̂+)′ = [ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ Ẑ, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′.

(x) ẐX̂+ΣΣΣX̂⊥ = 0.

(xi) PX̂ΣΣΣ = ΣΣΣPX̂.

(xii) X̂⊥ΣΣΣ = ΣΣΣX̂⊥.

(xiii) r[ΣΣΣX̂, X̂ ] = r(X̂).

(xiv) r[ΣΣΣX̂⊥, X̂⊥ ] = r(X̂⊥).

(xv) R(ΣΣΣX̂) ⊆ R(X̂).

(xvi) R(ΣΣΣX̂⊥) ⊆ R(X̂⊥).

(xvii) R(ΣΣΣX̂) = R(ΣΣΣ) ∩R(X̂).

(xviii) R(ΣΣΣX̂⊥) = R(ΣΣΣ) ∩R(X̂⊥).

Setting K = Yi and K = Wi, respectively, we obtain from Theorem 5.1 the following consequences.

Corollary 5.4. Assume that all Xiβββi and X̃iβββi are estimable under (1.2). Then, the following results

hold.

(a) The following statements are equivalent:

(i) OLSE
M̃

(Xiβββi) = BLUE
M̃

(Xiβββi) holds definitely (with probability 1), i = 1, . . . , k.

(ii) D
[
OLSE

M̃
(Xiβββi)

]
= D

[
BLUE

M̃
(Xiβββi)

]
, i = 1, . . . , k.

(iii) Cov
{

OLSE
M̃

(Xiβββi), y
}

= Cov
{

BLUE
M̃

(Xiβββi), y
}
, i = 1, . . . , k.

(iv) Cov
{

OLSE
M̃

(Xiβββi),y
}

= Cov
{

BLUE
M̃

(Xiβββi), OLSE
M̃

(Xβββ)
}
, i = 1, . . . , k.

(v) Cov
{

OLSE
M̃

(Xiβββi), y −OLSE
M̃

(Xβββ)
}

= 0, i = 1, . . . , k.

(vi) ŶiX̂
+ = [ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+, i = 1, . . . , k.

(vii) ŶiX̂
+ΣΣΣ = [ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ, i = 1, . . . , k.

(viii) ŶiX̂
+ΣΣΣ = [ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣPX̂, i = 1, . . . , k.

(ix) ŶiX̂
+ΣΣΣ(ŶiX̂

+)′ = [ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([ Ŷi, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′, i = 1, 2, . . . , k.

(x) ŶiX̂
+ΣΣΣX̂⊥ = 0, i = 1, . . . , k.

(xi) X̂⊥[ΣΣΣX̂,0]F[X̂′X̂,Ŷ′
i]

= 0, i = 1, . . . , k.

(xii) r

[
X̂′X̂ 0 Ŷ′i
ΣΣΣX̂ X̂ 0

]
= r

[
Ẑ′iX̂ 0 Ŷ′i
ΣΣΣX̂ X̂ 0

]
= 2r(X̂), i = 1, . . . , k.

(b) The following statements are equivalent:

(i) OLSE
M̃

(X̃iβββi) = BLUE
M̃

(X̃iβββi) holds definitely (with probability 1), i = 1, . . . , k.

(ii) D
[
OLSE

M̃
(X̃iβββi)

]
= D

[
BLUE

M̃
(X̃iβββi)

]
, i = 1, . . . , k.

(iii) Cov
{

OLSE
M̃

(X̃iβββi), y
}

= Cov
{

BLUE
M̃

(X̃iβββi),y
}
, i = 1, . . . , k.

(iv) Cov
{

OLSE
M̃

(X̃iβββi), y
}

= Cov
{

BLUE
M̃

(X̃iβββi), OLSE
M̃

(Xβββ)
}
, i = 1, . . . , k.

(v) Cov
{

OLSE
M̃

(X̃iβββi), y −OLSE
M̃

(Xβββ)
}

= 0, i = 1, . . . , k.

(vi) ŴiX̂
+ = [Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+, i = 1, . . . , k.

(vii) ŴiX̂
+ΣΣΣ = [Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ, i = 1, . . . , k.

(viii) ŴiX̂
+ΣΣΣ = [Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣPX̂, i = 1, . . . , k.

(ix) ŴiX̂
+ΣΣΣ(ŴiX̂

+)′ = [Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+ΣΣΣ([Ŵi, 0 ][ X̂, ΣΣΣX̂⊥ ]+)′, i = 1, . . . , k.

(x) ŴiX̂
+ΣΣΣX̂⊥ = 0, i = 1, . . . , k.

(xi) r

[
X̂′X̂ 0 Ŵ′

i

ΣΣΣX̂ X̂ 0

]
= 2r(X̂), i = 1, . . . , k.
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Proof. The equivalences of (i)–(xii) in (a) and the equivalences of (i)–(xi) in (b) follow from Theorem

5.1.

We conclude with a group of amusing and versatile results concerning the statistical interpretations of

the equivalences of the OLSEs and BLUEs of the parameter spaces in (1.2).

Theorem 5.5. Let M̃ be as given in (1.2), and assume that all Xiβββi and X̃iβββi are estimable under

(1.2). Then, the following statistical facts are equivalent:

(i) OLSE
M̃

(Xβββ) = BLUE
M̃

(Xβββ) holds definitely (with probability 1).

(ii) D
[
OLSE

M̃
(Xβββ)

]
= D

[
BLUE

M̃
(Xβββ)

]
.

(iii) D[y −OLSE
M̃

(Xβββ)] = D[y − BLUE
M̃

(Xβββ)].

(iv) D(y) = D[OLSE
M̃

(Xβββ)] + D[y −OLSE
M̃

(Xβββ)].

(v) Cov{OLSE
M̃

(Xβββ), y} = Cov{BLUE
M̃

(Xβββ), y}.
(vi) Cov{OLSE

M̃
(Xβββ), y} = Cov{BLUE

M̃
(Xβββ), OLSE

M̃
(Xβββ)}.

(vii) Cov{OLSE
M̃

(Xβββ), OLSE
M̃

(Xβββ)} = Cov{BLUE
M̃

(Xβββ),y}.
(viii) Cov{OLSE

M̃
(Xβββ), OLSE

M̃
(Xβββ)} = Cov{BLUE

M̃
(Xβββ), OLSE

M̃
(Xβββ)}.

(ix) Cov{OLSE
M̃

(Xβββ), y} = Cov{y, OLSE
M̃

(Xβββ)}.
(x) Cov{y −OLSE

M̃
(Xβββ), y} = Cov{y, y −OLSE

M̃
(Xβββ)}.

(xi) Cov{y −OLSE
M̃

(Xβββ), OLSE
M̃

(Xβββ)} = Cov{OLSE
M̃

(Xβββ), y −OLSE
M̃

(Xβββ)}.
(xii) Cov{y −OLSE

M̃
(Xβββ), OLSE

M̃
(Xβββ)}+ Cov{OLSE

M̃
(Xβββ), y −OLSE

M̃
(Xβββ)} = 0.

(xiii) Cov{OLSE
M̃

(Xβββ), y −OLSE
M̃

(Xβββ)} = 0.

(xiv) OLSE
M̃

(X̃βββ) = BLUE
M̃

(X̃βββ) holds definitely (with probability 1).

(xv) D
[
OLSE

M̃
(X̃βββ)

]
= D

[
BLUE

M̃
(X̃βββ)

]
.

(xvi) Cov
{

OLSE
M̃

(X̃βββ),y
}

= Cov
{

BLUE
M̃

(X̃βββ),y
}
.

(xvii) Cov
{

OLSE
M̃

(X̃βββ),y
}

= Cov
{

BLUE
M̃

(X̃βββ),OLSE
M̃

(Xβββ)
}
.

(xviii) Cov
{

OLSE
M̃

(X̃βββ),y −OLSE
M̃

(Xβββ)
}

= 0.

(xix) All OLSE
M̃

(Xiβββi) = BLUE
M̃

(Xiβββi) hold definitely (with probability 1), i = 1, . . . , k.

(xx) All D
[
OLSE

M̃
(Xiβββi)

]
= D

[
BLUE

M̃
(Xiβββi)

]
hold, i = 1, . . . , k.

(xxi) All Cov
{

OLSE
M̃

(Xiβββi),y
}

= Cov
{

BLUE
M̃

(Xiβββi),y
}

hold,i = 1, . . . , k.

(xxii) All Cov
{

OLSE
M̃

(Xiβββi),y
}

= Cov
{

BLUE
M̃

(Xiβββi),OLSE
M̃

(Xβββ)
}

hold, i = 1, . . . , k.

(xxiii) All Cov
{

OLSE
M̃

(Xiβββi),y −OLSE
M̃

(Xβββ)
}

= 0 hold, i = 1, . . . , k.

(xxiv) All OLSE
M̃

(X̃iβββi) = BLUE
M̃

(X̃iβββi) hold definitely (with probability 1), i = 1, . . . , k.

(xxv) All D
[
OLSE

M̃
(X̃iβββi)

]
= D

[
BLUE

M̃
(X̃iβββi)

]
hold, i = 1, . . . , k.

(xxvi) All Cov
{

OLSE
M̃

(X̃iβββi),y
}

= Cov
{

BLUE
M̃

(X̃iβββi),y
}

hold, i = 1, . . . , k.

(xxvii) All Cov
{

OLSE
M̃

(X̃iβββi),y
}

= Cov
{

BLUE
M̃

(X̃iβββi),OLSE
M̃

(Xβββ)
}

hold, i = 1, . . . , k.

(xxviii) All Cov
{

OLSE
M̃

(X̃iβββi), y −OLSE
M̃

(Xβββ)
}

= 0 hold, i = 1, . . . , k.

Proof. The equivalences of (i)–(xiii) and the equivalences of (xiv)–(xviii) follow from Corollaries 5.2 and

5.3.
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If (i) holds, then we derive from Corollary 5.2(xxvii) that

r

[
Ẑ′iX̂ 0 Ŷ′i
ΣΣΣX̂ X̂ 0

]
= r

[
Ẑ′iX̂ 0 Ŷ′i
0 X̂ 0

]
= r[Ẑ′iX̂, Ŷ

′
i] + r(X̂)

= r[ X̂′X̂, Ŷ′i ] + r(X̂)

= r(X̂′X̂) + r(X̂)

= 2r(X̂), i = 1, . . . , k,

thus establishing the equality(xii) in Corollary 5.4(a). Hence, (i) implies (xix)–(xxiii). If (xix) holds, we

obtain from X̂ = Ŷ1 + · · ·+ Ŷk and (x) in Corollary 5.4(a)

PX̂ΣΣΣX̂⊥ = Ŷ1X̂
+ΣΣΣX̂⊥ + · · ·+ ŶkX̂

+ΣΣΣX̂⊥ = 0.

Thus, Corollary 5.2(xx) holds.

From Corollaries 5.2 and 5.3, the equivalence of (i) and (xiv) holds obviously. The proof of the equivalence

of (xiv) and (xxiv) is similar to that of the equivalence of (i) and (xix).

6. Summary comments. We have approached OLSEs and BLUEs of whole and partial mean param-

eter vectors in CGLMs, and have established a variety of algebraic and statistical interpretations for the

OLSEs to be the BLUEs of the parameter spaces in (1.2) by using some classic and novel algebraic tools

and techniques in matrix analysis. All the results obtained demonstrate essential links between OLSEs and

BLUEs under various assumptions, which thus enable us to recognize and use these equivalent statements

in many different situations, and can serve as general references in the statistical inference of CGLMs. This

work also shows that while even for some classic inference problems on linear statistical models, we are still

able to reveal a variety of novel and insightful conclusions by making use of some effective matrix analysis

tools. Thus, important developments of statistics always need essential supports from matrix theory and

linear algebra. Finally, we mention that various similar problems on decompositions of OLSEs and BLUEs

under linear statistical models, such as, linear models with both fixed- and random-effects, multivariate

general linear models, etc., while the matrix methodology used in the previous sections is also available for

approaching these problems under these general situations.
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[29] W. Krämer, R. Bartels, and D.G. Fiebig. Another twist on the equality of OLS and GLS. Stat. Papers, 37:277–281, 1996.

[30] W. Kruskal. When are Gauss–Markov and least squares estimators identical? A coordinate-free approach. Ann. Math.

Statist., 39:70–75, 1968.

[31] Y. Liu. On equality of ordinary least squares estimator, best linear unbiased estimator and best linear unbiased predictor

in the general linear model. J. Statist. Plann. Inference, 139:1522–1529, 2009.

[32] G. Marsaglia and G.P.H. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra, 2:269–292,

1974.

[33] F.W. McElroy. A necessary and sufficient condition that ordinary least-squares estimators be best linear unbiased. J.

Amer. Stat. Assoc., 62:1302–1304, 1967.

[34] G.A. Milliken. New criteria for estimability for linear models. Ann. Math. Statist., 42:1588–1594, 1971.

[35] G.A. Milliken and M. Albohali. On necessary and sufficient conditions for ordinary least squares estimators to be best

linear unbiased estimators. Amer. Statistican, 38:298–299, 1984.

[36] S.K. Mitra and B.J. Moore. Gauss–Markov estimation with an incorrect dispersion matrix. Sankhyā Ser. A, 35:139–152,
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