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INVERSES OF BICYCLIC GRAPHS∗

S.K. PANDA†

Abstract. A graph G is said to be nonsingular (resp., singular) if its adjacency matrix A(G) is nonsingular (resp., singular).

The inverse of a nonsingular graph G is the unique weighted graph whose adjacency matrix is similar to the inverse of the

adjacency matrix A(G) via a diagonal matrix of ±1s. Consider connected bipartite graphs with unique perfect matchings such

that the graph obtained by contracting all matching edges is also bipartite. In [C.D. Godsil. Inverses of trees. Combinatorica,

5(1):33–39, 1985.], Godsil proved that such graphs are invertible. He posed the question of characterizing the bipartite graphs

with unique perfect matchings possessing inverses. In this article, Godsil’s question for the class of bicyclic graphs is answered.
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1. Introduction. Let G be a simple, undirected graph on vertices 1, 2, . . . , n. We use V (G) and E(G)

to denote the vertex set and the edge set of G, respectively. We use [i, j] to denote an edge between the

vertices i and j. The adjacency matrix A(G) of G is the square symmetric matrix of size n whose (i, j)th

entry aij is given by

aij =

{
1 if [i, j] ∈ E(G),

0 otherwise.

A graph is called nonsingular (resp., singular) if A(G) is nonsingular (resp., singular). A perfect matching in

a graph G is a spanning forest whose components are paths on two vertices. If a graph has unique perfect

matching, then we denote it by M. Furthermore, when v is a vertex, we shall always use v′ to denote the

matching mate for v, that is, v′ is the vertex for which the edge [v, v′] ∈M. Let H be the class of connected

bipartite graphs with unique perfect matchings. Let G ∈ H. In [3], the author used G/M to denote the

graph which is obtained from G by contracting each matching edge to a single vertex. A bicyclic graph on

n vertices is a connected graph with n + 1 edges. Let G be a graph and K ⊆ E(G). By G −K we denote

the graph which is obtained from G by deleting all the edges in K.

In quantum chemistry, a graph known as the Hückel graph is used to model the molecular orbital

energies of a hydrocarbon. Under some conditions a Hückle graph may be seen as a bipartite graph with a

unique perfect matching, see [9]. This is one of the motives to consider bipartite graphs with unique perfect

matchings.

Definition 1.1. [3] Let G ∈ H. We say G has an inverse G+ if the matrix A(G)−1 is signature similar

to a nonnegative matrix, that is, SA(G)−1S ≥ 0 for some signature matrix S and G+ is a weighted graph

associated to the matrix SA(G)−1S. Recall that, a signature matrix is a diagonal matrix with diagonal

entries from {1,−1}. A graph G which is isomorphic to its own inverse, is called a self-inverse graph.
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In [3], Godsil proved that each connected bipartite graph G ∈ H with a unique perfect matching such

that G/M is bipartite is invertible. This raised the following interesting question: Which graphs in H
possess an inverse? In [1], Akbari and Kirkland supplied a characterization of unicyclic graphs in H which

possess inverses. In [7], Tifenbach and Kirkland supplied necessary and sufficient conditions for graphs in

H to possess inverses, utilizing constructions derived from the graph itself. Below we mention that result

recalling the necessary definitions and results while supplying an illustration.

The following lemma is essentially contained in [3].

Lemma 1.2. Let G ∈ H. Then the adjacency matrix of G can be expressed as

A(G) =

[
0 BG

Bt
G 0

]
,

where BG is a lower-triangular, square (0, 1)-matrix with every diagonal entry equal to 1.

Definition 1.3. [4] Consider a graph G with a unique perfect matchingM. A path P = [u1, u2, . . . , u2k]

is called an alternating path if the edges on P are alternately matching and nonmatching edges, that is, for

each i, if [ui, ui+1] is a matching (resp., nonmatching) edge and [ui+1, ui+2] ∈ E(G), then [ui+1, ui+2] is

a nonmatching (resp., matching) edge. Let P = [u1, u2, . . . , u2k] be an alternating path. We say P is an

mm-alternating path (matching-matching-alternating path) if [u1, u2], [u2k−1, u2k] ∈ M. We say P is an

nn-alternating path (nonmatching-nonmatching-alternating path) if [u1, u2], [u2k−1, u2k] /∈M.

Definition 1.4. [7] Let G ∈ H and BG be the matrix as mentioned in Lemma 1.2. By DG, denote the

directed graph with adjacency matrix BG − I. Let ΓG be the directed subgraph of DG such that the arc

x→ y is in ΓG if x→ y is in DG and there is no directed x-y-path of length more than 1.

Fix vertices i and j. The undirected interval G[i, j] is the subgraph of graph G induced by the vertices

x such that there is an mm-alternating i-j-path in G which contains x.

Theorem 1.5. [7, Theorem 2.6] Let G ∈ H. Then G+ exists if and only if both the following conditions

hold:

(i) Each nonempty undirected interval G[i, j] in G possesses an inverse.

(ii) The digraph ΓG is bipartite.

Remark 1.6. Let G ∈ H be a bicyclic graph such that G[i, j] = G for some i, j ∈ V (G). Even if we

assume that the digraph ΓG is bipartite and that each undirected interval G[u, v] 6= G possesses an inverse,

we cannot use Theorem 1.5 to show that G+ exists. In fact, with these conditions G+ may or may not exist,

as shown below.

A) Consider the graph G shown in Figure 1. One can easily check that ΓG is bipartite. The undirected

interval G[1, 4′] = G. Any undirected interval G[u, v] 6= G[1, 4′] is a tree in H. Hence G[u, v] is

invertible. By using Theorem 1.5, G is invertible if G[1, 4′] = G is invertible. So Theorem 1.5 does

not help to check whether G is invertible or not. Notice that G is invertible with the signature

matrix S = diag[1, 1,−1,−1, 1, 1,−1,−1].

B) Consider the graph H shown in Figure 1. One can easily check that ΓH is bipartite. The undirected

interval H[1, 4′] = H. Any undirected interval H[u, v] 6= H[1, 4′] is either a tree in H or a unicyclic

graph in H. By using Theorem 2.2 in [3] and Theorem 12 in [1], H[u, v] is invertible. By using

Theorem 1.5, H is invertible if H[1, 4′] = H is invertible. So Theorem 1.5 does not help to check

whether H is invertible or not. By using Example 25 in [4], the graph H is not invertible.
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Figure 1. Here, the solid edges are the matching edges.

In [4], the authors introduced the ‘even’ness of a nonmatching edge of a connected bipartite graph with

a unique perfect matching and showed that under certain conditions a connected bipartite graph with a

unique perfect matching has an inverse. This result extended some known results, providing us with a larger

class of graphs possessing inverses. This results can also be seen to complement the results by Tifenbach and

Kirkland. Below we mention that result recalling the necessary definitions while supplying an illustration.

Definition 1.7. [4] Let G be a connected graph with a unique perfect matchingM and [u, v] /∈M. An

extension at [u, v] is an nn-alternating u-v-path other than [u, v]. An extension at [u, v] is called even type

(resp., odd type) if the number of nonmatching edges on that extension is even (resp., odd). For example,

in the graph G shown in Figure 2, the path [i′, x1, x′1, x2, x2, i1] is an odd type extension at [i′, i1] and the

path [i′2, u1, u
′
1, u2, u

′
2, u3, u

′
3, i3] is an even type extension.

Remark 1.8. Let G ∈ H and Qe be an extension at e in G. Then Qe can never be an extension at some

other nonmatching edge in G as G is simple.

The following definition differentiates between the nonmatching edges of a graph in H.

Definition 1.9. [4] The nonmatching edge [u, v] is said to be an odd type edge, if either there are no

extensions at [u, v] or each extension at [u, v] is odd type. We say [u, v] is an even type edge, if each extension

at [u, v] is even type. We say [u, v] is mixed type, if it has an even type extension and an odd type extension.

Let E be the set of all even type edges of G.

Example 1.10. [4] In the graph G shown in Figure 2, the nn-alternating paths [i′2, u1, u
′
1, u2, u

′
2, u3,

u′3, i3] and [i′2, u1, u
′
1, u2, u

′
2, v1, v

′
1, v2, v

′
2, u3, u

′
3, i3] are two even type extensions at [i′2, i3]. These are the

only extensions at [i′2, i3]. Hence, [i′2, i3] is an even type edge. The edge [i′, i1] is mixed type. Every other

nonmatching edge is of odd type.
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Figure 2. Here, the solid edges are the matching edges.

Remark 1.11. Let G ∈ H. Assume that E , O and F are the set of even type, odd type and mixed type

edges in G, respectively. Then the graph G− E −O −F is connected.

Definition 1.12. [4] Let Hnm be the class of all graphs G ∈ H such that G has no mixed type edges.

Here ‘nm’ is an abbreviation of ‘no mixed type edges’.

Definition 1.13. [4] By Hnmc, we denote the class of graphs G in H such that

i) G ∈ Hnm,

ii) G satisfies the condition ‘C’,

C: The extensions at two distinct even type edges never have an odd type edge in common. Here ‘nmc’

is an abbreviation of ‘no mixed type edges and a condition’. Thus,

Hnmc = {G ∈ H | G has no mixed type edges and G satisfies condition C}.

Definition 1.14. Let G ∈ H. By (G − E)/M denote the graph which is obtained from G by deleting

all the even type edges and then contracting each matching edge to a single vertex.

Theorem 1.15. [4] Let G ∈ Hnmc. Then G+ exists if and only if (G− E)/M is bipartite.

Remark 1.16. There are invertible and non-invertible bicyclic graphs in H \Hnmc.

A) Consider the graph G shown in Figure 1. The graph G ∈ H \ Hnmc, as G has mixed type edge [1′, 4].

We have already seen that this graph is invertible.

B) Consider the graph H shown in Figure 1. The graph H ∈ H \ Hnmc, as H does not satisfy condition

‘C’(that is, two distinct even type extensions [1′, 2, 2′, 3] at [1′, 3] and [2′, 3, 3′, 4] at [2′, 4] in H have

an odd type edge [2′, 3] in common). We have already seen that H is not invertible.

Remarks 1.6 and 1.16 tell us that we can not identify the invertible bicyclic graphs in H using Theorems

1.5 and 1.15. This brings the following natural question. Characterize the bicyclic graphs in H which possess

inverses. In this article, we present a complete characterization of the bicyclic graphs with unique perfect

matchings which possess inverses. Let G ∈ H be a bicyclic graph. Then G is either in Hnm or in H\Hnm. In

Section 2, we characterize the bicyclic graphs inH\Hnm which possess inverses. In Section 3, we characterize

the bicyclic graphs in Hnm which possess inverses.

We briefly mention some of the literature in this area. Characterizing the self-inverse graphs G ∈ H
with G/M is bipartite was done in [6]. In [5], the authors supplied a constructive characterization of a class

of graphs H such that H is an inverse graph of some graph G in H with G/M is bipartite. In the same



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 217-231, July 2017.

221 Inverses of Bicyclic Graphs

article, the authors extended the notion of inverse graph to weighted graphs. In [8], the author supplied a

necessary and sufficient condition for a graph G in H to be self-inverse.

Before going to start our discussions, we first supply a set of examples of bicyclic graphs in H \Hnm.

Example 1.17. Examples of bicyclic graphs in H\Hnm. In the following table, we list the graphs used

in Figure 3.

Graphs G Mixed type edges even type extensions odd type extensions

Figure 3(a) [1′, 4] [1′, 2, 2′, 4] [1′, 2, 2′, 3, 3′, 4]

Figure 3(b) [1′, 4] [1′, 2, 2′, 3, 3′, 5, 5′, 4] [1′, 2, 2′, 3, 3′, 4]

Figure 3(c) [1′, 4] [1′, 5, 5′, 6, 6′, 3, 3′, 4] [1′, 2, 2′, 3, 3′, 4]

Figure 3(d) [1′, 5] [1′, 2, 2′, 3, 3′, 4, 4′, 5] [1′, 6, 6′, 7, 7′, 3, 3′, 4, 4′, 5]

b

b

b

bb bb

bb

b

b bb b

b b b

b

1

1′

2 2′ 3

3′4

4′

(a)

b

b

b

bb

b

b

bb

b

b

bbb

b bb b

b b b

b

1

1′

2

2′ 3

3′
5

5′
4

4′

(b)

b

b

b

bb

b

b

bb

b

b

bbb

b bbb

b

b

b

bb

bb

b

1

1′

2

2′ 3

3′

4

4′

5

5′

6

6′

(c)

b

b

b

bb

b

b

b

b

b

b

b

b

bb

bbb

b bbb

b

b

b

bb

bb b

1

1′

2

2′

3 3′

4

4′

5

5′

6

6′

7

7′

(d)

Figure 3. Here, the solid edges are the matching edges.

2. Inverses of bicyclic graphs in H \ Hnm. In this section, we characterize the bicyclic graphs in

H\Hnm which possess inverses. Each bicyclic graph of order n has n+ 1 edges. Hence, each bicyclic graph

has at most three cycles and there are at most four paths from one vertex to another vertex in G. We first

supply some structural descriptions of bicyclic graphs in H \ Hnm which are necessary to state and prove

our main result of this section. We begin our discussions by supplying the following result.

Lemma 2.1. Let G ∈ H \ Hnm be a bicyclic graph. Assume that m = [u, v] is a mixed type edge in G.

Then G has at least two distinct cycles containing the edge m. Furthermore, G has exactly three cycles.

Proof. Let Q1(u, v) and Q2(u, v) be even and odd type extensions at m = [u, v], respectively. Consider

Γ1 = [Q1(u, v), [v, u]], Γ2 = [Q2(u, v), [v, u]]. It is clear that Γi is a cycle in G for i = 1, 2. Notice that Γ1 6= Γ2

as Q1(u, v) 6= Q2(u, v). Hence, G has at least two distinct cycles in G containing the edge m = [u, v].

Since Q1(u, v) and Q2(u, v) are two paths from u to v, we have a cycle Γ created by these two paths. The

edge m /∈ Γ because m /∈ Q1(u, v)∪Q2(u, v). Hence, Γ, Γ1 and Γ2 are three distinct cycles in G. Therefore,

G has three cycles.

The following observation tells us about the number of mixed type edges for a bicyclic graph in H\Hnm.
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Lemma 2.2. Let G ∈ H \ Hnm be a bicyclic graph. Then G has exactly one mixed type edge.

Proof. Suppose that G has two mixed type edges m1 and m2. By using Lemma 2.1, G has at least two

distinct cycles containing the edge mi for i = 1, 2. Hence, G has at least four distinct cycles, a contradiction

to the fact that G has three cycles.

Remark 2.3. Let G ∈ H \ Hnm be a bicyclic graph. Then G has exactly one mixed type edge. Hence-

forth, we use m = [u, v] to denote the mixed type edge in G.

To proceed further we need the following known result.

Lemma 2.4. [4] Let G ∈ H and let [u, v] be an odd type or even type edge in G. Let Q(u, v) be an

extension at [u, v]. Then each nonmatching edge on Q(u, v) is odd type.

The following lemma tells about the number of even type edges for a bicyclic graph in H \Hnm.

Lemma 2.5. Let G ∈ H \ Hnm be a bicyclic graph of order n. Then G has at most one even type edge.

Furthermore, if G has an even type edge e, then e has exactly one even type extension.

Proof. Suppose that G has two even type edges, say e and f . Let m be the mixed type edge in G. We

notice that G − {e, f,m} is connected. Therefore, G − {e, f,m} has at least n − 1 edges. Hence, G has at

least n+ 2 edges, a contradiction to the fact that G is bicyclic.

We assume that G has an even type edge e = [x, y]. We show that e has exactly one even type extension.

Suppose that e has two even type extensions. Let Q1(x, y) and Q2(x, y) be two even type extensions at e.

By using Lemma 2.4, each nonmatching edge on Qi(x, y) is odd type for i = 1, 2. Then m /∈ Qi for i = 1, 2.

Let Q3(u, v) and Q4(u, v) be two extensions at m = [u, v]. Then the cycles [Q1(x, y), [y, x]], [Q2(x, y), [y, x]],

[Q3[u, v], [v, u]] and [Q4(u, v), [v, u]] are four distinct cycles in G, a contradiction that G has exactly three

cycles. Hence, e has exactly one even type extension.

Lemma 2.6. Let G ∈ H \ Hnm be a bicyclic graph. Assume that G has an even type edge e = [x, y].

Then e must be present on some extension at m = [u, v].

Proof. Suppose that e is not present on any extension at m. Consider the graph G − e. Notice that

(G − e) ∈ H \ Hnm. By using Lemma 2.1, G − e has three cycles. Therefore, G has at least four cycles, a

contradiction to the fact that G has exactly three cycles.

To proceed further we need the following lemma.

Lemma 2.7. [4] Let G ∈ H and P (i, j) be an mm-alternating i-j-path. Let [u, v] be a nonmatching edge

on P (i, j) and Q(u, v) be an extension at [u, v]. Then Q(u, v) contains no vertex of P (i, j) other than u and

v. That is, V (P (i, j)) ∩ V (Q(u, v)) = {u, v}.

The following lemma tells us about the number of extensions for a bicyclic graph in H \Hnm.

Lemma 2.8. Let G be a bicyclic graph in H. Then the graph G has at most two extensions.

Proof. Suppose that G has three extensions in G, say, Q1, Q2 and Q3. There are three cases.

Case I. Assume that Q1, Q2 and Q3 are extensions at e = [i, j]. Then there are four distinct cycles in

G which are [Q1(i, j), [j, i]], [Q2(i, j), [j, i]], [Q3(i, j), [j, i]] and a cycle created by the paths Q1 and Q2, a

contradiction to the fact that G has at most three cycles.

Case II. Assume that Q1 and Q2 are extensions at e1 = [i1, j1] and Q3 is an extension at e2 = [i2, j2],
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where e1 6= e2. Then there are four distinct cycles in G which are [Q1(i1, j1), [j1, i1]], [Q2(i1, j1), [j1, i1]],

[Q3(i2, j2), [j2, i2]] and a cycle created by the paths Q1 and Q2, a contradiction to the fact that G has at

most three cycles.

Case III. Assume that Q1, Q2 and Q3 are extensions at e1 = [i1, j1] e2 = [i2, j2] and e3 = [i3, j3],

respectively, where e1 6= e2 6= e3. The graph G− {e1, e2, e3} is a connected graph with at least n− 1 edges.

Then G has at least n + 2 edges, a contradiction to the fact that G is bicyclic. Hence, G has at most two

extensions.

Example 2.9. Here, we supply a bicyclic graph in H \ Hnm with an even type edge. Consider the

graph G shown in Figure 4. The edge [1′, 5] is the mixed type edge with the extensions [1′, 2, 2′, 3, 3′, 4, 4′, 5]

and [1′, 2, 2′, 6, 6′, 7, 7′, 8, 8′, 3, 3′, 4, 4′, 5] in G. The edge [3′, 4] is the even type edge with the extension

[3′, 6, 6′, 7, 7′, 8, 8′, 4] and this even type edge is also an edge of the extension [1′, 2, 2′, 3, 3′, 4, 4′, 5] at the

mixed type edge [1′, 5].
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Figure 4. A graph in H \Hnm with even type edge. Here, the solid edges are the matching edges.

Remark 2.10. Let G ∈ H \ Hnm with an even type edge [x, y]. By using Lemma 2.6, [x, y] must be

present on some extension at m = [u, v]. Let Q1(u, v) be such extension at m. Let Q2(x, y) be the even type

extension at [x, y]. Then the following are true.

• Using Lemma 2.8, there are exactly two extensions at m = [u, v]. By using Lemma 2.7, V (Q1(u, v))∩
V (Q2(x, y)) = {x, y}. Then the path [Q1(u, x), Q2(x, y), Q1(y, v), [v, u]] is the other extension at m.

• By using Lemma 2.1, the graph G has exactly three cycles which are [[v, u], Q1(u, x), Q2(x, y), Q1(y, v)],

[Q1(u, v), [v, u]] and [Q2(x, y), [y, x]]. Hence, each cycle in G contains either the even type edge or the mixed

type edge.

• There is no mm-alternating path from one vertex to another vertex in G containing both the even

type edge and the mixed type edge, simultaneously. Suppose that there is such path, say, P (i, j). We

consider the even type extension Q at m which contains the even type edge [x, y]. Then {x, y, u, v} ⊆
V (P (i, j)) ∩ V (Q(u, v)) which is not possible by Lemma 2.7.

The following observation tells us about the number of mm-alternating paths from one vertex to another

vertex not containing the even type edge and the mixed type edge.
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Lemma 2.11. Let G ∈ H \ Hnm be a bicyclic graph and i, j be two vertices. Assume that there is an

mm-alternating i-j-path in G. Then there is exactly one mm-alternating i-j-path in G not containing the

even type edge and the mixed type edge.

Proof. Let P (i, j) be an mm-alternating i-j-path in G. If P (i, j) does not contain the even type and the

mixed type edges, then there is nothing to show. We assume that either the even type edge or the mixed

type edge must be present on P (i, j). By using Remark 2.10, both the even type edge and the mixed type

edge cannot be present on P (i, j), simultaneously. First we assume that P (i, j) contains the even type edge,

say, e = [x, y]. Let Q(x, y) be the even type extension at e. Consider the path [P (i, x), Q(x, y), P (y, j)].

This is an mm-alternating i-j-path not containing the even type edge and the mixed type edge. Similar

arguments work if P (i, j) contains the mixed type edge.

We now prove the uniqueness. Suppose that there are two mm-alternating i-j-paths not containing the

even type edge and the mixed type edge. Let P1(i, j) and P2(i, j) be such paths. Then these two paths

create a cycle not containing the even type edge and the mixed type edge. But either the even type edge

or the mixed type edge must be present on each cycle in G by Remark 2.10. Hence, there is exactly one

mm-alternating i-j-path in G not containing the even type edge and the mixed type edge.

The following observation tells us about the number of mm-alternating paths from one vertex to another

vertex containing the even (resp., mixed) type edge.

Lemma 2.12. Let G ∈ H\Hnm be a bicyclic graph. Then there is at most one mm-alternating path from

one vertex to another vertex in G containing the even (resp., mixed) type edge.

Proof. Suppose that there are two vertices i, j in G such that there are two mm-alternating i-j-paths

containing the even (resp., mixed) type edge e = [x, y]. Let P1(i, j) and P2(i, j) be two such paths. By using

Remark 2.10, both the even type edge and the mixed type edge cannot be present on P (i, j), simultaneously.

Then these two paths create a cycle not containing the even type and the mixed type edges. But either the

even type edge or the mixed type edge must be present on each cycle in G by Remark 2.10. Hence, there is

at most one mm-alternating i-j-path containing the even (resp., mixed) type edge.

The following observation supplies a bound on the number of mm-alternating paths from one vertex to

another vertex.

Lemma 2.13. Let G ∈ H \Hnm be a bicyclic graph. Then there are at most three mm-alternating paths

from one vertex to another vertex in G.

Proof. Suppose that there are two vertices i, j in G such that the number of mm-alternating i-j-paths

is more than three. By using Lemma 2.12, there is at most one mm-alternating i-j-path containing an even

(resp., mixed) type edge. Then there are at least two mm-alternating i-j-paths not containing the even

type edge and the mixed type edge which is not possible by Lemma 2.11. Hence, there are at most three

mm-alternating paths in G from one vertex to another vertex.

The following description of the inverse of the adjacency matrix of a connected bipartite graph with a

unique perfect matching is a restatement of results contained in [1, 2]. We follow the convention that a sum

over an empty set is zero.

Lemma 2.14. [1, 2] Let G ∈ H. Let B = [bij ], where

bij =
∑

P (i,j)∈P(i,j)
(−1)(‖P (i,j)‖−1)/2,
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where P(i, j) is the set of mm-alternating i-j-paths in G and ‖P (i, j)‖ denotes the number of edges in P (i, j).

Then B = A(G)−1.

Remark 2.15. Let G ∈ H \ Hnm and i, j be two vertices. Then exactly one of the following happens.

• There are no mm-alternating i-j-paths in G.

• There is exactly one mm-alternating i-j-path in G.

• There are exactly two mm-alternating i-j-paths in G, say, P1 and P2. By using Lemma 2.11, one of

these two paths does not contain the even type and the mixed type edges, and the other one contains either

the even type edge or the mixed type edge. Without loss of generality we assume that P1 is the path not

containing the even type and the mixed type edges. Then the path P2 contains either the even type edge

or the mixed type edge. But the path P2 cannot contain the mixed type edge, otherwise there are three

mm-alternating i-j-paths.

The path P1 contains an even (resp., odd) number of nonmatching edges if and only if P2 contains an

odd (resp., even) number of nonmatching edges. By using Lemma 2.14, A−1i,j = 0.

• There are exactly three mm-alternating i-j paths, say, P1, P2 and P3. By using Lemma 2.11, there

is exactly one path not containing the even type and the mixed type edges. By using Lemma 2.12 and

Remark 2.10, there is at most one mm-alternating i-j-path containing the even (resp., mixed) type edge but

not containing the mixed (resp., even) type edge. Since G has exactly three mm-alternating i-j-paths, there

are exactly two mm-alternating i-j-paths such that one path contains the even type edge and the other one

contains the mixed type edge. Without loss of generality we assume that P1 does not contain the even type

and the mixed type edges and P2 contains the even type edge e and P3 contains the mixed type edge m.

Since G is bicyclic, the path P1 must contain the odd type extension at m.

The path P1 contains an even (resp., odd) number of nonmatching edges if and only if P2 contains an

odd (resp., even) number of nonmatching edges if and only if P3 contains an even (resp., odd) number of

nonmatching edges. By using Lemma 2.14, A−1i,j = 1 if P1 contains an even number of nonmatching edges,

otherwise A−1i,j = −1.

To proceed further we need the following lemmas.

Lemma 2.16. [1] Let G ∈ H. Consider A(G)−1 and construct a weighted graph Ĝ from G as follows:

for each pair of vertices i, j take i adjacent to j in Ĝ whenever
∑

P∈Pij
(−1)

||P ||−1
2 6= 0, and let the weight

of that edge be 1 or −1 according as
∑

P∈Pij
(−1)

||P ||−1
2 is positive or negative. Then A(G)−1 is diagonally

similar to a non-negative matrix if and only if the product of the edge weights on any cycle in Ĝ is 1.

Lemma 2.17. Let G ∈ H and [p, q] be an odd type edge. Then A(G)−1p′,q′ < 0.

Proof. Since [p, q] is an odd type edge in G, all the extensions at [p, q] are odd type. Let Qi(p, q) be the

odd type extension at [p, q] for i = 1, . . . , k. Then the paths [p′, p, q, q′], [p′, Qi(p, q), q
′] are mm-alternating

p′-q′-paths for i = 1, . . . , k. These are the only mm-alternating p′-q′-paths in G. By using Lemma 2.14 and

Remark 2.15, A(G)−1p′,q′ = −(k + 1). Hence, A(G)−1p′,q′ < 0.

The following is our main result of this section. This result supplies a characterization of the bicyclic

graphs in H \Hnm which possess inverses.
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Theorem 2.18. Let G ∈ H\Hnm be bicyclic. Assume that m = [u, v] is the mixed type edge in G. Then

G+ exists if and only if G has an even type edge which must be present on the even type extension at m.

Proof. First we assume that G+ exists. Suppose that G has no even type edges. Since [u, v] is the

mixed type edge in G, by using Lemma 2.8, there is exactly one even type extension and exactly one odd

type extension at [u, v]. Let Q1(u, v) and Q2(u,v) be the even type and odd type extensions at [u, v],

respectively. There are exactly three mm-alternating u′-v′ paths in G which are [u′, u, v, v′], [u′, Q1(u, v), v′]
and [u′, Q2(u, v), v′]. Let Q1(u, v) = [u, u1, u

′
1, . . . , u2k−1, u

′
2k−1, v]. Since G has no even type edge, all the

nonmatching edges on Q1(u, v) are odd type. By using Lemmas 2.14 and 2.17, we see that

i) A−1ui,u′i
= 1 for all i = 1, . . . , 2k − 1;

ii) A−1u′,u′1
, A−1v′,u2k−1

, A−1ui,u′i+1
< 0 for all i = 1, . . . , 2k−2, as each nonmatching edge on Q1(u, v) is odd type;

iii) A−1u′,v′ = −1.

We see that the cycle [u′, u′1, u1, u
′
2, u2, . . . , u

′
2k−1, u2k−1, v

′, u′] is available in Ĝ with the product of the edge

weights is equal to −1. Using Lemma 2.16, G+ cannot exist. Therefore, G has an even type edge and by

using Lemmas 2.5 and 2.6 it is unique and it must be present on some extension at m = [u, v].

We now show that the even type edge must be present on the even type extension at m = [u, v]. Let

[x, y] be the even type edge. Suppose that [x, y] is present on the odd type extension at [u, v]. Let Q1(u, v)

be the odd type extension at [u, v]. Let Q2(x, y) be the even type extension at [x, y]. By using Lemma 2.7,

V (Q2(x, y))∩ V1(Q(u, v)) = {x, y}. Then the path [Q1(u, x), Q2(x, y), Q1(y, v)] is an even type extension at

[u, v]. Since Q1(u, v) does not contain the edge [u, v] and Q2(x, y) does not contain the edge [x, y], all the

nonmatching edges on [Q1(u, x), Q2(x, y), Q1(y, v)] are odd type. By using previous arguments, we deduce

that G+ cannot exist. Hence, G has exactly one even type edge which must be present on the even type

extension at [u, v].

We now prove the converse. Let Q1(u, v) be the even type extension at [u, v] such that the extension

Q1(u, v) contains the even type edge [x, y]. Let Q2(x, y) be the even type extension at [x, y]. Then G −
{[x, y], [u, v]} is a tree.

As G− {[x, y], [u, v]} is a tree, take the vertex 1, define s1 = 1. Now to define si, take the path from 1

to i in G− {[x, y], [u, v]}. If it has an odd many nonmatching edges define si = −1, otherwise define si = 1.

The matrix S is well defined. Notice that sisj = 1 if the path from i to j in G − {[x, y], [u, v]} contains an

even number of nonmatching edges, otherwise sisj = −1.

Let i and j be two any vertices in G. If there is no mm-alternating i-j-path in G, then siA
−1
i,j sj = 0.

So we assume that there are mm-alternating i-j-paths in G. By using Lemma 2.13, there are at most three

mm-alternating i-j-paths in G. There are three cases.

Case I. There is exactly one mm-alternating i-j path, say P (i, j) in G. All the nonmatching edges on

P (i, j) are odd type, otherwise there are at least two mm-alternating i-j-paths in G. Then P (i, j) is also an

mm-alternating path in G−{[x, y], [u, v]}. Then siA
−1
i,j sj = sisjA

−1
i,j = (−1)(‖P (i,j)‖−1)/2(−1)(‖P (i,j)‖−1)/2 =

1 > 0.

Case II. There are exactly two mm-alternating i-j paths. By using Remark 2.15, A−1i,j = 0. Hence,

siA
−1
i,j sj = 0.

Case III. There are exactly three mm-alternating i-j paths, say P1, P2 and P3. There are two cases.
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Case III(A). The path P1 contains an even number of nonmatching edges. By using Remark 2.15, we

have A(G)−1i,j = 1. Since the path P1 does not contain the even type and the mixed type edges, the path

P1 is also an mm-alternating i-j-path in G − {[x, y], [u, v]}. By definition of S, we have sisj = 1. Hence,

siA(G)−1i,j sj = 1.

Case III(B). The path P1 contains an odd number of nonmatching edges. By using Remark 2.15, we

have A(G)−1i,j = −1. Since the path P1 does not contain the even type and the mixed type edges, the path

P1 is also an mm-alternating i-j-path in G − {[x, y], [u, v]}. By definition of S, we have sisj = −1. Hence,

siA(G)−1i,j sj = 1. Thus, G+ exists.

Remark 2.19. We now explain why the graph G shown in Figure 1 is invertible. We already noticed

that G ∈ H \Hnm and G has exactly one even type edge [2′, 4] which is present on the even type extension

[1′, 2, 2′, 4, 4′] at the mixed type edge [1′, 4]. Hence, by Theorem 2.18, G is invertible.

3. Inverses of bicyclic graphs in Hnm. In the previous section, we characterized the bicyclic graphs

in H\Hnm which possess inverses. We now proceed to characterize the bicyclic graphs in Hnm which possess

inverses. If G ∈ Hnm, then either G ∈ Hnmc or G does not satisfy the condition ‘C’ in Definition 1.13.

If G ∈ Hnmc, then by using Theorem 1.15, we can say G+ exists or not. So to characterize invertible

bicyclic graphs in Hnm, it is sufficient to have a characterization of invertible bicyclic graphs in Hnm \Hnmc.

Remark 3.1. Let G ∈ Hnm \ Hnmc be a bicyclic graph. Then it has exactly two even type edges and

each even type edge has exactly one even type extension. Let e = [x1, y1] and f = [x2, y2] be the even type

edges in G with the even type extensions Qe and Qf , respectively. We have E(V (Qe)) ∩ E(V (Qf )) 6= φ.

• There is no mm-alternating path which contains both the even type edges e and f . If possible,

let P (i, j) be an mm-alternating path containing both the even type edges. Consider the path P1(i, j) =

[P (i, x1), Qe(x1, y1), P (y1, j)]. Then P1 is an mm-alternating path containing the even type extension Qe

and the even type edge f = [x2, y2]. By using Lemma 2.7, V (P1(i, j))∩V (Qf ) = {x2, y2}. Then E(V (Qe))∩
E(V (Qf )) = φ which is not possible.

• The graph G has exactly three cycles which are [Qe(x1, y1), [y1, x1]], [Qf (x2, y2), [y2, x2]] and (Qe ∪
Qf ) \ E(V (Qe)) ∩ E(V (Qf )). Hence, each cycle in G contains an even type edge.

• The graph G− {e, f} is a tree.

The following observation tells us about the number of mm-alternating paths from one vertex to another

vertex not containing even type edges for a graph in Hnm \ Hnmc.

Lemma 3.2. Let G ∈ Hnm \ Hnmc be a bicyclic graph and i, j be two vertices. Assume that there is an

mm-alternating i-j-path in G. Then there is exactly one mm-alternating i-j-path in G not containing an

even type edge.

Proof. Let P (i, j) be an mm-alternating i-j-path. If P (i, j) does not contain an even type edge, then

there is nothing to show. We assume that P (i, j) contains an even type edge. By using Remark 3.1, P (i, j)

contains exactly one even type edge. Let e = [x1, y1] be the even type edge with the even type extension

Qe. Consider the path [P (i, x1), Qe(x1, y1), P (y1, j)]. This is an mm-alternating i-j-path not containing an

even type edge.

We now prove the uniqueness. Suppose that there are two mm-alternating i-j-paths not containing an

even type edge. Let P1(i, j) and P2(i, j) be such paths. Then these two paths create a cycle not containing
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an even type edge. But each cycle in G must contain an even type edge by Remark 3.1. Hence, there is

exactly one mm-alternating i-j-path in G not containing an even type edge.

Lemma 3.3. Let G ∈ Hnm \ Hnmc be a bicyclic graph and i, j be two vertices. Assume that there is an

mm-alternating i-j-path. Then no two mm-alternating i-j-paths contain the same even type edge.

Proof. Suppose that two mm-alternating i-j-paths contain the same even type edge e = [x, y]. Let

P1(i, j) and P2(i, j) be two such paths. By using Remark 3.1, both the even type edges cannot be present on

Pi’s, simultaneously for i = 1, 2. Then these two paths create a cycle not containing an even type edge. But

each cycle in G must contain an even type edge by Remark 3.1. Hence, no two mm-alternating i-j-paths

containing the same even type edge.

The following observation supplies a bound on the number of mm-alternating paths from one vertex to

another vertex for a graph in Hnm \ Hnmc.

Lemma 3.4. Let G ∈ Hnm \ Hnmc be a bicyclic graph. Then there are at most three mm-alternating

paths in G from one vertex to another vertex.

Proof. Suppose that there are two vertices i and j in G such that the number of mm-alternating i-j-paths

is more than three. By using Lemma 3.3, there are exactly two mm-alternating i-j-paths such that each

path containing an even type edge. Then there are at least two mm-alternating i-j-paths not containing an

even type edge which is not possible by Lemma 3.2. Hence, there are at most three mm-alternating paths

in G from one vertex to another vertex.

The following is a necessary condition for a graph in Hnm \Hnmc to have exactly three mm-alternating

paths from one vertex to another vertex.

Lemma 3.5. Let G ∈ Hnm \ Hnmc be a bicyclic graph and i, j be two vertices. Assume that there are

three mm-alternating i-j-paths in G. Then there is exactly one mm-alternating i-j-path containing both the

even type extensions.

Proof. Let P1, P2 and P3 be the mm-alternating i-j-paths in G. By using Lemmas 3.2 and 3.3, each even

type edge must be present on exactly one mm-alternating path. Without loss of generality we assume that

P1 contains the even type edge e = [x1, y1] and P2 contains the even type edge f = [x2, y2]. Let P ′1(i, j) and

P ′2(i, j) be two mm-alternating paths containing the even type extensions Qe and Qf , respectively. Then

f /∈ E(P ′1(i, j)), otherwise by using Lemma 2.7, V (P ′1(i, j)) ∩ V (Qf ) = {x2, y2} ⇒ E(Qe) ∩ E(Qf ) = φ

which is not possible as G ∈ Hnm \ Hnmc. Similarly e /∈ E(P ′1(i, j)). Then by using Lemma 3.2, P ′1(i, j) =

P ′2(i, j) = P3.

Remark 3.6. Let G ∈ Hnm \ Hnmc be a bicyclic graph. Let x and y be any two vertices in G. Then

exactly one of the following holds.

• There are no mm-alternating x-y-paths in G.

• There is exactly one mm-alternating x-y-path in G.

• There are exactly two mm-alternating x-y-paths in G, say, P1 and P2. By using Lemma 3.2, one of

these two paths does not contain even type edges and the other path contains exactly one even type edge.

Without loss of generality we assume that P1 contains exactly one even type edge, say, e. Since there are

exactly two mm-alternating x-y-paths in G, the path P2 must contain the even type extension at e.
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The path P1 contains an even (resp., odd) number of nonmatching edges if and only if P2 contains an

odd (resp., even) number of nonmatching edges. By using Lemma 2.14, A−1i,j = 0.

• There are exactly three mm-alternating x-y paths, say, P1, P2 and P3. By using Lemmas 3.2 and 3.5

and Remark 3.1, one of these three paths contains both the even type extensions other two paths contain

exactly one even type edge. Without loss of generality we assume that P1 contains both the even type

extensions. By using Lemma 3.3, the paths P2 and P3 do not contain the same even type edge. We assume

that P2 contains the even type edge e and P3 contains the even type edge f .

An even type extension contains an even number of nonmatching edges; then P1 contains an even

(resp., odd) number of nonmatching edges if and only if P2 and P3 contain an odd (resp., even) number of

nonmatching edges. By using Lemma 2.14, A−1i,j = −1 if P1 contains an even number of nonmatching edges,

otherwise A−1i,j = 1.

The following is our main result of this section. This result supplies a characterization of the bicyclic

graphs in Hnm \ Hnmc.

Theorem 3.7. Let G ∈ Hnm \ Hnmc be a bicyclic graph. Then G+ exists if and only if G has no

mm-alternating path which contains both the even type extensions.

Proof. First we assume that G+ exists. We have to show that G has no mm-alternating path which

contains both the even type extensions. Suppose that there is an mm-alternating path P (u1, u
′
m) =

[u1, u
′
1, . . . , um, u

′
m] in G such that Qe = P (uk1

, u′k2
) and Qf = P (u′l1 , u

′
l2

) are two even type extensions

at [u′k1
, u′k2

] and [u′l1 , u
′
l2

], respectively, where 1 ≤ k1 < l1 < k2 < l2 ≤ m. By using Lemma 2.14 and Remark

3.6, we see

i) A(G)−1ui,u′i
= 1, for i = 1, . . . ,m,

ii) A(G)−1ui,u′i+1
= −1 for i = 1, . . . ,m− 1,

iii) A(G)−1u1,u′m
= −1 if P (u1, u

′
m) contains an even number of nonmatching edges, otherwise A(G)−1u1,u′m

= 1.

First assume that P (u1, u
′
m) contains an even number of nonmatching edges. The total number of non-

matching edges on P (u1, u
′
m) is

‖P (u1,u
′
m)‖−1

2 = 2m−1−1
2 = m − 1 which is even. Then we see that the

cycle [u1, u
′
2, u2, . . . , u

′
m, u1] is available in Ĝ (for Ĝ, see Lemma 2.16). This cycle contains m number of

nonmatching edges and each nonmatching edge has weight −1. Then the product of the edge weights on

[u1, u
′
2, u2, . . . , u

′
m, u1] is equal to −1, as m is odd. Using Lemma 2.16, G+ cannot exist. Similar arguments

work if P (u1, u
′
m) contains an odd number of nonmatching edges. Therefore, G has no mm-alternating path

which contains both the even type extensions.

We now assume that G has no mm-alternating path which contains both the even type extensions. By

using Lemma 3.5, there are at most two mm-alternating paths from one vertex to another vertex. Let e and

f be the even type edges in G and Qe and Qf be the even type extensions at e and f , respectively. Since G

is bicyclic, the graph G− {e, f} is a tree.

As G − {e, f} is a tree, take the vertex 1, define s1 = 1. Now to define si, take the path from 1 to i

in G − {e, f}. If it has odd many nonmatching edges define si = −1, otherwise define si = 1. The matrix

S is well defined. Notice that sisj = 1 if the path from i to j in G − {e, f} contains an even number of

nonmatching edges, otherwise sisj = −1.
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If there is no mm-alternating i-j-path in G, then siA
−1
i,j sj = 0. So we assume that there are mm-

alternating i-j-paths in G. By using Lemma 3.5, there are two mm-alternating i-j-paths in G. There are

two cases.

Case I. There is exactly one mm-alternating i-j-path, say P (i, j) in G. All the nonmatching edges are

odd type, otherwise there is another mm-alternating i-j-path. The path P (i, j) is also a path in G− {e, f}.
Then

siA
−1
i,j sj = sisjA

−1
i,j = (−1)(‖P (i,j)‖−1)/2(−1)(‖P (i,j)‖−1)/2 = 1 > 0.

Case II. There are exactly two mm-alternating i-j paths. By using Remark 3.6, A−1i,j = 0. Then

siA
−1
i,j sj = 0. Hence, G+ exists.

Remark 3.8. We now explain why the graph H shown in Figure 1 is not invertible. We noticed that

H ∈ Hnm \Hnmc and the mm-alternating path [1, 1′, 2, 2′, 3, 3′, 4, 4′] contains both the even type extensions

[1′, 2, 2′, 3] and [2′, 3, 3′, 4]. Hence, by Theorem 3.7, G is not invertible.

The following is our main result in this article. This result supplies a characterization of bicyclic graphs

in H which posses inverses.

Theorem 3.9. Let G ∈ H be bicyclic. Then G+ exists if and only if

1. there is no mm-alternating path in G which contains two even type extensions at two distinct even type

edges such that both the extensions have an odd type edge in common,

2. the graph (G− E)/M is bipartite.

Proof. First we assume that G+ exists. There are two cases.

Case I. The graph G is in H\Hnm. Then by Theorem 2.18, G has exactly one even type edge which must

be present on the even type extension at m = [u, v] (mixed type edge). Hence, there is no mm-alternating

path in G which contains two even type extensions at two distinct even type edges such that both the

extensions have an odd type edge in common.

Let Q1(u, v) be the even type extension at m which contains the even type edge. Let [x, y] be the

even type edge and Q2(x, y) be the even type extension at [x, y]. Then by using Remark 2.10, the path

[Q1(u, x), Q2(x, y), Q1(y, v)] is the odd type extension at m = [u, v]. Then the cycle [Q1(u, x), Q2(x, y),

Q1(y, v), [v, u]] is the only cycle in the graph (G−E). This cycle contains an even number of matching edges.

Hence, the graph (G− E)/M is bipartite.

Case II. The graph G is inHnm. Then by using Theorems 1.15 and 2.18, there is no mm-alternating path

in G which contains two even type extensions at two distinct even type edges such that both the extensions

have an odd type edge in common in G and the graph (G− E)/M is bipartite.

We now prove the converse. First we assume that G is in H \ Hnm. If G has no even type edges, then

(G − E)/M = G/M is not bipartite. Hence, G has an even type edge. By using Lemmas 2.5 and 2.6,

G has exactly one even type edge say e = [x, y] which must be present on some extension at m = [u, v]

(mixed type edge). Suppose that e is present on an odd type extension at m = [u, v]. Let Q1(u, v) be

such an odd type extension and Q2(x, y) be the even type extension at e = [x, y]. Then we have a cycle

[Q1(u, x), Q2(x, y), Q1(y, v), [v, u]] in G which contains an odd number of matching edges and which does

not contain the edge e. Hence, (G− e)/M is not bipartite, a contradiction. Thus, e must be present on the
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even type extension at m. By using Theorem 2.18, G+ exists. If G ∈ Hnm, then by using Theorems 1.15

and 3.7, G+ exists.
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