
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 204-216, July 2017.

EVENTUAL CONE INVARIANCE∗
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Abstract. Eventually nonnegative matrices are square matrices whose powers become and remain (entrywise) nonnegative.

Using classical Perron-Frobenius theory for cone preserving maps, this notion is generalized to matrices whose powers eventually

leave a proper cone K ⊂ Rn invariant, that is, AmK ⊆ K for all sufficiently large m. Also studied are the related notions of

eventual cone invariance by the matrix exponential, as well as other generalizations of M-matrix and dynamical system notions.
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1. Introduction. Perron-Frobenius theory commonly refers to the study of square (entrywise) non-

negative matrices A. The name reflects the basic properties of such matrices, which are the tenets of the

celebrated Perron-Frobenius theorem; that is, in its simplest form, the spectral radius is necessarily an eigen-

value of A corresponding to a nonnegative eigenvector. More generally, however, Perron-Frobenius theory

encompasses the study of matrices A that leave a proper cone K ⊂ Rn invariant, namely AK ⊆ K. This in-

deed generalizes nonnegative matrices, which leave the nonnegative orthant, Rn+, invariant. One can include

in this area the study of functionals and operators in finite or infinite dimensions, in contexts where the

main tenets of the Perron-Frobenius theory apply. One such instance is the study of eventually nonnegative

matrices A, namely, matrices for which Am is nonnegative for all sufficiently large m.

The first explicit interest in eventually nonnegative matrices appears in Friedland [6] in the context of the

inverse eigenvalue problem for nonnegative matrices. The direct association of matrix eventual nonnegativity

and positivity to Perron-Frobenius theory appears in Handelman [7]. Subsequently, this concept is further

studied in [3], [4], [9], [12], [13], [16], [17], [18], [24], [25], [26].

The purpose of this paper is to pursue and record a comprehensive generalization of eventual nonnega-

tivity from K = Rn+ to general proper cones K ⊂ Rn. This generalization materializes herein in a manner

that parallels existing theory and proof techniques for eventually nonnegative matrices found mainly in [16],

[17], [19]. There are, however, some clear and some subtle differences, which are due to Rn+ being a self-dual,

polyhedral cone, while these attributes are not necessarily ascribed to a general proper cone K. In addition,

our efforts bring to light some interesting facts: Firstly, it is well-known that essential nonnegatity (i.e.,

A+ aI being nonnegative for some a ≥ 0 ) and exponential nonnegativity (i.e., etA being nonnegative for all

t ≥ 0) are two equivalent notions, due to the fact that Rn+ is a polyhedral cone. This equivalence fails for

non-polyhedral cones. We will see, however, that the equivalence of two related notions, namely, eventual

positivity and eventual exponential positivity holds relative to any proper cone K, whether K is polyhedral

or not; see Remark 9 and Example 10. The latter equivalence was indeed shown for K = Rn+ in [17], yet

its general validity was previously masked by the polyhedrality of Rn+. Secondly, we discover that although

eventual nonnegativity implies eventual exponential nonnegativity under an assumption on the index of the
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eigenvalue 0, this implication does not generalize to non-polyhedral cones; see Example 14.

This paper is organized as follows. Section 2 contains all notation and the definitions of the concepts

used. Section 3 has some basic results from the theory of invariant cones. Sections 4 and 5 contain the main

results on eventually (exponentially) K-positive and K-nonnegative matrices, respectively. In Section 6, we

study initial points x0 = x(0) giving rise to solutions of
dx(t)

dt
= Ax(t) that reach and stay in a proper cone

K for all but a finite amount of time. Finally, in Section 7, we consider a generalization of M-matrices by

studying matrices of the form A = sI − B, where B is eventually K-nonnegative and s is greater than or

equal to the spectral radius of B.

2. General notation, definitions and preliminaries. Given an n×n matrix A, the spectrum of A

is denoted by σ(A) and its spectral radius by ρ(A) = max{|λ| | λ ∈ σ(A)}. An eigenvalue λ of A is said to be

dominant if |λ| = ρ(A). The spectral abscissa of A is defined and denoted by λ(A) = max{Reλ | λ ∈ σ(A)}.
By index0(A) we denote the degree of 0 as a root of the minimal polynomial of A. Consequently, when we

say index0(A) ≤ 1, we mean that either A is invertible or that the size of the largest nilpotent Jordan block

in the Jordan canonical form of A is 1× 1.

The following geometric concepts will be used in the sequel.

The dual of a set S ⊆ Rn is S∗ = {z ∈ Rn : zT y ≥ 0 for all y ∈ S}.

A nonempty convex set K ⊆ Rn is said to be a cone if αK ⊆ K for all α ≥ 0. A cone K is called proper

if it is (i) closed (in the Euclidean space Rn), (ii) pointed (i.e., K ∩ (−K) = {0}), and (iii) solid (i.e., the

topological interior of K, intK, is nonempty).

The nonnegative orthant, that is the nonnegative vectors in Rn is denoted by Rn+. A polyhedral cone

K ⊆ Rn is a cone consisting of all nonnegative linear combinations of a finite set of vectors in Rn, which are

called the generators of K. Thus, K is polyhedral if and only if K = XRm+ for some n×m matrix X; when

m = n and X is invertible, K = XRn+ is called a simplicial cone in Rn+. Note that simplicial cones in Rn are

proper cones.

For any set S ⊆ Rn, S∗ is a proper cone. A cone K is polyhedral if and only if K∗ is polyhedral. If for

a cone K we have K = K∗, we call K self-dual. The nonnegative orthant, Rn+, is a self-dual cone.

Definition 1. Given a cone K in Rn, a matrix A = [aij ] ∈ Rn×n is called:

• K-nonnegative (resp., K-positive) if AK ⊆ K (A(K \ {0}) ⊆ intK);

• K-primitive if it is K-nonnegative and there exists a natural number m such that Am is K-positive;

• essentially K-nonnegative (resp., essentially K-positive) if there exists an α ≥ 0 such that A+αI is

K-nonnegative (K-positive);

• exponentially K-nonnegative (resp., exponentially K-positive) if for every t ≥ 0, etAK ⊆ K (resp.,

etA(K \ {0}) ⊆ intK);

• eventually K-nonnegative (resp., eventually K-positive) if there exists a positive integer k0 such that

AkK ⊆ K (resp., AkK \ {0} ⊆ intK) for all k ≥ k0. We denote the smallest such positive integer

by k0 = k0(A) and refer to it as the power index of A;

• eventually exponentially K-nonnegative (resp., eventually exponentially K-positive) if there is a t0 ∈
[0,∞) such that, for all t ≥ t0, etAK ⊆ K (resp., etA(K \ {0}) ⊆ intK). We denote the smallest

such nonnegative number by t0 = t0(A) and refer to it as the exponential index of A.
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Lemma 2. Let A ∈ Rn×n. The following are equivalent:

(i) A is eventually exponentially K-nonnegative.

(ii) There exists an a ∈ R such that A+ aI is eventually exponentially K-nonnegative.

(iii) For all a ∈ R, A+ aI is eventually exponentially K-nonnegative.

Proof. The equivalences follow readily from the fact that

et(A+aI) = eatI etA = eatetA

since aI and A commute.

We conclude with some notions crucial to the analysis in Sections 4 and 5.

Definition 3. Given a proper cone K in Rn, we say that A ∈ Rn×n has

• the K-Perron-Frobenius property if ρ(A) > 0, ρ(A) ∈ σ(A) and there exists an eigenvector of A in

K corresponding to ρ(A);

• the strong K-Perron-Frobenius property if, in addition to having the K-Perron-Frobenius property,

ρ(A) is a simple eigenvalue such that

ρ(A) > |λ| for all λ ∈ σ(A), λ 6= ρ(A),

as well as there is an eigenvector of A in intK corresponding to ρ(A).

3. Results from the theory of invariant cones. Let K be a proper cone in Rn. By the Perron-

Frobenius Theorem, every non-nilpotent K-nonnegative matrix A has the K-Perron-Frobenius property, and

every K-primitive matrix A has the strong K-Perron-Frobenius property; see [1].

Given a proper cone K in Rn, the set of all matrices in Rn×n that are K-nonnegative is itself a proper

cone in Rn×n, denoted by π(K). The relative interior of π(K) in Rn×n, intπ(K) consists of all K-positive

matrices in Rn×n.

In the following lemma, we review a well-known relation between the notions of exponentialK-nonnegativity

and essential K-nonnegativity; see [21], [22] and [1, Chapter 6, Theorem 3.12].

Lemma 4. Let K be a cone in Rn. If A is essentially K-nonnegative, then A ∈ Rn×n is exponentially

K-nonnegative. The converse is true only when K is a polyhedral cone.

Proof. The equivalence of essential and exponential K-nonnegativity when K is polyhedral is found

in [21]. The fact that exponential K-nonnegativity does not imply essential K-nonnegativity when K is

non-polyhedral is supported by the following counterexample.

Example 5. Consider the non-polyhedral cone (see [2, p. 79])

K =
{
x = [x1 x2 x3]T ∈ R3 : x21 + x22 ≤ x23, x2 ≥ 0, x3 ≥ 0

}
and the matrix

A =

 1 1 −1

−1 1 1

0 2 2

 .
It can be verified that for all t ≥ 0, etAK ⊆ K. Notice, however, that for x = [−1 0 1]T ∈ K and for all

a ≥ 0, (A+ aI)x 6∈ K. That is, A is exponentially K-nonnegative but not essentially K-nonnegative.
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Lemma 6. Let A ∈ Rn×n so that λ ∈ C is a simple eigenvalue of A and |λ| > |µ| for all eigenvalues

µ 6= λ of A. Let u, v be right and left eigenvectors of λ, respectively, such that uT v = 1. Then

lim
k→∞

(
A

ρ(A)

)k
= uvT .

Proof. By assumption, u and v span the eigenspaces of A and AT corresponding to λ 6= 0, respectively,

and ρ(A) = |λ| > |µ| for every eigenvalue µ 6= λ of A. The result follows from [8, Lemma 8.2.7].

4. Eventually (exponentially) K-positive matrices. In this section, we characterize eventual (ex-

ponential) K-positivity.

Theorem 7. Let K be a proper cone in Rn and A ∈ Rn×n. The following are equivalent:

(i) A has the strong K-Perron-Frobenius property and AT has the strong K∗-Perron-Frobenius property.

(ii) A is eventually K-positive.

(iii) AT is eventually K∗-positive.

Proof. First, it is convenient to observe that (ii) and (iii) are equivalent.

(ii) ⇐⇒ (iii). Recall that a matrix is K-positive if and only if its transpose is K∗-positive [1, Chapter 2,

(2.23)]. Thus, Ak is K-positive for all sufficiently large k if and only if (AT )k is K∗-positive for all sufficiently

large k.

(i) =⇒ (ii). Suppose (i) holds and let Au = ρ(A)u, vTA = ρ(A)vT with u ∈ intK and v ∈ intK∗ such

that uT v = 1. By Lemma 6, we can set

B = lim
k→∞

(
A

ρ(A)

)k
= uvT .

For every w ∈ K \ {0}, we have that Bw = (vTw)u ∈ intK because vTw > 0. Thus, B is K-positive,

i.e., B ∈ intπ(K). Therefore, on account of π(K) being a proper cone in Rn×n [21, Lemma 5] and the

convergence of positively scaled powers of A to B, there exists a nonnegative integer k0 such that Ak is

K-positive for all k ≥ k0. That is, A is eventually K-positive.

(ii) =⇒ (i) Assume there exists a nonnegative integer k0 such that Ak is K-positive for all k ≥ k0. Thus,

for all k ≥ k0, ρ(Ak) is a simple positive eigenvalue of Ak greater than the magnitude of any other eigenvalue

of Ak, having a corresponding eigenvector in intK [1, Chapter 2, Theorem 3.26]. It follows that Ak, and

thus, A possess the strong K-Perron-Frobenius property. Since (ii) implies (iii), the above argument applied

to AT also shows that AT has the strong K∗-Perron-Frobenius property.

Theorem 8. Let K be a proper cone in Rn. For a matrix A ∈ Rn×n the following properties are

equivalent:

(i) There exists an a ≥ 0 such that A + aI has the K-strong Perron-Frobenius property and AT + aI

have the K∗-strong Perron-Frobenius property.

(ii) A+ aI is eventually K-positive for some a ≥ 0.

(iii) AT + aI is eventually K∗-positive for some a ≥ 0.

(iv) A is eventually exponentially K-positive.
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(v) AT is eventually exponentially K∗-positive.

Proof. The equivalences of (i)–(iii) are the content of Theorem 7 applied to A + aI. We will argue the

equivalence of (ii) and (iv), with the equivalence of (iii) and (v) being analogous:

Let a ≥ 0 such that A + aI is eventually K-positive, and let k0 be a positive integer such that (A +

aI)k(K \ {0}) ⊆ intK for all k ≥ k0. As K is solid, there exists large enough t0 > 0 so that the first k0 − 1

terms of the series

et(A+aI) =

∞∑
m=0

tm(A+ aI)m

m!

are dominated by the remaining terms, rendering et(A+aI) K-positive for all t ≥ t0. It follows that etA =

e−taet(A+aI) is K-positive for all t ≥ t0. That is, A is eventually exponentially K-positive. Conversely,

suppose A is eventually exponentially K-positive. As (eA)k = ekA, it follows that eA is eventually K-positive.

Thus, by Theorem 7, eA has the K-strong Perron-Frobenius property. Recall that σ(eA) = {eλ : λ ∈ σ(A)}
and so ρ( eA) = eλ for some λ ∈ σ(A). Then for each µ ∈ σ(A) with µ 6= λ we have

eλ > |eµ| = |eReµ+iImµ| = eReµ.

Hence, λ is the spectral abscissa of A, namely, λ > Reµ for all µ ∈ σ(A) with µ 6= λ. In turn, this means

that there exists large enough a > 0 such that

λ+ a > |µ+ a| for all µ ∈ σ(A), µ 6= λ.

As A + aI shares eigenspaces with eA, it follows that A + aI has the strong K-Perron-Frobenius property.

By Theorem 7, A+ aI is eventually K-positive.

Remark 9. It is worth emphasizing that the role of polyhedrality differs in the context of eventual

(exponential) nonnegativity from the role presented in Lemma 4. In Example 5, we presented a non-

polyhedral cone K and a matrix A such that A is exponentially K-nonnegative but not essentially K-

nonnegative. Nevertheless, perhaps contrary to one’s intuition, Theorem 8 shows that for every proper cone

(polyhedral or not), eventual exponential K-positivity implies (in fact, is equivalent) to eventual K-positivity

of A+αI for some α ≥ 0. This finding is illustrated by examining below the matrix and the cone of Example

5.

Example 10. Recall from Example 5 the non-polyhedral cone

K =
{
x = [x1 x2 x3]T ∈ R3 : x21 + x22 ≤ x23, x2 ≥ 0, x3 ≥ 0

}
and the matrix

A =

 1 1 −1

−1 1 1

0 2 2

 .
We find that ρ(A+ I) = 4.1304 with corresponding right and left eigenvectors given, respectively, by

x =

 −0.17494

0.48446

0.85715

 and y =

 −0.27516

0.58620

0.76200

 .
The dual of K can be computed to be

K∗ = K ∪
{
x = [x1 x2 x3]T ∈ R3 : x3 ≥ |x1|, x2 ≥ 0

}
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 204-216, July 2017.

209 Eventual Cone Invariance

The interiors of K and K∗ are the corresponding subsets for which the defining inequalities are strict. Notice

then that x ∈ intK and y ∈ intK∗. Thus, A + I and its transpose satisfy the strong K-Perron-Frobenius

and the strong K∗-Perron-Frobenius property, respectively. It follows by Theorem 7 that A+ I is eventually

K-positive, and thus, by Theorem 8, it is eventually exponentially K-positive. Recall that in Example 5, it

was shown that A is not essentially K-positive.

5. Eventually (exponentially) K-nonnegative matrices. We now turn our attention to necessary

conditions for eventual (exponential) cone nonnegativity.

Theorem 11. Let K be a proper cone in Rn and A ∈ Rn×n be an eventually K-nonnegative matrix

which is not nilpotent. Then A has the K-Perron-Frobenius property and AT has the K∗-Perron-Frobenius

property.

Proof. Since Ak is K-nonnegative for some sufficiently large k, ρ(Ak) is an eigenvalue of Ak and has a

corresponding eigenvector in K [1, Chapter 2, Theorem 3.2]. It follows that A possesses the Perron-Frobenius

property. Recall now that A is K-positive if and only if AT is K∗-positive from which the second part of

the conclusion follows.

Theorem 12. Let K be a proper cone in Rn and A ∈ Rn×n be an eventually exponentially K-nonnegative

matrix. Then the following hold:

(i) eA has the K-Perron-Frobenius property and eA
T

has the K∗-Perron-Frobenius property.

(ii) If ρ(eA) is a simple eigenvalue of eA and ρ(eA) = eρ(A), then there exists an a0 ≥ 0 such that

lim
k→∞

((A+ aI)/(ρ(A+ aI))
k

= xyT for all a > a0, where x ∈ K and y ∈ K∗ are, respectively, right and

left eigenvectors of A corresponding to ρ(A), satisfying xT y = 1. The limit matrix xyT belongs to π(K).

Proof. (i) Let A be eventually exponentially K-nonnegative. As (eA)k = ekA, it follows that eA is

eventually K-nonnegative. Thus, by Theorem 11 and since eA and eA
T

are not nilpotent, eA has the

K-Perron-Frobenius property and eA
T

has the K∗-Perron-Frobenius property.

(ii) From (i) we specifically have that ρ(eA) ∈ σ(eA). Let x ∈ K, y ∈ K∗ be right and left eigenvectors

of eA, respectively, corresponding to ρ(eA) and normalized so that xT y = 1. As in the proof of Theorem 8,

ρ( eA) = eλ for some λ ∈ σ(A) with λ > Reµ, ∀µ ∈ σ(A) \ {λ}. This means that there exists an a0 ≥ 0,

such that for all a > a0,

ρ(A+ aI) = λ+ a > |µ+ a|, for all µ ∈ σ(A), µ 6= λ.

As A + aI and eA share eigenvectors, we obtain that for all a > a0, A + aI and AT + aI both have the

Perron-Frobenius property relative to cones K and K∗, respectively, with λ+ a being simple and their only

dominant eigenvalue. Applying Lemma 6 to A+ aI, we thus obtain

lim
k→∞

(A+ aI)k

(ρ(A+ aI))k
= xyT . (5.1)

Note that for every w ∈ K, as y ∈ K∗ we have yTw ≥ 0; that is xyTw ∈ K.

Remark 13. When K = Rn+, it was shown in [17, Theorem 3.7]) that if A is eventually nonnegative

with index0(A) ≤ 1, then A is eventually exponentially nonnegative. This result generalizes to simplicial

cones K = XRn+, where X invertible, simply by working with XAX−1. However, it is not in general true

that eventual K-nonnegativity and an index assumption imply eventual exponential K-nonnegativity. This

is shown by the following counterexample.
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Example 14. Consider the non-polyhedral, proper (ice-cream) cone (see [10])

K =
{
s [x1 x2 1]T ∈ R3 : x21 + x22 ≤ 1, s ≥ 0

}
,

as well as the matrix A and its powers given by

A =

 a b 0

0 a 0

0 0 1

 , Am =

 am mam−1b 0

0 am 0

0 0 1

 ,
where a = 1

2 , b = −5. For any nonzero x = s[x1 x2 1]T ∈ K, consider 1
s A

mx = [y1 y2 1]T . We have that

y21 + y22 = a2mx21 + (a2m +m2a2m−2b2)x22 + 2ma2m−1bx1x2. (5.2)

We look at two cases: Firstly, if x1x2 > 0 and since b = −5 < 0, then

a2mx21 + (a2m +m2a2m−2b2)x22 + 2ma2m−1bx1x2 ≤ a2mx21 + (a2m +m2a2m−2b2)x22. (5.3)

Observe that limm→∞ a2m = 0 and limm→∞m2a2m−2 = 0 since a = 1
2 . Therefore, from (5.2) and (5.3), we

get for sufficiently large m that

y21 + y22 ≤ a2mx21 + (a2m +m2a2m−2b2)x22 ≤ x21 + x22 ≤ 1.

Hence, 1
s A

mx ∈ K, and thus, Amx ∈ K for all sufficiently large m.

Secondly, if x1x2 < 0, let us without loss of generality assume |x1| ≥ |x2|. Then, for all sufficiently large

m,

y21 + y22 = a2mx21 + (a2m + m2a2m−2b2)x22 + 2ma2m−1bx1x2

≤ (a2m − 2ma2m−1b)x21 + (a2m +m2a2m−2b2)x22

≤ x21 + x22 ≤ 1.

Thus, Amx ∈ K for all sufficiently large m. That is, A is eventually K-nonnegative.

Next we will argue that A is not eventually exponentially K-nonnegative by considering

etA =

 eat tea(t−1)c 0

0 eta 0

0 0 et

 ,
where a = 1

2 and where c = b
∑∞
m=1

m
m!2m−1 . Thus,

0 < |c| = |b|
∞∑
m=1

m

m!2m−1
≤ |b|

∞∑
m=1

1

2m−1
= 2|b|.

Let now x = [0 1 1]T ∈ K so that etAx =

 ctea(t−1)

eat

et

 . It follows that (ctea(t−1))2 + (eat)2 > 1, since

c2 > 0 and a = 1
2 . That is, et

(
c2t2e−1 + 1

)
> 1. We can thus conclude that etAx 6∈ K for any t > 0, i.e., A

is not eventually exponentially K-nonnegative.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 204-216, July 2017.

211 Eventual Cone Invariance

6. Points of K-potential. In this section, K ⊂ Rn is a proper cone and A ∈ Rn×n denotes an

eventually exponentially K-nonnegative matrix with exponential index t0 = t0(A) ≥ 0. We will study points

of K-potential, that is, the set

XA(K) =
{
x0 ∈ Rn | (∃ t̂ = t̂(x0) ≥ 0) (∀t ≥ t̂) [etAx0 ∈ K]

}
. (6.1)

That is, XA(K) comprises all initial points giving rise to solutions (trajectories) of
dx

dt
= Ax that reach K

at some finite time and stay in K for all finite time thereafter.

Given the eventually exponentiallyK-nonnegative matrix A ∈ Rn×n with exponential index t0 = t0(A) ≥
0, we define the cone

K0 = et0AK = {x0 ∈ Rn | (∃ y ∈ K) [x0 = et0Ay]}

and consider the sets

YA(K0) = {x0 ∈ Rn | (∃ t̂ = t̂(x0) ≥ 0) [et̂Ax0 ∈ K0]} (6.2)

and

XA(K0) =
{
x0 ∈ Rn | (∃ t̂ = t̂(x0) ≥ 0) (∀t ≥ t̂) [etAx0 ∈ K0]

}
. (6.3)

Lemma 15. Let K0, YA(K0) as defined above. Then K0 ⊆ K ⊆ YA(K0).

Proof. We have that K0 ⊆ K since et0AK ⊆ K. If x0 ∈ K, then for t̂ = 2t0, et̂Ax0 = et0A (et0Ax0) ∈ K0.

Hence, K ⊆ YA(K0).

Note that the sets YA(K0), XA(K0) and XA(K) are convex cones. They are not necessarily closed sets,

however. For example, when K = R2
+ and

A =

[
0 1

0 0

]
,

it can be shown that XA(R2
+) consists of the whole upper plane excluding the negative x-axis.

The set YA(K0) comprises initial points for which the trajectories enter K0 at some time. The set

XA(K0) comprises initial points for which the trajectories enter K at some time and remain in K0 for all

time thereafter. The set of points of K-potential, XA(K) comprises initial points for which the trajectories

at some time reach K and remain in K for all time thereafter. Next we shall argue that YA(K0), XA(K0)

and XA(K) coincide and interpret this result subsequently.

Proposition 16. Let K ⊂ Rn be a proper cone and let A ∈ Rn×n be an eventually exponentially K-

nonnegative matrix with exponential index t0 = t0(A) ≥ 0. Let K0 = et0AK. Then

YA(K0) = XA(K) = XA(K0).

Proof. We begin by proving the first equality. If x0 ∈ YA(K0), then there exists a t̂ ≥ 0 and y ∈ K such

that et̂Ax0 = et0Ay. Thus, x0 = e(t0−t̂)Ay and so etAx0 = e(t+t0−t̂)Ay ∈ K if t+ t0− t̂ ≥ t0, i.e., for all t ≥ t̂.
It follows that x0 ∈ XA(K), i.e., YA(K) ⊆ XA(K). For the opposite containment, let x0 ∈ XA(K); that

is, there exists a t̂ ≥ 0 such that etAx0 ∈ K for all t ≥ t̂. Let t̃ = t̂ + t0. Then et̃Ax0 = et0A(et̂Ax0) ∈ K0,

proving that XA(K) ⊆ YA(K0) and thus equality holds.

For the second equality, we clearly have XA(K0) ⊆ XA(K) since K0 ⊆ K. To show the opposite

containment, let x0 ∈ XA(K). Then there exists a t̂ ≥ 0 such that et0AesAx0 ∈ K0 for all s ≥ t̂. That is,

etAx0 ∈ K0 for all t ≥ t0 + t̂, and thus, x0 ∈ XA(K0).
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Remark 17. Referring to Proposition 16, we make the following observations:

(i) If t0 = 0 (i.e., if etAK ⊆ K for all t ≥ 0), then K0 = K. In this case, XA(K) coincides with the

reachability cone of K for the essentially K-nonnegative matrix; this cone is studied in detail in [14] and

[15], especially when K = Rn+.

(ii) The equality XA(K) = XA(K0), in conjunction with Lemma 15, can be interpreted as saying that

the cone K0 = et0AK serves as an “attractor” set for trajectories emanating at points of K-potential; in

other words, trajectories emanating in XA(K) always reach and remain in K0 ⊆ K after a finite time.

(iii) Our observations so far imply that the trajectory emanating from a point of K-potential will indeed

enter cone K; however, it may subsequently exit K0 while it remains in K, and it will eventually re-enter

K0 and remain in K0 for all finite time thereafter. This situation is illustrated by [17, Example 4.4] for

K = Rn+. As a consequence, a natural question arises: When is it possible that all trajectories emanating

in XA(K) reach and never exit K0? This is equivalent to asking whether or not etAK0 ⊆ K0 for all t ≥ 0,

which is resolved in the next corollary.

Corollary 18. Let K ⊆ Rn be a proper cone and let A ∈ Rn×n be an eventually exponentially K-

nonnegative matrix with exponential index t0 = t0(A) ≥ 0. Let K0 = et0AK. Then etAK0 ⊆ K0 for all t ≥ 0

if and only if t0 = 0.

Proof. If t0 = 0, then K0 = K and etAK ⊆ K for all t ≥ 0. For the converse, suppose etAK0 ⊆ K0 for

all t ≥ 0. We must show that t0 = 0. Let y ∈ K and consider x0 = et0Ay ∈ K0. As etAx0 ∈ K0 for all t ≥ 0,

there must exist z ∈ K such that

e(t+t0)A y = et0A z for all t ≥ 0.

But this means etAy = z ∈ K for all t ≥ 0. Since y was taken arbitrary in K, we have etAK ⊆ K for all

t ≥ 0; that is, t0 = 0.

Remark 19. Referring to the assumptions and notation of Corollary 18, when K is a polyhedral proper

cone, we can invoke Lemma 4 and Corollary 18 to assert that etAK0 ⊆ K0 for all t ≥ 0 if and only if A is

essentially K-nonnegative.

7. Generalizing M-matrices based on eventual K-nonnegativity. This section generalizes some

of the results in [19] and concerns M∨,K - matrices, namely, matrices of the form A = sI −B ∈ Rn×n, where

K is a proper cone in Rn, B is an eventually K-nonnegative matrix and s ≥ ρ(B) ≥ 0. In the remainder,

every M∨,K - matrix A is assumed to be in the above form for some proper cone K.

We begin with some basic properties of M∨,K - matrices, which are immediate consequences of the fact

that the eventually nonnegative (resp. positive) matrix B satisfies Theorem 11 (resp. Theorem 7).

Theorem 20. Let A = sI −B ∈ Rn×n be an M∨,K - matrix. Then

(i) s− ρ(B) ∈ σ(A);

(ii) Reλ ≥ 0 for all λ ∈ σ(A);

(iii) detA ≥ 0 and detA = 0 if and only if s = ρ(B);

(iv) if, in particular, ρ(B) > 0, then there exists an eigenvector x ∈ K of A

and an eigenvector y ∈ K∗ of AT corresponding to λ(A) = s− ρ(B);
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(v) if, in particular, B is eventually K-positive and s > ρ(B), then in (iv),

x ∈ intK, y ∈ intK and in (ii) Reλ > 0 for all λ ∈ σ(A).

In the following result, different representations of an M∨,K - matrix are considered (analogous to different

representations of an M-matrix).

Theorem 21. Let A ∈ Rn×n be an M∨,K - matrix. Then in any representation A = tI− B̂ with B̂ being

eventually K-nonnegative, it follows that t ≥ ρ(B̂). If, in addition, A is nonsingular, then t > ρ(B̂).

Proof. Since A is an M∨,K - matrix, A = sI−B ∈ Rn×n for some eventually K-nonnegative B and some

s ≥ ρ(B) ≥ 0. Let A = tI−B̂, where B̂ is eventually K-nonnegative. If B is nilpotent, then 0 = ρ(B) ∈ σ(B),

and by Theorem 11, this containment also holds if B is not nilpotent. A similar containment holds for B̂. If

t ≥ s, then ρ(B̂) = ρ((t− s)I + B) = ρ(B) + t− s. Hence, t = s− ρ(B) + ρ(B̂) ≥ ρ(B̂). Similarly, if t ≤ s,

then ρ(B) = ρ(B̂) + s − t. Hence, t = s − ρ(B) + ρ(B̂) ≥ ρ(B̂). If A is nonsingular, it follows by Theorem

20 (iii) that s > ρ(B) and so t > ρ(B̂).

As with M-matrices (see [1, Chapter 6, Lemma 4.1]), we can now show that the class of M∨,K - matrices

is the closure of the class of nonsingular M∨,K - matrices.

Proposition 22. Let A = sI −B ∈ Rn×n, where B is eventually K-nonnegative. Then A is an M∨,K -

matrix if and only if A+ εI is a nonsingular M∨,K - matrix for each ε > 0.

Proof. If A + εI = (s + ε)I − B is a nonsingular M∨,K - matrix for each ε > 0, then by Theorem 21,

s + ε > ρ(B) for each ε > 0. Letting ε → 0+ gives s ≥ ρ(B), i.e., A is an M∨,K - matrix. Conversely, let

A = sI − B be an M∨,K - matrix, where B is eventually K-nonnegative and s ≥ ρ(B) ≥ 0. Thus, for every

ε > 0, A + εI = (s + ε)I − B with B eventually K-nonnegative and s + ε > s ≥ ρ(B). That is, A + εI is a

nonsingular M∨,K - matrix.

Given an M-matrix A, clearly −A is essentially nonnegative, i.e., −A + αI ≥ 0 for all sufficiently large

α ≥ 0. Thus, e−tA = e−tα e−t(A−αI) ≥ 0 for all t ≥ 0; that is −A is exponentially nonnegative. In

the following theorem, this property is extended to a special subclass of M∨,K - matrices with exponential

nonnegativity replaced by eventual exponential positivity.

Theorem 23. Let A = sI − B ∈ Rn×n be an M∨,K - matrix with B being eventually K-nonnegative

(and thus, s ≥ ρ(B) > 0). Then −A is eventually exponentially K-positive.

Proof. Let A = sI −B, where B = sI −A is eventually K-nonnegative with power index k0. As Bm is

K-nonnegative for all m ≥ k0, there exists sufficiently large t0 > 0 so that for all t ≥ t0, the sum of the first

k0 − 1 terms of the series etB =

∞∑
m=0

tmBm

m!
is dominated by the term

tk0Bk0

k0!
, and thus, since π(K) is also

a proper cone, etB is K-positive for all t ≥ t0. It follows that e−tA = e−tsetB is positive for all t ≥ t0. That

is, −A is eventually exponentially K-positive as claimed.

There are several properties of a Z-matrix A (namely, a matrix with non-positive off-diagonal entries)

that are equivalent to A being an M-matrix. These properties are documented in the often cited Theorems

2.3 and 4.6 in [1]: positive stability, semipositivity, inverse nonnegativity and monotonicity among others.

In the cone-theoretic generalizations of M-matrices (see [22]), these properties are generalized and shown

to play an analogous characterizing role. In the following theorems we examine the form and role these

properties take in the context of M∨,K - matrices.
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Theorem 24. Let A = sI − B ∈ Rn×n, where B is eventually K-nonnegative and has power index

k0 ≥ 0. Let K̂ be the cone defined as K̂ = Bk0K. Consider the following conditions:

(i) A is an invertible M∨,K̂ - matrix.

(ii) s > ρ(B) (positive stability of A).

(iii) A−1 exists and A−1K̂ ⊆ K (inverse K-nonnegativity).

(iv) Ax ∈ K̂ =⇒ x ∈ K (K-monotonicity).

Then (i)⇐⇒(ii)=⇒(iii)⇐⇒(iv). If, in addition, B is not nilpotent, then all conditions (i)-(iv) are equiv-

alent.

Proof. (i)=⇒(ii). This implication follows by Theorem 21 and invertibility of A.

(ii)=⇒(i). It follows from definition of an M∨,K - matrix and Theorem 20 (i).

(iii)=⇒(iv). Assume (iii) holds and consider y = Ax ∈ K̂. As A−1 exists, x = A−1y ∈ K.

(iv)=⇒(iii). Assume (iv) holds. First notice that A must be invertible because if Au = 0 ∈ K̂, then

u ∈ K; also A(−u) = 0 ∈ K̂ and so u ∈ −K, that is, as K is pointed, u = 0. Consider now y = A−1Bk0x,

where x ∈ K. Then Ay = Bk0x ∈ K̂ and so y ∈ K.

(ii)=⇒(iii). If (ii) holds, then ρ(B/s) < 1 and so

A−1 =
1

s
(I −B/s)−1 =

1

s

∞∑
q=0

Bq

sq
.

Consequently, for all x ∈ K,

A−1Bk0 x =
1

s

∞∑
q=0

Bq+k0

sq
x ∈ K.

Now suppose that B is not nilpotent, that is, ρ(B) > 0. To prove that (i)-(iv) are equivalent it is

sufficient to show that (iii)=⇒(ii).

(iii)=⇒(ii). By Theorem 11, B has the K-Perron-Frobenius property, i.e., there exists a nonzero x ∈ K
so that Bx = ρ(B)x. Assume (iii) holds and consider µ = s − ρ(B) ∈ σ(A) ∩ R. As Bk0x = ρ(B)k0x and

since ρ(B) > 0, it follows that x ∈ K̂, and thus, A−1x ∈ K. But Ax = µx and so x = µA−1x. It follows

that µ > 0.

Remark 25. (a) The implication (iii)=⇒(ii) or (i) in Theorem 24 is not in general true if B is nilpotent.

For example, consider K = R2
+ and the eventually K-nonnegative matrix B =

[
1 −1

1 −1

]
v
≥ 0, which has

power index k0 = 2. Thus, K̂ = B2R2
+ = {0}. For any s < 0, A = sI−B is invertible and A−1K̂ = {0} ⊂ R2

+;

however, A is not an M∨,K̂ - matrix because its eigenvalues are negative.

(b) It is well known that when an M-matrix is invertible, its inverse is nonnegative. As mentioned

earlier, in [9, Theorem 8] it is shown that the inverse of a pseudo M-matrix is eventually positive. In [11,

Theorem 4.2] it is shown that if B is an irreducible eventually nonnegative matrix with index0(B) ≤ 1, then

there exists a t > ρ(B) such that for all s ∈ (ρ(B), t), (sI −B)−1 > 0. The situation with the inverse of an

M∨,K - matrix A is different. Notice that condition (iii) of Theorem 24 is equivalent to A−1Bk0 ∈ π(K). In
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general, if A is an invertible M∨,K - matrix, A−1 is neither K-nonnegative nor eventually K-nonnegative; for

example, if A = I −B with B as in Remark 25 (a), then the (1, 2) entry of (A−1)k is negative for all k ≥ 1.

In the next theorem we present some properties of singular M∨,K - matrices analogous to the properties

of singular, irreducible M-matrices found in [1, Chapter 6, Theorem 4.16].

Theorem 26. Let A = sI − B ∈ Rn×n be a singular M∨,K - matrix, where B is eventually K-positive.

Then the following hold.

(i) A has rank n− 1.

(ii) There exists a vector x ∈ intK such that Ax = 0.

(iii) If for some vector u, Au ∈ K, then Au = 0 (almost monotonicity).

Proof. As A is singular, by Theorem 20 (iii) it follows that s = ρ(B).

(i) By Theorem 7, B has the strong K-Perron-Frobenius property and so ρ(B) is a simple eigenvalue of B.

Thus, 0 = s− ρ(B) is a simple eigenvalue of A.

(ii) As B has the strong K-Perron-Frobenius property, there exists an x ∈ intK such that Bx = ρ(B)x, i.e.,

Ax = ρ(B)x−Bx = 0.

(iii) By Theorem 7, BT also has the strong K∗-Perron-Frobenius property and so there exists a z ∈ intK∗

such that zTB = ρ(B)zT . Let u be such that Au ∈ K. If Au 6= 0, then zTAu > 0. However,

zTAu = ρ(B)zTu− zTBu = ρ(B)zTu− ρ(B)zTu = 0,

a contradiction, showing that Au = 0.
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