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OPTIMAL DUAL FUSION FRAMES FOR PROBABILISTIC ERASURES∗

PATRICIA MARIELA MORILLAS†

Abstract. For any fixed fusion frame, its optimal dual fusion frames for reconstruction is studied in case of erasures of

subspaces. It is considered that a probability distribution of erasure of subspaces is given and that a blind reconstruction

procedure is used, where the erased data are set to zero. It is proved that there are always optimal duals. Sufficient conditions

for the canonical dual fusion frame being either the unique optimal dual, a non-unique optimal dual, or a non optimal dual,

are obtained. The reconstruction error is analyzed, using the optimal duals in the probability model considered here and using

the optimal duals in a non-probability model.
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1. Introduction. Fusion frames (or frames of subspaces) [3, 5] for a separable Hilbert space H are

collections of closed subspaces and weights. They are a generalization of frames [6, 13] and are applied in

distributed processing settings such as distributing sensing, parallel processing and packet encoding. In the

present paper we are interested in the application of fusion frames in the transmission of signals when some

of the transmitted information is lost. The signals will be vectors of a finite-dimensional Hilbert space.

Given a fusion frame for H, each element f ∈ H is represented with packets of coefficients. In applica-

tions, some of these packets may be erased and it is necessary performing the reconstruction of f with the

available information. One approach to this problem is the study and the construction of optimal fusion

frames [1, 4, 14, 16, 17]. Here optimality is understood as to have yet a fusion frame or as to minimize certain

reconstruction error, after the erasure of subspaces. When the fusion frame used for the representation of

the elements of H is fixed, other approaches are needed. The concept of dual fusion frame introduced and

studied in [7, 8] allows us to analyze how to select optimal dual fusion frames, for this fixed fusion frame, in

order to perform the reconstruction.

In [8], the authors studied optimal dual fusion frames for a fixed fusion frame when a blind reconstruction

process is used. This is done in a similar way as in [9, 12] for frames and in [15] for projective reconstruction

systems. In real implementations the subspaces are generally erased with different probabilities. In the

present paper, we address this situation studying optimal dual fusion frames when a probability distribution

of erasure of subspaces is given. We consider a probability model in concordance with frames considered in

[10, 11], but using the Frobenius norm to define the errors as in [8, 15]. Some of the obtained results can be

viewed as analogous ones of those of [10] in the context of dual fusion frames and generalize results of [8] to

the probabilistic case.

The outline of the paper is as follows. In Section 2, we review fusion frames and dual fusion frames. In

Section 3, we state the mathematical model introduced in [8] for studying optimal dual fusion frames for a
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fixed fusion frame when a blind reconstruction process is used, considering each of the erased data equal to

zero. We introduce a modification to this model for studying the case in which a probability distribution

of erasure of subspaces is given. For the error defined by the `2-norm, called the mean squared error, both

models lead to the same optimal duals. In the rest of the paper, we consider the error defined by the `∞-norm,

called the worst case error. We prove that there are always optimal duals. We also obtain easy verifiable

sufficient conditions that assure that the canonical dual fusion frame (the most studied and used dual so

far) is either the unique probability optimal dual, a non-unique probability optimal dual, or a non-optimal

probability dual. In Section 4, we investigate the convenience of using the probability model for determining

optimal duals instead of the non-probability model considered in [8], when the subspaces have not the same

probability of erasure.

2. Preliminaries. In this section, we recall the concepts of fusion frame [3, 5] (see also [2, Chapter

13]) and dual fusion frame [7, 8]. We refer to the mentioned works for more details. We begin introducing

some notations.

2.1. Notation. Let H,K be finite-dimensional Hilbert spaces over F = R or F = C. If V ⊂ H is a

subspace, πV denotes the orthogonal projection onto V . Let L(H,K) be the space of linear transformations

from H to K. Given T ∈ L(H,K), we write R(T ) and T ∗ to denote the image and the adjoint of T ,

respectively. If T ∈ L(H,K) is injective, then LT denotes the set of left inverses of T .

The inner product and the norm in H will be denoted by 〈·, ·〉 and ‖ · ‖, respectively. If T ∈ L(H,K),

then ‖T‖ denotes the Frobenius norm of T .

In the sequel, m,n, d ∈ N, and H will be a finite-dimensional Hilbert space over F of dimension d. For

p ∈ N ∪ {∞} let ‖ · ‖p denote the p-norm in Fn.

For a set A, let χA : A→ {0, 1} be the characteristic function of A. We abbreviate χ{a} = χa.

2.2. Fusion frames. The representation of each f ∈ H via fusion frames is given by projections onto

multidimensional subspaces.

Definition 2.1. Let {Wi}mi=1 be a family of subspaces of H, and let {wi}mi=1 be a family of weights,

i.e., wi > 0 for i = 1, . . . ,m. Then {(Wi, wi)}mi=1 is called a Bessel fusion sequence for H.

We will denote {Wi}mi=1 with W, {wi}mi=1 with w and {(Wi, wi)}mi=1 with (W,w). If T ∈ L(H,K), then

we will write (TW,w) for {(TWi, wi)}mi=1.

Let W = {(fi)mi=1 : fi ∈Wi} be the Hilbert space with 〈(fi)mi=1, (gi)
m
i=1〉 =

∑m
i=1〈fi, gi〉.

Definition 2.2. Let (W,w) be a Bessel fusion sequence.

1. The synthesis operator of (W,w) is

TW,w :W → H, TW,w(fi)
m
i=1 =

m∑
i=1

wifi.

The analysis operator is

T ∗W,w : H →W, T ∗W,wf = (wiπWi
(f))mi=1.

2. (W,w) is called a fusion frame for H if span
⋃m
i=1Wi = H, or equivalently, if R(TW,w) = H.
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3. (W,w) is a Riesz fusion basis if H is the direct sum of the Wi.

4. If (W,w) is a fusion frame for H, the operator

SW,w = TW,wT
∗
W,w : H → H, SW,w(f) = TW,wT

∗
W,w(f) =

m∑
i=1

w2
i πWi(f)

is called the fusion frame operator of (W,w).

A fusion frame (W,w) is called an α-tight fusion frame if SW,w = αIH. If SW,w = IH we say that it is

a Parseval fusion frame.

2.3. Dual fusion frames. Next we recall the notion of dual fusion frame [7, 8].

Definition 2.3. Let (W,w) and (V,v) be two fusion frames for H. Then (V,v) is a dual fusion frame

of (W,w) if there exists a Q ∈ L(W,V) such that

TV,vQT
∗
W,w = IH. (2.1)

If we need to do an explicit reference to the linear transformation Q, then we say that (V,v) is a Q-dual

fusion frame of (W,w).

For J ⊆ {1, . . . ,m}, we consider the selfadjoint operator

MJ,W :W →W, MJ,W(fj)
m
j=1 = (χJ(j)fj)

m
j=1.

We simply write MJ if it is clear to which W we refer to. We abbreviate M{j},W = Mj,W and M{j} = Mj .

Definition 2.4. Let (W,w) and (V,v) be two Bessel fusion sequences for H and Q ∈ L(W,V).

1. If QMj,WW ⊆Mj,VV for each j ∈ {1, . . . ,m}, Q is called block-diagonal.

2. If QMj,WW = Mj,VV for each j ∈ {1, . . . ,m}, Q is called component preserving.

Observe that Q is block-diagonal if and only if QMj,W = Mj,VQ for each j ∈ {1, . . . ,m}, or equivalently,

QMJ,W = MJ,VQ for each J ⊆ {1, . . . ,m}. If Q is block-diagonal, then Q∗ is block-diagonal. If, in

Definition 2.3, Q is block-diagonal (component preserving), then we say that (V,v) is a block-diagonal dual

fusion frame (component preserving dual fusion frame) of (W,w). In this paper, we restrict us to these

types of dual fusion frames.

If Q is block-diagonal, then the reconstruction formula following from (2.1) has the form

f =

m∑
j=1

vjwjQjf, ∀f ∈ H,

where Qjf := (QMj(πWif)mi=1)j ∈ Vj .

The following theorem characterizes the component preserving dual fusion frames of (W,w) in terms

of the left inverses of T ∗W,w. Given A ∈ L(W,H) and v a collection of weights, we consider the subspaces

Vi = AMiW, for each i = 1, . . . ,m, and QA,v :W → V, QA,v(fj)
m
j=1 =

(
1
vi
AMi(fj)

m
j=1

)m
i=1

.

Theorem 2.5. [8] Let (W,w) be a fusion frame for H. Then (V,v) is a Q-component preserving

dual fusion frame of (W,w) if and only if Vi = AMiW for each i ∈ {1, . . . ,m} and Q = QA,v, for some
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A ∈ LT∗W,w
. Moreover, any element of LT∗W,w

is of the form TV,vQ where (V,v) is some Q-component

preserving dual fusion frame of (W,w).

By Theorem 2.5, (S−1
W,wW,v) is a QA,v-component preserving dual with A = S−1

W,wTW,w and v a family

of arbitrary weights. We refer to this QS−1
W,wTW,w,v

-dual fusion frame as the canonical dual with weights v.

3. Optimal dual fusion frames in a probability model. Let (W,w) be a fusion frame for H. In

applications an element f ∈ H (e.g., a signal) is converted into the data vectors T ∗W,wf = (wiπWi(f))mi=1.

Sometimes some of the data vectors are lost or erased, and it is necessary to reconstruct f with the in-

formation at hand. Let J ⊂ {1, . . . ,m} and suppose that the data vectors corresponding to the sub-

spaces {Wj}j∈J are lost. Considering each of the erased data equal to zero, the reconstruction then gives

TV,vQM{1,...,m}\JT
∗
W,wf , where (V,v) is some Q-dual of (W,w). So we need to find those dual fusion

frames of (W,w) that are in some sense optimal for this situation.

Fix r ∈ {1, . . . ,m − 1}. Let Pmr := {J ⊂ {1, . . . ,m} : |J | = r}. Noting that MJ = IW −M{1,...,m}\J ,

given a Q-block diagonal dual fusion frame (V,v) of (W,w) we consider the general vector error

e(r, (W,w), (V,v), Q) = (‖TV,vQMJT
∗
W,w‖)J∈Pm

r
.

We define inductively:

• e(p)
1 (W,w) as the infimum of the set of the numbers ‖e(1, (W,w), (V,v), Q)‖p such that (V,v) is

a Q-block diagonal dual fusion frame of (W,w),

• D(p)
1 (W,w) as the set of ((V,v), Q) where (V,v) is a Q-block diagonal dual fusion frame of (W,w)

and ‖e(1, (W,w), (V,v), Q)‖p = e
(p)
1 (W,w),

• e(p)
r (W,w) = inf{‖e(r, (W,w), (V,v), Q)‖p : ((V,v), Q) ∈ D(p)

r−1(W,w)},
• D(p)

r (W,w) = {((V,v), Q) ∈ D(p)
r−1(W,w) : ‖e(r, (W,w), (V,v), Q)‖p = e

(p)
r (W,w)},

in case each D(p)
r (W,w) is non-empty. Each element of D(p)

r (W,w) will be called a general (r, p)-loss optimal

dual fusion frame of (W,w).

3.1. The probability model. Now we are going to suppose that the subspaces of the fusion frame

(W,w) can be lost or erased with non necessarily equal probability. We consider that the probability pi
of the erasure for the ith subspace for each i = 1, . . . ,m is given. These numbers define a probability

distribution of erasure of the subspaces, or equivalently, of the data vectors T ∗W,wf = (wiπWi(f))mi=1 for each

f ∈ H. Clearly we have
∑m
i=1 pi = 1 and 0 ≤ pi ≤ 1 for each i = 1, . . . ,m.

In order to define the mathematical model, we consider numbers qi for i = 1, . . . ,m such that there

exists a strictly increasing real function F with qi = F (pi) > 0 for i = 1, . . . ,m. An advantage of introducing

these numbers is that we have qi > 0 for each i = 1, . . . ,m whereas some of the probabilities pi can be equal

to zero. A more precise definition of the numbers qi in function of the probabilities pi can be given according

with the problem we are studying (see Example 4.5 and for the case of frames see [10, 11]).

We consider the selfadjoint operators M̂i,W : W → W, M̂i,W = qiMi,W and M̂J,W =
∑
i∈J M̂i,W. We

simply write M̂i or M̂J if it is clear to which W we refer to.

Given a Q-block diagonal dual fusion frame (V,v) of (W,w), we consider the probability vector error

ê(r, (W,w), (V,v), Q) = (‖TV,vQM̂JT
∗
W,w‖)J∈Pm

r
.
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We define inductively:

• ê(p)
1 (W,w) as the infimum of the set of the numbers ‖ê(1, (W,w), (V,v), Q)‖p such that (V,v) is

a Q-block diagonal dual fusion frame of (W,w),

• D̂(p)
1 (W,w) as the set of ((V,v), Q) where (V,v) is a Q-block diagonal dual fusion frame of (W,w)

and ‖ê(1, (W,w), (V,v), Q)‖p = ê
(p)
1 (W,w),

• ê(p)
r (W,w) = inf{‖ê(r, (W,w), (V,v), Q)‖p : ((V,v), Q) ∈ D̂(p)

r−1(W,w)},
• D̂(p)

r (W,w) = {((V,v), Q) ∈ D̂(p)
r−1(W,w) : ‖ê(r, (W,w), (V,v), Q)‖p = ê

(p)
r (W,w)},

in case each D̂(p)
r (W,w) is non-empty. Each element of D̂(p)

r (W,w) will be called a probability (r, p)-loss

optimal dual fusion frame of (W,w).

3.2. Probability optimal dual fusion frames. Note that

MiT
∗
W,wTW,wM

∗
i = w2

iMi.

Let A ∈ L(W,H). Then

‖AM̂iT
∗
W,w‖2 = q2

iw
2
i ‖AMi‖2. (3.2)

We also have

‖S−1
W,wTW,wMi‖ = wi‖S−1

W,wπWi
‖. (3.3)

For p = 2 we obtain the probability mean squared error ‖ê(r, (W,w), (V,v), Q)‖2. In this case, prob-

ability optimal duals coincide with general optimal duals, i.e., D̂(2)
r (W,w) = D(2)

r (W,w) for each r ≥ 1.

Specifically, Theorem 5.1 in [8], with a similar proof, remains valid for probability (r, 2)-loss optimal com-

ponent preserving dual fusion frames.

In what follows, we consider p =∞. In this case, we obtain the probability worst-case error,

‖ê(r, (W,w), (V,v), Q)‖∞ = max
J∈Pm

r

‖TV,vQM̂J,WT ∗W,w‖.

In the sequel, we restrict us to component preserving dual fusion frames. Note that by [8, Remark 3.6],

we can always replace a block-diagonal dual fusion frame with a component preserving dual fusion frame

that has the same general (or probability) vector error.

Some important properties of the set D̂(∞)
r (W,w) are given in the following theorem.

Theorem 3.1. Let (W,w) be a fusion frame for H. Then D̂(∞)
r (W,w) is non-empty, compact and

convex for each r = 1, . . . ,m− 1.

Proof. The map ‖.‖(r)W,w : L(W,H) → R+, ‖A‖(r)W,w = maxJ∈Pm
r
‖AM̂JT

∗
W,w‖, is a norm in L(W,H).

To see this, let A ∈ L(W,H) such that ‖A‖(r)W,w = 0. So, AM̂JT
∗
W,w = 0 for each J ∈ Pmr . If r ≥ 2,

let k, k′ ∈ {1, . . . ,m}, k 6= k′ and J ′ ⊆ {1, . . . ,m} \ {k, k′} such that |J ′| = r − 1. We have AM̂kT
∗
W,w =

AM̂k′T
∗
W,w = −AM̂J′T

∗
W,w. This shows that, AM̂JT

∗
W,w = rAM̂kT

∗
W,w, and consequently, AM̂kT

∗
W,w = 0,

for each k ∈ J and each J ∈ Pmr . By (3.2) this implies that AMk = 0 for k = 1, . . . ,m, and thus

A =
∑m
k=1AMk = 0. The other norm properties are immediate.

Since the set LT∗W,w
is closed in L(W,H) under the usual norm and all norms in a finite-dimensional

Hilbert space are equivalent, LT∗W,w
is a closed subset of L(W,H) under the norm ‖.‖(1)

W,w. GivenB0 ∈ LT∗W,w
,
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B0 6= 0, there exists an A0 in the non-empty compact set {A ∈ LT∗W,w
: ‖A‖(1)

W,w ≤ ‖B0‖(1)
W,w} where the

continuous map ‖.‖(1)
W,w attains its minimum. So, ‖A0‖(1)

W,w = minA∈LT∗
W,w
‖A‖(1)

W,w, and the set{
A ∈ LT∗W,w

: max
1≤i≤m

‖AM̂iT
∗
W,w‖ = min

B∈LT∗
W,w

max
1≤i≤m

‖BM̂iT
∗
W,w‖

}
(3.4)

is non-empty and compact. Since LT∗W,w
is convex and ‖.‖(1)

W,w is a convex map, the set (3.4) is convex.

Consequently, by Theorem 2.5, D̂(∞)
1 (W,w) is non-empty, compact and convex.

An inductive argument shows that D̂(∞)
r (W,w) is non-empty compact and convex for each r ≥ 2.

By Theorem 2.5, if (W,w) is a fusion frame for H then A is an element of the set (3.4) if and only if

the QA,v-component preserving dual fusion frames with arbitrary vector of weights v, {(AMiW, vi)}mi=1, are

probability (1,∞)-loss optimal component preserving dual fusion frames of (W,w). Using [8, Lemma 3.4]

we also have:

Lemma 3.2. Let (W,w) be a fusion frame for H. Then S−1
W,wTW,w is the unique element of the set

(3.4) if and only if the canonical dual fusion frames (S−1
W,wW,v), with arbitrary vector of weights v, are the

unique probability (1,∞)-loss optimal component preserving dual fusion frames of (W,w).

The next theorem gives sufficient conditions that assure that the only probability (r,∞)-loss optimal

component preserving dual fusion frames are the canonical ones.

Theorem 3.3. Let (W,w) be a fusion frame for H, c = max{qiw2
i ‖S

−1
W,wπWi‖ : i ∈ {1, . . . ,m}},

Λ1 = {i ∈ {1, . . . ,m} : qiw
2
i ‖S

−1
W,wπWi

‖ = c}, Λ2 = {1, . . . ,m} \ Λ1 and Hj = span
⋃
i∈Λj

Wi, j = 1, 2. If

H1∩H2 = {0} and {(Wi, wi)}i∈Λ2
is a Riesz fusion basis for H2, then the only probability (r,∞)-loss optimal

component preserving dual fusion frames of (W,w) are the canonical ones (S−1
W,wW,v) with arbitrary vector

of weights v.

Proof. By Theorem 3.1 and Theorem 2.5, there exists A ∈ LT∗W,w
such that

max
1≤i≤m

‖AM̂iT
∗
W,w‖ = min

B∈LT∗
W,w

max
1≤i≤m

‖BM̂iT
∗
W,w‖.

So,

max
1≤i≤m

‖AM̂iT
∗
W,w‖ ≤ max

1≤i≤m
‖S−1

W,wTW,wM̂iT
∗
W,w‖.

and then, by (3.2), (3.3) and hypothesis,

‖AMi‖ ≤ ‖S−1
W,wTW,wMi‖, ∀i ∈ Λ1. (3.5)

Since AT ∗W,w = S−1
W,wTW,wT

∗
W,w = IH, TW,w(A− S−1

W,wTW,w)∗ = 0. By hypothesis this implies that

TW,wMΛ1(A− S−1
W,wTW,w)∗f =

∑
i∈Λ1

wi((A− S−1
W,wTW,w)∗f)i = 0 (3.6)

for all f ∈ H and ((A − S−1
W,wTW,w)∗f)i = 0 for each i ∈ Λ2 and for each f ∈ H, or equivalently,

MΛ2(A− S−1
W,wTW,w)∗ = 0, i.e.,

AMΛ2 = S−1
W,wTW,wMΛ2 . (3.7)
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Using

‖AMi‖2 = ‖S−1
W,wTW,wMi‖2 + ‖(A− S−1

W,wTW,w)Mi‖2

+2Re(tr[(A− S−1
W,wTW,w)MiT

∗
W,wS

−1
W,w]),

by (3.5),

‖(A− S−1
W,wTW,w)Mi‖2 + 2Re(tr[(A− S−1

W,wTW,w)MiT
∗
W,wS

−1
W,w]) ≤ 0 (3.8)

for all i ∈ Λ1. By (3.6), (A− S−1
W,wTW,w)MΛ1

T ∗W,w = 0, so∑
i∈Λ1

tr[(A− S−1
W,wTW,w)MiT

∗
W,wS

−1
W,w] = tr[(A− S−1

W,wTW,w)MΛ1
T ∗W,wS

−1
W,w]

= 0.

Thus, by (3.8),
∑
i∈Λ1
‖(A− S−1

W,wTW,w)Mi‖2 ≤ 0, and consequently,

AMi = S−1
W,wTW,wMi, ∀i ∈ Λ1.

This jointly with (3.7) shows that A = S−1
W,wTW,w. Thus S−1

W,wTW,w is the unique element of the set (3.4),

and the conclusion follows from Lemma 3.2 and the inductive definition of probability (r,∞)-loss optimal

dual fusion frames.

The following corollary can be deduced easily from Theorem 3.3.

Corollary 3.4. Let (W,w) be a fusion frame for H. If qiw
2
i ‖S

−1
W,wπWi

‖ = c for each i = 1, . . . ,m,

then the only probability (r,∞)-loss optimal component preserving dual fusion frames of (W,w) are the

canonical ones (S−1
W,wW,v) with arbitrary vector of weights v.

For tight fusion frames we have:

Corollary 3.5. Let (W,w) be an α-tight fusion frame for H. If qiw
2
i

√
dim(Wi) = c for each i =

1, . . . ,m, then the only probability (r,∞)-loss optimal component preserving dual fusion frames of (W,w)

are the canonical ones (W,v) with arbitrary vector of weights v.

Proof. By hypothesis, qiw
2
i ‖S

−1
W,wπWi‖ =

qiw
2
i

α dim(Wi)
1/2 = c

α for each i = 1, . . . ,m, so the proof

follows from the previous corollary.

The next two propositions can be used to know whether a given fusion frame has not the canonical

duals as the unique (1,∞)-loss optimal component preserving dual fusion frames. They are converses of

Theorem 3.3.

Proposition 3.6. Let (W,w) be a fusion frame for H. Let c, Λj and Hj, j = 1, 2, as in Theorem 3.3. If

the only probability (1,∞)-loss optimal component preserving dual fusion frames of (W,w) are the canonical

ones (S−1
W,wW,v) with arbitrary vector of weights v, then {(Wi, wi)}i∈Λ2

is a Riesz fusion basis for H2.

Proof. We first note that the Bessel sequence {(Wi, wi)}i∈Λ2
is not a Riesz fusion basis for H2 if and

only if the corresponding analysis operator has more than one inverse.

Therefore, if {(Wi, wi)}i∈Λ2
is not a Riesz fusion basis for H2 there exists R ∈ L(W,H) such that

RMi = 0 for each i ∈ Λ1, RMΛ2
6= 0 and RMΛ2

T ∗W,w = 0. If t ∈ R, S−1
W,wTW,w + tR ∈ LT∗W,w

and, by (3.2)

and (3.3),

‖(S−1
W,wTW,w + tR)M̂iT

∗
W,w‖ = qiw

2
i ‖S−1

W,wπWi
‖ = c
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for each i ∈ Λ1, and if |t| is small enough, then

‖(S−1
W,wTW,w + tR)M̂iT

∗
W,w‖ ≤ qiw2

i ‖S−1
W,wπWi

‖+ |t|‖RM̂iT
∗
W,w‖ < c

for each i ∈ Λ2. This shows that S−1
W,wTW,w + tR with t 6= 0 and |t| small enough is an element of the set

(3.4), which, by Lemma 3.2, contradicts the hypothesis. Thus, {(Wi, wi)}i∈Λ2
is a Riesz fusion basis for H2.

Proposition 3.7. Let (W,w) be a fusion frame for H. Let c, Λj and Hj, j = 1, 2, as in Theorem 3.3.

Suppose that there exists Λ′1 ⊆ Λ1 such that {(Wi, wi)}i∈Λ′1
is a Riesz fusion basis for H1. If the only

probability (1,∞)-loss optimal component preserving dual fusion frames of (W,w) are the canonical ones

(S−1
W,wW,v) with arbitrary vector of weights v, then H1 ∩H2 = {0}.

Proof. Suppose that H1 ∩ H2 6= {0}. This implies that there exists Λ′′1 ⊆ Λ′1 and (fj)
m
j=1 ∈ MΛ′′1∪Λ2

W
such that fj 6= 0 for each j ∈ Λ′′1 and TW,w(fj)

m
j=1 = 0.

Let {ei,l}l∈Li
be an orthonormal basis for Wi for each i = 1, . . . ,m. Then, by hypothesis,

{S−1
W,wei,l}i∈Λ′′1 ,l∈Li

is linearly independent. Hence, by [6, Theorem 6.5.1], there exists f ∈ H such that

〈f, S−1
W,wei,l〉 = −〈fi, ei,l〉 for each i ∈ Λ′′1 and l ∈ Li.

LetR ∈ L(W,H), given byR(gj)
m
j=1 = 〈(gj)mj=1, (fj)

m
j=1〉f for each (gj)

m
j=1 ∈ W. We haveRMk(gj)

m
j=1 =

〈gk, fk〉f if k ∈ Λ′′1 ∪ Λ2 and RMk(gj)
m
j=1 = 0 if k /∈ Λ′′1 ∪ Λ2. We have R∗ : H →W, R∗g = 〈g, f〉(fj)mj=1.

Since TW,wR
∗ = 0, then S−1

W,wTW,w + tR ∈ LT∗W,w
for each t ∈ R.

If k /∈ Λ′′1 ∪ Λ2, , by (3.2) and (3.3),

‖(S−1
W,wTW,w + tR)M̂kT

∗
W,w‖2 = q2

iw
4
i ‖S−1

W,wπWi
‖2 = c2.

Taking into account that {{(χj(i)ei,l)mi=1}l∈Lj
}mj=1 is an orthonormal basis for W, if k ∈ Λ′′1 ,

tr(T ∗W,wS
−1
W,wRMk) =

m∑
j=1

∑
lj∈Lj

〈T ∗W,wS
−1
W,wRMk(χj(i)ei,lj )mi=1, (χj(i)ei,lj )mi=1〉

=
∑
l∈Lk

〈RMk(χk(i)ei,l)
m
i=1, wkS

−1
W,wek,l〉

= wk
∑
l∈Lk

〈〈ek,l, fk〉f, S−1
W,wek,l〉

= −wk
∑
l∈Lk

|〈fk, ek,l〉|2 = −wk||fk||2 < 0.

Hence, by (3.2) and (3.3), if t > 0 is small enough,

‖(S−1
W,wTW,w+tR)M̂kT

∗
W,w‖2 = q2

kw
4
k‖S−1

W,wπWk
‖2 +t2q2

kw
2
k‖RMk‖2 +2tq2

kw
2
kRe(tr(T ∗W,wS

−1
W,wRMk)) < c2

for each k ∈ Λ′′1 , and

‖(S−1
W,wTW,w + tR)M̂kT

∗
W,w‖ ≤ qkw2

k‖S−1
W,wπWk

‖+ tqkwk||RMk‖ < c

for each k ∈ Λ2.
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This shows that S−1
W,wTW,w is not the only element of the set (3.4) and, by Lemma 3.2, the canonical

dual fusion frames (S−1
W,wW,v) with any vector of weights v are not the only probability (1,∞)-loss optimal

component preserving dual fusion frame of (W,w). This contradicts the hypothesis, consequently, H1∩H2 =

{0}.

The following three theorems describe classes of fusion frames for which the canonical duals are optimal

but not the unique ones or are not optimal.

Theorem 3.8. Let (W,w) be a fusion frame for H that is not a Riesz fusion basis. Let c, Λj and Hj,
j = 1, 2, as in Theorem 3.3. If {(Wi, wi)}i∈Λ1

is a Riesz fusion basis for H1, Λ2 6= ∅ and H1∩H2 = {0}, then
the canonical dual fusion frames (S−1

W,wW,v) with arbitrary vector of weights v are probability (1,∞)-loss

optimal component preserving dual fusion frames of (W,w) but not the unique ones.

Proof. Let A ∈ LT∗W,w
. Since AT ∗W,w = S−1

W,wTW,wT
∗
W,w = IH, TW,w(A − S−1

W,wTW,w)∗ = 0. By

hypothesis this implies that ((A− S−1
W,wTW,w)∗f)i = 0 for each i ∈ Λ1 and for each f ∈ H, or equivalently,

MΛ1
(A− S−1

W,wTW,w)∗ = 0, i.e.,

AMΛ1
= S−1

W,wTW,wMΛ1
. (3.9)

By (3.2), (3.9) and (3.3),

max
1≤i≤m

‖AM̂iT
∗
W,w‖ ≥ max

i∈Λ1

‖AM̂iT
∗
W,w‖ = max

i∈Λ1

qiwi‖AMi‖

= max
i∈Λ1

qiwi‖S−1
W,wTW,wMi‖ = max

1≤i≤m
qiwi‖S−1

W,wTW,wMi‖

= max
1≤i≤m

‖S−1
W,wTW,wM̂iT

∗
W,w‖.

Hence, S−1
W,wTW,w is an element of the set (3.4).

Since (W,w) is not a Riesz fusion basis, there exists A ∈ LT∗W,w
such that A 6= S−1

W,wTW,w. By (3.9),

AMΛ2 6= S−1
W,wTW,wMΛ2 .

For t ∈ R, t 6= 0, S−1
W,wTW,w + t(A− S−1

W,wTW,w) ∈ LT∗W,w
. By (3.2), (3.9) and (3.3),

max
i∈Λ1

‖[S−1
W,wTW,w + t(A− S−1

W,wTW,w)]M̂iT
∗
W,w‖ = c

, and if |t| > 0 is small enough, then

max
i∈Λ2

‖[S−1
W,wTW,w + t(A− S−1

W,wTW,w)]M̂iT
∗
W,w‖ < c.

Consequently, if |t| > 0 is small enough, S−1
W,wTW,w + t(A−S−1

W,wTW,w) is another element of the set (3.4).

Now the conclusion follows from Lemma 3.2.

Theorem 3.9. Let (W,w) be a fusion frame for H that is not a Riesz fusion basis. Let c, Λ1, Λ2 and

Hj, j = 1, 2 as in Theorem 3.3. If |Λ1| = 1 and {(Wi, wi)}i∈Λ2
is a Riesz fusion basis for H2, then none

of the canonical dual fusion frames (S−1
W,wW,v) with any vector of weights v is a probability (1,∞)-loss

optimal component preserving dual fusion frames of (W,w).

Proof. Without loss of generality suppose that Λ1 = {1} and Λ2 = {2, . . . ,m}. Let P :W → T ∗W,w(H)

be the orthogonal projection onto T ∗W,w(H).
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Let B ∈ L(W,H) such that B(gi)
m
i=1 = g1 if (gi)

m
i=1 ∈ (IW − P )M1W and B(gi)

m
i=1 = 0 if (gi)

m
i=1 ∈

((IW − P )M1W)⊥. Let R := B(IW − P ).

Suppose that (IW − P )M1W = {0}, i.e., M1W ⊆ T ∗W,w(H). Let (fi)
m
i=1 ∈ W such that TW,w(fi)

m
i=1 =

0. By the previous inclusion there exists f ∈ H such that M1(fi)
m
i=1 = T ∗W,wf . Consequently, 0 =

〈TW,w(fi)
m
i=1, f〉 = 〈(fi)mi=1, T

∗
W,wf〉 = 〈f1, f1〉. Then f1 = 0. Therefore, 0 = TW,w(fi)

m
i=1 =

∑m
i=2 wifi.

Since {(Wi, wi)}i∈Λ2
is a Riesz fusion basis for H2, this implies that fi = 0 for each i = 1, . . . ,m. Taking into

account the previous reasoning and that (W,w) is not a Riesz fusion basis for H, there exists (fi)
m
i=1 ∈ W

such that (IW − P )M1(fi)
m
i=1 6= 0, and hence, R 6= 0.

Since RT ∗W,w = 0, S−1
W,wTW,w + tR ∈ LT∗W,w

for each t ∈ R.

Let {ei,l}l∈Li
be an orthonormal basis for Wi, for each i = 1, . . . ,m. Then, {{(χj(i)ei,l)mi=1}l∈Lj

}mj=1 is

an orthonormal basis for W. Since

tr(T ∗W,wS
−1
W,wRM1) =

m∑
j=1

∑
lj∈Lj

〈T ∗W,wS
−1
W,wRM1(χj(i)ei,lj )mi=1, (χj(i)ei,lj )mi=1〉

=
∑
l∈L1

〈T ∗W,wS
−1
W,wRM1(χ1(i)ei,l)

m
i=1, (χ1(i)ei,l)

m
i=1〉

=
∑
l∈L1

〈T ∗W,wS
−1
W,we1,l, (χ1(i)ei,l)

m
i=1〉

=
∑
l∈L1

〈S−1
W,we1,l, w1e1,l〉 = w1

∑
l∈L1

||S−1/2
W,we1,l||2 > 0,

using (3.2) and (3.3), if t < 0 and |t| is small enough,

‖(S−1
W,wTW,w + tR)M̂1T

∗
W,w‖2 = w2

1q
2
1‖(S−1

W,wTW,w + tR)M1‖2

= w2
1q

2
1‖S−1

W,wTW,wM1‖2 + t2w2
1q

2
1‖RM1‖2 + 2w2

1q
2
1tRe(tr(T ∗W,wS

−1
W,wRM1)) < c2

and ‖(S−1
W,wTW,w + tR)M̂iT

∗
W,w‖ ≤ wiqi‖S

−1
W,wTW,wMi‖+ |t|||RM̂iT

∗
W,w‖ < c for each i ∈ Λ2.

This shows that S−1
W,wTW,w is not an element of the set (3.4). By Lemma 3.2, we conclude that none

of the canonical dual fusion frames (S−1
W,wW,v) with any vector of weights v is a probability (1,∞)-loss

optimal component preserving dual fusion frame of (W,w).

Theorem 3.10. Let (W,w) be a fusion frame for H that is not a Riesz fusion basis. Let c, Λj and Hj,
j = 1, 2, as in Theorem 3.3. If {(Wi, wi)}i∈Λ1

is a Riesz fusion basis for H1 and there exists (fj)
m
j=1 ∈ W

such that fj 6= 0 for each j ∈ Λ1 and TW,w(fj)
m
j=1 = 0, then none of the canonical dual fusion frames

(S−1
W,wW,v) with any vector of weights v is a probability (1,∞)-loss optimal component preserving dual

fusion frames of (W,w).

Proof. The proof is similar to that of Proposition 3.7, so we only sketch it. Let {ei,l}l∈Li
be an or-

thonormal basis for Wi for each i = 1, . . . ,m. Then there exists f ∈ H such that 〈f, S−1
W,wei,l〉 = −〈fi, ei,l〉

for each i ∈ Λ1 and l ∈ Li.

Let R ∈ L(W,H), given by R(gj)
m
j=1 = 〈(gj)mj=1, (fj)

m
j=1〉f for each (gj)

m
j=1 ∈ W. Since TW,wR

∗ = 0,

then S−1
W,wTW,w + tR ∈ LT∗W,w

for each t ∈ R.
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If k ∈ Λ1, tr(T ∗W,wS
−1
W,wRMk) = −wk||fk||2 < 0. Hence, if t > 0 is small enough, ‖(S−1

W,wTW,w +

tR)M̂k‖2 < c2 for each k ∈ Λ1 and ‖(S−1
W,wTW,w +tR)M̂k‖ < c for each k ∈ Λ2. This shows that S−1

W,wTW,w

is not an element of the set (3.4). By Lemma 3.2, this says that none of the canonical dual fusion frames

(S−1
W,wW,v) with any vector of weights v is a probability (1,∞)-loss optimal component preserving dual

fusion frames of (W,w).

4. Probability optimal duals in relation with general optimal duals. A greater probability pi,

and then a greater number qi, implies that the subspace Wi is more probable of being erased. In this section,

we analyze situations in which if the subspaces with greater probabilities are erased, then the actual error

for the probability optimal dual is less than or equal to the error for the general optimal dual. This shows

the convenience of using probability optimal dual fusion frames to obtain a better reconstruction in these

situations.

Proposition 4.1. Let ((V̂, v̂), Q̂) ∈ D̂(∞)
1 (W,w) and ((V,v), Q) ∈ D(∞)

1 (W,w). If qi ≤ q1 and

‖TV,vQMiT
∗
W,w‖ ≤ ‖TV,vQM1T

∗
W,w‖ for each i = 2, . . . ,m, then ‖TV̂,v̂Q̂M1T

∗
W,w‖ ≤ ‖TV,vQM1T

∗
W,w‖.

Proof. By the definitions of D(∞)
1 (W,w) and D̂(∞)

1 (W,w),

‖TV̂,v̂Q̂M1T
∗
W,w‖ ≤ max

1≤i≤m

qi
q1
‖TV̂,v̂Q̂MiT

∗
W,w‖ = min

B∈LT∗
W,w

max
1≤i≤m

qi
q1
‖BMiT

∗
W,w‖

≤ min
B∈LT∗

W,w

max
1≤i≤m

‖BMiT
∗
W,w‖ = max

1≤i≤m
‖TV,vQMiT

∗
W,w‖ = ‖TV,vQM1T

∗
W,w‖.

Proposition 4.2. Let ((V̂, v̂), Q̂) ∈ D̂(∞)
1 (W,w) and (V,v) be a Q-component preserving dual fusion

frame of (W,w) . If qi ≤ q1 and qi‖TV,vQMiT
∗
W,w‖ ≤ q1‖TV,vQM1T

∗
W,w‖ for each i = 2, . . . ,m, then

‖TV̂,v̂Q̂M1T
∗
W,w‖ ≤ ‖TV,vQM1T

∗
W,w‖. If we also have ((V,v), Q) /∈ D̂(∞)

1 (W,w), then ‖TV̂,v̂Q̂M1T
∗
W,w‖

< ‖TV,vQM1T
∗
W,w‖.

Proof. By the definition of D̂(∞)
1 (W,w),

q1‖TV̂,v̂Q̂M1T
∗
W,w‖ ≤ max

1≤i≤m
qi‖TV̂,v̂Q̂MiT

∗
W,w‖ = min

B∈LT∗
W,w

max
1≤i≤m

qi‖BMiT
∗
W,w‖

≤ max
1≤i≤m

qi‖TV,vQMiT
∗
W,w‖ = q1‖TV,vQM1T

∗
W,w‖,

and hence, ‖TV̂,v̂Q̂M1T
∗
W,w‖ ≤ ‖TV,vQM1T

∗
W,w‖. If ((V,v), Q) /∈ D̂(∞)

1 (W,w), the above second inequal-

ity is strict and then ‖TV̂,v̂Q̂M1T
∗
W,w‖ < ‖TV,vQM1T

∗
W,w‖.

The following corollary follows immediately from Proposition 4.2.

Corollary 4.3. Let ((V̂, v̂), Q̂) ∈ D̂(∞)
1 (W,w) and (V,v) be a Q-component preserving dual fusion

frame of (W,w). If qi ≤ q1 and ‖TV,vQM1T
∗
W,w‖ = · · · = ‖TV,vQMmT

∗
W,w‖, then

‖TV̂,v̂Q̂M1T
∗
W,w‖ ≤ ‖TV,vQM1T

∗
W,w‖.

Moreover, if we also have ((V,v), Q) /∈ D̂(∞)
1 (W,w), then

‖TV̂,v̂Q̂M1T
∗
W,w‖ < ‖TV,vQM1T

∗
W,w‖.
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Proposition 4.4. Let ((V̂, v̂), Q̂) ∈ D̂(∞)
1 (W,w) and ((V,v), Q) ∈ D(∞)

1 (W,w) \ D̂(∞)
1 (W,w). If

q1 > q2 = · · · = qm and ‖TV̂,v̂Q̂M̂1T
∗
W,w‖ = · · · = ‖TV̂,v̂Q̂M̂mT

∗
W,w‖, then

‖TV̂,v̂Q̂M1T
∗
W,w‖ < ‖TV,vQM1T

∗
W,w‖.

Proof. We have

‖TV̂,v̂Q̂M1T
∗
W,w‖ < ‖TV̂,v̂Q̂M2T

∗
W,w‖ = · · · = ‖TV̂,v̂Q̂MmT

∗
W,w‖, (4.10)

qj‖TV̂,v̂Q̂MjT
∗
W,w‖ < max

1≤i≤m
qi‖TV,vQMiT

∗
W,w‖, ∀j ∈ {1, . . . ,m}, (4.11)

and

‖TV,vQMjT
∗
W,w‖ ≤ max

1≤i≤m
‖TV̂,v̂Q̂MiT

∗
W,w‖, ∀j ∈ {1, . . . ,m}. (4.12)

By (4.10) and (4.12), qi‖TV,vQMiT
∗
W,w‖ ≤ qi‖TV̂,v̂Q̂MiT

∗
W,w‖ for each i = 2, . . . ,m. Therefore, by (4.11),

max1≤i≤m qi‖TV,vQMiT
∗
W,w‖ = q1‖TV,vQM1T

∗
W,w‖ and hence, ‖TV̂,v̂Q̂M1T

∗
W,w‖ < ‖TV,vQM1T

∗
W,w‖.

Now we present two illustrative examples.

Example 4.5. Consider the subspaces of R3, W1 = {(1, 0, 0)}⊥ and W2 = {(0, 1, 0)}⊥ and arbitrary

weigths w1 > 0 and w2 > 0. Then (W,w) is a fusion frame for R3 with S−1
W,wW = W. This fusion frame

was considered in [8, Example 6.3]. It is easy to see that ‖S−1
W,wπWi‖2 = 1

w4
i

+ 1
(w2

1+w2
2)2

for i = 1, 2.

Suppose that 0 < p2 < p1 < 1 and β := p2
p1
≥
√

2
2 . This implies that 1

2 < p1 < 2−
√

2 and
√

2−1 < p2 <
1
2 .

Let q1 = αp1, q2 = αp2 for certain α > 0.

We have, q1w
2
1‖S−1

W,wπW1‖ = q2w
2
2‖S−1

W,wπW2‖ if and only if β =
√

w4
1+(w2

1+w2
2)2

w4
2+(w2

1+w2
2)2

. Consequently,

w2
1 = w2

2
(β2−1)+

√
(1−β2)2−(2−β2)(1−2β2)

2−β2 . By [8, Example 6.3], (W,v) is a general (1,∞)-loss optimal

Q-component preserving dual fusion frame of (W,w), where Q : W → V, Q((0, x2, x3), (y1, 0, y3)) =(
1
v1

(
0, x2

w1
, x3

2w1

)
, 1
v2

(
y1
w2
, 0, y3

2w2

))
. Since w1 6= w2, then Q 6= QS−1

W,wTW,w,v
and TW,vQ 6= TW,vQS−1

W,wTW,w,v
.

So, by Proposition 4.4,

‖TW,vQS−1
W,wTW,w,v

M1T
∗
W,w‖ < ‖TW,vQM1T

∗
W,w‖.

Indeed, ‖TW,vQS−1
W,wTW,w,v

M1T
∗
W,w‖2 = 1 +

(
w2

1

w2
1+w2

)2

and ‖TW,vQM1T
∗
W,w‖2 = 5

4 .

Example 4.6. Let H = R3, W1 = {(1, 0, 0)}⊥, W2 = {(0, 1, 0)}⊥, W3 = {(0, 0, 1)}⊥, w1 > 0, w2 > 0

and w3 > 0. Then (W,w) is a fusion frame for R3, S−1
W,w(x1, x2, x3) =

(
x1

w2
2+w2

3
, x2

w2
1+w2

3
, x3

w2
1+w2

2

)
and

S−1
W,wW = W.

Set w1 = w2 = w3 = w. By Corollary 3.4 (with q1 = q2 = q2 = 1), since w2‖S−1
W,wπW1‖ =

w2‖S−1
W,wπW2‖ = w2‖S−1

W,wπW3‖, the only general (r,∞)-loss optimal component preserving dual fusion

frames of (W, w) are the canonical ones (W,v) with arbitrary vector of weights v.

By Theorem 3.10, if q1 > q2 and q1 > q3, then none of the canonical dual fusion frames (W,v) with any

vector of weights v is a probability (1,∞)-loss optimal component preserving dual fusion frames of (W, w).

By Corollary 4.3, if ((V̂, v̂), Q̂) ∈ D̂(∞)
1 (W, w) then ‖TV̂,v̂Q̂M1T

∗
W,w‖ < ‖TW,vQS−1

W,wTW,w,v
M1T

∗
W,w‖. We

can see this explicitly as follows.
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For q1 > 0, q2 > 0 and q3 > 0, the unique element in the set (3.4) is given by

A((0, x2, x3), (y1, 0, y3), (z1, z2, 0)) =
1

w

(√
q3y1 +

√
q2z1√

q2 +
√
q3

,

√
q3x2 +

√
q1z2√

q1 +
√
q3

,

√
q2x3 +

√
q1y3√

q1 +
√
q2

)
.

We have AMiW = Wi for each i = 1, 2, 3 and

QA,v((0, x2, x3), (y1, 0, y3), (z1, z2, 0))

=
1

w

(
1

v1

(
0,

√
q3x2√

q1 +
√
q3
,

√
q2x3√

q1 +
√
q2

),
1

v2
(

√
q3y1√

q2 +
√
q3
, 0,

√
q1y3√

q1 +
√
q2

),
1

v3
(

√
q2z1√

q2 +
√
q3
,

√
q1z2√

q1 +
√
q3
, 0

))
.

With this A we obtain that (W,v) is the unique (up to weights) probability (r,∞)-loss optimal QA,v-

component preserving dual fusion frame of (W, w). It is easy to see that ‖TW,vQS−1
W,wTW,w,v

M1T
∗
W,w‖2 = 1

2

and ‖TW,vQA,vM1T
∗
W,w‖2 = q3

(
√
q1+
√
q3)2 + q2

(
√
q1+
√
q2)2 .

If the numbers qi for i = 1, 2, 3, are not all equal, A 6= S−1
W,wTW,w. If q1 > q2 and q1 > q3,

then ‖TW,vQA,vM1T
∗
W,w‖2 < ‖TW,vQS−1

W,wTW,w,v
M1T

∗
W,w‖2. Moreover, if q1 > q2 > q3, then W1 and

W2 are more probable of being erased than W3, and since ‖TW,vQS−1
W,wTW,w,v

M{1,2}T
∗
W,w‖2 = 3

2 and

‖TW,vQA,vM{1,2}T
∗
W,w‖2 = q3

(
√
q2+
√
q3)2 + q1+q2

(
√
q1+
√
q2)2 + q3

(
√
q1+
√
q3)2 , it follows

‖TW,vQA,vM{1,2}T
∗
W,w‖2 < ‖TW,vQS−1

W,wTW,w,v
M{1,2}T

∗
W,w‖2.
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[13] J. Kovačević and A. Chebira. An introduction to frames. Found. Trends Signal Process., 2:1–94, 2008.

[14] G. Kutyniok, A. Pezeshki, A.R. Calderbank, and T. Liu. Robust dimension reduction, fusion frames, and Grassmannian

packings. Appl. Comput. Harmon. Anal., 26:64–76, 2009.

[15] P.G. Massey, M.A. Ruiz, and D. Stojanoff. Robust dual reconstruction systems and fusion frames. Acta Appl. Math.,

119:167–183, 2012.

[16] P.M. Morillas. Group reconstruction systems. Electron. J. Linear Algebra, 22:875–911, 2011.

[17] P.M. Morillas. Harmonic reconstruction systems. Electron. J. Linear Algebra, 26:692–705, 2013.


