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THE ALGEBRAIC CONNECTIVITY OF GRAPHS

WITH GIVEN STABILITY NUMBER∗

SHUNZHE ZHANG† , QIN ZHAO‡ , AND HUIQING LIU§

Abstract. In this paper, the authors investigate the algebraic connectivity of connected graphs, and determine the graph

which has the minimum algebraic connectivity among all connected graphs of order n with given stability number α ≥ dn
2
e, or

covering number, respectively.
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1. Introduction. Let G = (V (G), E(G)) be a simple undirected graph with n vertices. Two distinct

adjacent vertices are neighbors, the set of neighbors of a vertex v in G is denoted by NG(v). The degree of a

vertex v ∈ V (G), denoted by dG(v) or simply d(v), is the number of edges of G incident with v. A pendant

vertex is a vertex of degree 1. A pendant neighbor is the vertex adjacent to a pendant vertex, let PV (G) and

PN(G) be the vertex set of all pendant vertices and all pendant neighbors of G, respectively. A pendant

star of a tree T is a maximal subtree of T induced on pendant vertices together with the pendant neighbor

to which they are attached. The distance between any two vertices is the number of edges in a shortest path

joining them, the diameter of a graph G is the greatest distance between any two vertices of G. Let Pn and

K1,n−1 denote the path and the star of order n, respectively.

A stable set of a graph G is a set of vertices no two of which are adjacent. A stable set is maximum if

the graph contains no larger stable set, the cardinality of a maximum stable set in a graph G is called the

stability number of G and is denoted by α(G). A covering of a graph is a set of vertices which meet all edges

of the graph, the minimum cardinality of a graph G is called the covering number of G, denoted by β(G).

For a graph G of order n, α(G) + β(G) = n.

Let G and H be two disjoint graphs. The disjoint union of G and H, denoted by G∪H, is the graph with

vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The coalescence of G and H, denoted by G(u) �H(v)

or G(w) �H(w), is obtained from G and H by identifying one vertex u ∈ V (G) with one vertex v ∈ V (H)

and forming a new vertex w.

For a graph G with vertex set V (G) = {v1, v2, . . . , vn}, let A(G) = (aij) be the adjacency matrix of G,

where aij = 1 if vi is adjacent to vj , and aij = 0, otherwise. And D(G) = diag(d(v1), d(v2), . . . , d(vn)) be

the diagonal matrix of vertex degrees. The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of
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G. It is known that L(G) is real and positive semidefinite and its eigenvalues can be arranged as:

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) = 0.

The smallest eigenvalue of L(G) is zero with the vector of all ones as its eigenvector, it has multiplicity one if

and only if G is connected. The second smallest eigenvalue of L(G) is positive if and only if G is connected,

it is also denoted by µ(G), and is called the algebraic connectivity of G. The eigenvectors corresponding to

µ(G) are usually called the Fiedler vectors of G (see [4]). A graph is called the minimizing graph in a class

of graphs if its algebraic connectivity attains the minimum among all graphs in the class.

For a graph G, let x = (x1, x2, . . . , xn)T ∈ Rn, and V (G) = (v1, v2, . . . , vn). Then x can be considered

as a function defined on G, each vertex vi mapped to xi = x(vi). If x is an eigenvector of L(G), then x(v)

is the entry of x corresponding to v, v ∈ V (G). Then

xTL(G)x =
∑

uv∈E(G)

[x(u)− x(v)]2. (1.1)

In addition, for an arbitrary unit vector x ∈ Rn orthogonal to 1, µ(G) ≤ xTL(G)x with equality if and only

if x is a Fiedler vector of G.

There are many results on the algebraic connectivity, see [1]–[6], [9], [10], [12] and [13]. Fallat and

Kirkland [6] have determined the unique (up to isomorphism) trees that maximize and minimize the algebraic

connectivity over all trees of order n with specified diameter. Fallat, Kirkland and Pati [7] discussed the

graph that minimizes the algebraic connectivity over all connected graphs of order n with fixed girth. In [10],

Kirkland presented a bound on the algebraic connectivity of a graph in terms of the number of cut points.

In [11], Lal, Patra and Sahoo have given some results about the algebraic connectivity with fixed number

of pendant vertices. Fan and Tan [8] obtained some lower bounds for the algebraic connectivity with given

domination number. Xu, Fan and Tan [15] determined the lower bounds for the algebraic connectivity in

terms of matching number or edge covering number. In this paper, we characterize the unique graph whose

algebraic connectivity is minimum among all connected graphs of order n with given stability number or

covering number, respectively.

2. Lemmas. In this section, we give some lemmas used in the proof of our results.

Lemma 2.1. [5] Let T be a tree with a Fiedler vector x. Then exactly one of the two cases occurs:

Case A. All values of x are nonzero. Then T contains exactly one edge pq such that x(p) > 0 and

x(q) < 0. The values in vertices along any path in T which starts in p and does not contain q strictly

increase, the values in vertices along any path starting in q and not containing p strictly decrease.

Case B. The set N0 = {v : x(v) = 0} is non-empty. Then the graph induced by N0 is connected and

there is exactly one vertex z ∈ N0 having at least one neighbor not belonging to N0. The values along any

path in T starting in z are strictly increasing, or strictly decreasing, or zero.

If Case B in Lemma 2.1 occurs, then the vertex z is called the characteristic vertex, and T is called a

Type I tree; otherwise, T is called a Type II tree in which case the edge pq is called the characteristic edge.

The characteristic vertex or characteristic edge of a tree is independent of the choice of Fiedler vectors; see

[12].

Lemma 2.2. [8] Let G1 be a connected graph containing at least two vertices v1, v2, and let G2 be a

nontrivial connected graph containing a vertex u. Let G = G1(v2) �G2(u) and G∗ = G1(v1) �G2(u). If there
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exists a Fiedler vector x of G such that x(v1) ≥ x(v2) ≥ 0 and all vertices in G2 are nonnegatively valuated

by x, then µ(G∗) ≤ µ(G), with equality if and only if x(v1) = x(v2) = 0,
∑
w∈NG2

(u) x(w) = 0, and x is also

a Fiedler vector of G∗.

Denote by T (k, l, d) (see Fig. 1) a tree of order n obtained from a path Pd by attaching two stars K1,k

and K1,l at its two end vertices of Pd, respectively, where k + l + d = n. In particular, if d = 1, then

T (k, l, d) ∼= K1,k+l; if k = 1 and l = 1, then T (k, l, d) ∼= Pn. Denote Td := T (dn−d2 e, b
n−d
2 c, d).

{ }
k l︸︷︷︸

Pd

Fig. 1: T (k, l, d).

Lemma 2.3. [6] Among all trees of order n and diameter d + 1, the tree Td is the unique graph with

minimum algebraic connectivity.

Lemma 2.4. If k, l ≥ 2, then

(1) 0 ≤ α(T (k, l, d))− α(T (k − 1, l, d+ 1)) ≤ 1;

(2) µ(T (k, l, d)) > µ(T (k − 1, l, d+ 1)) (see [8]).

Proof. Note that α(T (k, l, d)) = k + l + bd−12 c = n − dd+1
2 e, α(T (k − 1, l, d + 1)) = n − dd+2

2 e, then

α(T (k, l, d)) = α(T (k − 1, l, d + 1)) when d is even; α(T (k, l, d)) = α(T (k − 1, l, d + 1)) + 1 when d is odd.

So, we have

0 ≤ α(T (k, l, d))− α(T (k − 1, l, d+ 1)) ≤ 1.

Lemma 2.5. If d1 > d2 ≥ 2, then

α(Td1) ≤ α(Td2) and µ(Td1) < µ(Td2).

Proof. Since α(Td1) = n− dd1+1
2 e, α(Td2) = n− dd2+1

2 e, we have α(Td1) = α(Td2) if d1 = d2 + 1 and d2
is even; α(Td1) < α(Td2) otherwise.

Assume d1 = d2 + k (k ≥ 1). In the following, we will show that µ(Td1) < µ(Td2) by induction on k. If

k = 1, then by Lemmas 2.3 and 2.4, we have

µ(Td2) > µ

(
T

(⌈
n− d2

2

⌉
− 1,

⌊
n− d2

2

⌋
, d2 + 1

))
≥ µ(Td2+1)) = µ(Td1).

So, we suppose that k ≥ 2 and µ(Td2+k−1) < µ(Td2). Then, by Lemmas 2.3 and 2.4, we have

µ(Td1) = µ(Td2+k)

≤ µ
(
T

(⌈
n− d2 − k + 1

2

⌉
− 1,

⌊
n− d2 − k + 1

2

⌋
, d2 + k

))
< µ(Td2+k−1)

< µ(Td2).

Therefore, the proof of the lemma is complete.
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Lemma 2.6. If α(Td) = α ≥ 2, then 2n−2α−2 ≤ d ≤ 2n−2α−1 and, furthermore, µ(Td) ≥ µ(T2n−2α−1)

with equality if and only if d = 2n− 2α− 1.

Proof. First we note that α(Td) = n − dd+1
2 e = α ≥ 2. Then we have α ≤ n − d+1

2 ≤ α + 1
2 , that is,

2n− 2α− 2 ≤ d ≤ 2n− 2α− 1.

If d = 2n− 2α− 2, then by Lemmas 2.3 and 2.4,

µ(Td) > µ(T (dn− d
2
e − 1, bn− d

2
c, d+ 1)) ≥ µ(Td+1) = µ(T2n−2α−1),

and thus, µ(Td) ≥ µ(T2n−2α−1) with equality if and only if d = 2n− 2α− 1.

Lemma 2.7. Let G be a connected graph of order n with given stability number α ≥ dn2 e. Then G

contains a spanning tree with stability number α.

Proof. If n ≤ 3, then the result holds clearly. So we suppose n ≥ 4 and α ≥ 2. Let S = {v1, v2, . . . , vα}
be a maximum stable set of G with |S| = α, and let U = V (G)\S.

Let H be the bipartite spanning subgraph of G with the bipartition {S,U}. Then α(H) = α as α ≥ dn2 e.

If H is connected, we can get a spanning tree T by the following algorithm:

1: set T := H, i = 1

2: while |NT (vi+1) ∩ (∪ik=1NT (vk))| ≥ 2 do, let u ∈ NT (vi+1) ∩ (∪ik=1NT (vk))

3: delete the edges between vi+1 and (NT (vi+1) ∩ (∪ik=1NT (vk)))\{u}

4: replace T by T − Ei, i by i+ 1 (Ei denote the set of edges deleted)

5: end while

6: return T .

Then T is a spanning tree of G with stability number α(T ) = α(G).

If H is not connected, let H1, H2, . . . ,Hk (k ≥ 2) be the components of H with bipartitions (S1, U1),

(S2, U2), . . . , (Sk, Uk). Similar to the above discussion, each Hi contains a spanning tree Ti such that α(Ti) =

α(Hi) for i = 1, 2, . . . , k. Since G is connected, there exists a spanning tree T of G obtained from T1 ∪ T2 ∪
· · · ∪ Tk by adding k − 1 edges between Ui and Uj (i, j = 1, 2, . . . , k and i 6= j), and α(T ) = α.

Lemma 2.8. [14] Let G be a graph with PV (G) 6= ∅. Then there must exists a maximum stable set S

of G such that PV (T ) ⊆ S and PN(G) ∩ S = ∅.

3. Main results. In this section, we will characterize the graphs which have the minimum algebraic

connectivity among all connected graphs with given stability number or covering number, respectively. Let

Tn,α be the set of trees of order n with given stability number α, and let

T ∗n,α = {T : T is a tree of order n with α(T ) ≥ α}.

Theorem 3.1. For a tree T ∈ T ∗n,α, where α ≥ dn2 e, we have

µ(T ) ≥ µ(Td∗)

with equality if and only if T ∼= Td∗ , where d
∗ = 2n− 2α− 1.
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Proof. Choose T ∈ T ∗n,α such that µ(T ) is as small as possible, where α ≥ dn2 e. First we note that if

α(T ) = n− 1, then T ∼= K1,n−1; and if α(T ) = dn2 e, then T ∼= Pn. Thus, in either case, the result holds. So,

in the following, we assume T 6∼= K1,n−1 and T 6∼= Pn. Let S be a maximum stable set of T with PV (T ) ⊆ S,

then by Lemma 2.8, PN(T ) ∩ S = ∅. We will show the following two claims.

Claim 1. T has exactly two pendant stars.

Proof of Claim 1. Suppose that T has more than two pendant stars. Let S1, S2 be two pendant stars of

T attached at u1, u2, respectively. Denote Ti = T −N(ui) ∩ PV (T ), i = 1, 2. Then T = Ti(ui) � Si(ui). Let

x be a Fiedler vector of T . We consider two cases.

Case 1. T is of Type I.

In this case, N0 = {v ∈ V (T ) : x(v) = 0} 6= ∅. By Lemma 2.1, Case B, we can let v0 be the characteristic

vertex, and then the values of other vertices along any path in T starting in v0 are strictly increasing or

strictly decreasing or zero.

If |N0| = 1, then x(ui) 6= 0, i = 1, 2. Without loss of generality, we assume that |x(u1)| ≥ |x(u2)| > 0.

If x(u1) ≥ x(u2) > 0, then we set

T ′ = T2(u1) � S2(u2).

By Lemma 2.2, we have µ(T ′) < µ(T ). Note that S is also a stable set of T ′ as u1 6∈ S, then α(T ′) ≥ α(T ) ≥ α,

and thus, T ′ ∈ T ∗n,α, which is a contradiction with the choice of T . If x(u1) ≤ x(u2) < 0, let y be a vector

defined as

y(v0) = x(v0) = 0 and y(v) = −x(v) for v ∈ V (T )\{v0}.

It is easy to check that y is also a Fiedler vector of T with y(u1) ≥ y(u2) > 0. By an argument similar to

the above, we can derive a contradiction.

If |N0| ≥ 2, then by Lemma 2.1, v0 has at least one neighbor not belong to N0, say v1 ∈ N(v0) \ N0.

Then we can choose S1 such that v1 belongs to the unique (v0, u1)-path in T . By Lemma 2.1, x(u1) 6= 0.

If x(u2) 6= 0, then by an argument similar to the above, we have a contradiction. If x(u2) = 0, then

|x(u1)| > x(u2), and then we can have a contradiction similarly.

Case 2. T is of Type II.

In this case, by Lemma 2.1, Case A, there exists uv ∈ E(T ) such that x(u) > 0 and x(v) < 0, the values

of vertices along any path in T which starts in u (or resp., v) and does not contain v (or resp., u) strictly

increasing (or resp. decreasing).

Choose S1 (or resp., S2) such that u1 (or resp., u2) belongs to some path in T starting in u (or resp., v)

and not containing v (or resp., u). Then

x(u1) > 0 > x(u2).

Similar to the proof of Case 1, we can get a contradiction.

By Claim 1, we have T ∼= T (k, l, d) for some k, l, d. Without loss of generality, we assume that k ≥ l.

Recall that T 6∼= Pn. Thus, k ≥ 2.

Claim 2. α(T ) = α.
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Proof of Claim 2. Suppose that α(T ) > α. Then by Lemma 2.4, we have α(T (k − 1, l, d + 1)) ≥
α(T ) − 1 ≥ α and µ(T ) > µ(T (k − 1, l, d + 1)). Note that T (k − 1, l, d + 1) ∈ T ∗n,α, and hence which is a

contradiction with the choice of T .

By Claims 1 and 2, we get T ∼= Td and α(Td) = α(T ) = α. By Lemma 2.6, the result holds immediately.

Corollary 3.2. Among all trees of order n with stability number α ≥ dn2 e, Td∗ is the unique graph with

minimum algebraic connectivity, where d∗ = 2n− 2α− 1.

Proof. Note that α(Td∗) = α and Tn,α ⊆ T ∗n,α. By Theorem 3.1, we get the result immediately.

Theorem 3.3. Among all connected graphs of order n with stability number α ≥ dn2 e, T2n−2α−1 is the

unique minimizing graph.

Proof. If α = n− 1, then the result holds as T1 ∼= K1,n−1 and K1,n−1 is the unique graph with stability

number n− 1. So we suppose dn2 e ≤ α < n− 1. Let G be a minimizing graph. By Lemma 2.7, G contains a

spanning tree T with stability number at least α. By Theorem 3.1, µ(G) ≥ µ(T ) ≥ µ(T2n−2α−1). Since G is

minimizing, we have µ(G) = µ(T ) = µ(T2n−2α−1). Furthermore, T ∼= T2n−2α−1 by Theorem 3.1. Note that

α(T2n−2α−1) = α = α(G).

In the following, we will show that E(G)\E(T2n−2α−1) = ∅, i.e., G ∼= T2n−2α−1. Suppose E(G)\
E(T2n−2α−1) 6= ∅. Let x be a unit Fiedler vector of G, then

µ(G) = xTL(G)x =
∑

uv∈E(G)

[x(u)− x(v)]2

=
∑

uv∈E(G)\E(T2n−2α−1)

[x(u)− x(v)]2 +
∑

uv∈E(T2n−2α−1)

[x(u)− x(v)]2

≥
∑

uv∈E(T2n−2α−1)

[x(u)− x(v)]2 ≥ µ(T2n−2α−1).

Note that µ(G) = µ(T2n−2α−1), and hence, x is also a Fiedler vector of T2n−2α−1 and x(u) = x(v) for each

uv ∈ E(G)\E(T2n−2α−1). By Lemma 2.1, E(G)\E(T2n−2α−1) consists of edges joining the pendant vertices

of the same pendant star, and thus, α(T2n−2α−1 + uv) < α(T2n−2α−1) for each uv ∈ E(G)\E(T2n−2α−1).

Hence, α(G) < α(T2n−2α−1), a contradiction. Therefore, we have E(G)\E(T2n−2α−1) = ∅, G ∼= T2n−2α−1.

Theorem 3.4. Among all connected graphs of order n with covering number 2 ≤ β ≤ bn2 c, T2β−1 is the

unique minimizing graph.

Proof. By Theorem 3.2, the result holds from the fact that for any graph G, α(G) + β(G) = n.
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