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SOLUTIONS OF THE SYSTEM OF OPERATOR

EQUATIONS BXA = B = AXB VIA ∗-ORDER∗

MEHDI VOSOUGH† AND MOHAMMAD SAL MOSLEHIAN‡

Abstract. In this paper, some necessary and sufficient conditions are established for the existence of solutions to the

system of operator equations BXA = B = AXB in the setting of bounded linear operators on a Hilbert space, where the

unknown operator X is called the inverse of A along B. After that, under some mild conditions, it is proved that an operator

X is a solution of BXA = B = AXB if and only if B
∗
≤ AXA, where the ∗-order C

∗
≤ D means CC∗ = DC∗, C∗C = C∗D.

Moreover, the general solution of the equation above is obtained. Finally, some characterizations of C
∗
≤ D via other operator

equations, are presented.
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1. Introduction and preliminaries. Throughout the paper, H and K are complex Hilbert spaces.

We denote the space of all bounded linear operators from H into K by B(H ,K ), and write B(H ) when

H = K . Recall that an operator A ∈ B(H ) is positive if 〈Ax, x〉 ≥ 0 for all x ∈ H and then we write

A ≥ 0. We shall write A > 0 if A is positive and invertible. An operator A ∈ B(H ) is a generalized

projection if A2 = A∗. Let S (H ),Q(H ),OP(H ),G P(H ) be the set of all self-adjoint operators on H ,

the set of all idempotents, the set of orthogonal projections and the set of all generalized projections on H ,

respectively.

For A ∈ B(H ,K ), let R(A) and N (A) be the range and the null space of A, respectively. The

projection corresponding to a closed subspace M of H is denoted by PM . The symbol A− stands for an

arbitrary generalized inner inverse of A, that is, an operator A− satisfying AA−A = A. The Moore–Penrose

inverse of a closed range operator A is the unique operator A† ∈ B(H ) satisfying the following equations:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

Then, A∗AA† = A∗ = A†AA∗, and we have the following properties:

R(A†) = R(A∗) = R(A†A) = R(A∗A), N (A†) = N (A∗) = N (AA†),

R(A) = R(AA†) = R(AA∗), PR(A) = AA† and PR(A∗) = A†A. (1.1)

For A,B ∈ S (H ), A ≤ B means B − A ≥ 0. The order ≤ is said to be the Löwner order on S (H ).

If there exists C ∈ S (H ) such that AC = 0 and A+ C = B, then we write A � B. The order � is said to

be the logic order on S (H ).
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For A,B ∈ B(H ), let A
∗
≤ B mean

AA∗ = BA∗, A∗A = A∗B. (1.2)

It is known that, for A,B ∈ S (H ), A � B if and only if A
∗
≤ B; see [6]. We denote by A

∗
∧ B the infimum

(or the greatest lower bound) of A and B over the ∗-order and A
∗
∨ B the supremum (or the least upper

bound) of A and B over the ∗-order, if they exist; cf. [12].

It is known that if A ∈ B(H ,K ) has closed range, then by considering

H = R(A∗)⊕N (A) and K = R(A)⊕N (A∗),

we can write

A =

[
A1 0

0 0

]
:

[
R(A∗)

N (A)

]
→
[

R(A)

N (A∗)

]
, (1.3)

where A1 : R(A∗) → R(A) is invertible; see [7, Lemma 2.1]. Therefore, the Moore–Penrose generalized

inverse of A can be represented as

A† =

[
A−11 0

0 0

]
:

[
R(A)

N (A∗)

]
→
[

R(A∗)

N (A)

]
. (1.4)

Many results have been obtained on the solvability of equations for matrices and operators on Hilbert

spaces and Hilbert C∗− modules. In 1976, Mitra [11] considered the matrix equations AX = B,AXB = C

and the system of linear equations AX = C,XB = D. He got the necessary and sufficient conditions

for existence and expressions of general Hermitian solutions. In 1966, the celebrated Douglas Lemma was

established in [8]. It gives some conditions for the existence of a solution to the equation AX = B for

operators on a Hilbert space. Using the generalized inverses of operators, in 2007, Dajić and Koliha [4]

got the existence of the common Hermitian and positive solutions to the system AX = C,XB = D for

operators acting on a Hilbert space. In 2008, Xu [17] extended these results to the adjointable operators.

Several general operator equations and systems in some general settings such as Hilbert C∗-modules have

been studied by some mathematicians; see, e.g., [9, 10, 13, 16].

The matrix equation AXB = C is consistent if and only if AA−CB−B = C for some A−, B−, and

the general solution is X = A−CB− + Y − A−AY BB−, where Y is an arbitrary matrix; see [11]. In

2010, Gonzalez [1] got some necessary and sufficient conditions for existence of a solution to the equation

AXB = C for operators on a Hilbert space.

Let A,B or C have closed range. Then, the operator equation AXB = C is solvable if and only if

R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗); see [1, Theorem 3.1]. Therefore, if A or C has closed range, then

the equation AXC = C is solvable if and only if R(C) ⊆ R(A), and CXA = C is solvable if and only

if R(C∗) ⊆ R(A∗). Deng [5] investigated the equation CAX = C = XAC, which is essentially different

from ours. In this paper, we first characterize the existence of solutions of the system of operator equations

BXA = B = AXB by means of ∗− order. After that, we generalize the solutions to the system of operator

equations BXA = B = AXB in a new fashion.
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2. The existence of solutions of the system BXA = B = AXB. We start our work with the

celebrated Douglas lemma.

Lemma 2.1 (Douglas Lemma, [8]). Let A,C ∈ B(H ). Then, the following statements are equivalent:

(a) R(C) ⊆ R(A).

(b) There exists X ∈ B(H ) such that AX = C.

(c) There exists a positive number λ such that CC∗ ≤ λ2AA∗.

If one of these conditions holds, then there exists a unique solution X̃ ∈ B(H ) of the equation AX = C such

that R(X̃) ⊆ R(A∗) and N (X̃) = N (C).

Lemma 2.2. Let A,B ∈ B(H ). If R(B) ⊆ R(A) and R(B∗) ⊆ R(A∗), then B = B1

⊕
0, where

B1 ∈ B(R(A∗),R(A)).

Proof. Let A,B be operators from the decomposition H = R(A∗)
⊕

N (A) into the decomposition

H = R(A)
⊕

N (A∗). If R(B) ⊆ R(A), then, by Lemma 2.1, there exists C ∈ B(H ) such that B = AC

and N (C) = N (B). Since R(B∗) ⊆ R(A∗), so R(C∗) ⊆ R(C∗) = R(B∗) ⊆ R(A∗) = N (PN (A)). Hence,

PN (A)C
∗ = 0 and so CPN (A) = 0. It follows from N (C) = N (B) that BPN (A) = 0.

If R(B∗) ⊆ R(A∗), then a similar reasoning shows that PN (A∗)B = 0. Therefore, PR(A)
BPN (A) =

PN (A∗)BPR(A∗)
= PN (A∗)BPN (A) = 0. Hence, B = B1

⊕
0, where B1 = PR(A)

BPR(A∗)
.

Theorem 2.3. Let A ∈ B(H ) and B ∈ S (H ). If A has closed range, then the following statements

are equivalent:

(1) The system of operator equations BXA = B = AXB is solvable.

(2) AA†BA†A = B.

(3) R(B) ⊆ R(A) and R(B) ⊆ R(A∗).

Proof. ((1) =⇒ (2)) : Using (1.1) and B = BXA, we get that R(B) ⊆ R(A∗) = R(A†A). Hence,

by Lemma 2.1, there exists C∗ ∈ B(H ) such that B = A†AC∗. Hence, B = CA†A. Applying (1.1) and

AXB = B, we derive that R(B) ⊆ R(A) = R(AA†). Thus, by Lemma 2.1, there exists C̃ ∈ B(H ) such

that B = AA†C̃. It follows that

AA†BA†A = AA†(AA†C̃)A†A = AA†C̃A†A = BA†A = (CA†A)A†A = CA†A = B.

((2) =⇒ (3)) : Let AA†BA†A = B. Then, R(B) ⊆ R(A). It follows from B = B∗ = (AA†BA†A)∗ =

A†ABAA† and (1.1) that R(B) ⊆ R(A†) = R(A∗).

((3) =⇒ (1)) : Let R(B) ⊆ R(A) and R(B) ⊆ R(A∗). Upon applying Lemma 2.2, B = B1

⊕
0, where

B1 = PR(A)
BPR(A∗)

. Since A has closed rang, so by using (1.3) and (1.4) we have

A =

[
A1 0

0 0

]
and A† =

[
A−11 0

0 0

]
.

Hence, AA†B = B and BA†A = B. Thus X = A† is a solution of the system BXA = B = AXB.

Proposition 2.4. Let A,B,X ∈ B(H ). Then,

R(A) ⊆ R(B), N (B) ⊆ N (A) and BXA = B = AXB

if and only if

N (B) = N (A), R(B) = R(A) and AXA = A.
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Proof. (=⇒) : Suppose that R(A) ⊆ R(B),N (B) ⊆ N (A) and BXA = B = AXB. It follows

from BXA = B and N (B) ⊆ N (A) that N (A) ⊆ N (B) ⊆ N (A). Hence, N (A) = N (B). It follows

from AXB = B and R(A) ⊆ R(B) that R(A) ⊆ R(B) ⊆ R(A). Therefore, R(A) = R(B). Moreover,

(I −AX)B = 0 and R(A) ⊆ R(B). Hence, we derive that (I −AX)A = 0. So, AXA = A.

(⇐=) : Suppose that N (B) = N (A),R(B) = R(A) and AXA = A. Hence,

(I −AX)A = 0 =⇒ R(A) ⊆ N (I −AX) =⇒ R(B) ⊆ N (I −AX) =⇒ B = AXB,

A(I −XA) = 0 =⇒ R(I −XA) ⊆ N (A) =⇒ R(I −XA) ⊆ N (B) =⇒ B = BXA.

3. System of operator equations BXA = B = AXB via ∗-order. We know that (B(H ),
∗
≤) is a

partially ordered set; see [2]. Let G1, G2 ∈ B(H ) be invertible and G1

∗
≤ A,G2

∗
≤ A. Then, G1G

∗
1 = AG∗1

and G2G
∗
2 = AG∗2. Hence, we obtain G1 = G2 = A. This fact leads us to consider the characterizations of

A
∗
≤ B. Now we state the necessary and sufficient conditions in which the common ∗− lower or ∗− upper

bounds of A and B exist.

We need the following essential lemma.

Lemma 3.1. [18, Lemma 2.1]. Let A,B ∈ B(H ) and M denote the closure of a space M . Then,

(a) AA∗ = BA∗ ⇐⇒ A = BPR(A∗)
⇐⇒ A = BQ for some Q ∈ OP(H );

(b) A∗A = A∗B ⇐⇒ A = PR(A)
B ⇐⇒ A = PB for some P ∈ OP(H );

(c) A
∗
≤ B ⇐⇒ B = A+ PN (A∗)BPN (A);

(d) A
∗
≤ B ⇐⇒ A = PR(A)

B = BPR(A∗)
= PR(A)

BPR(A∗)
;

(e) A
∗
≤ B ⇐⇒ A = A1

⊕
0, B = A1

⊕
B1;

where A1 ∈ B(R(A∗),R(A)), B1 ∈ B(N (A),N (A∗)) and A
⊕
B means the block matrix

[
A 0

0 B

]
.

The following Lemma is a version of Lemma 2.1 when the operator A has closed range.

Lemma 3.2. [4, Theorem 3.1]. Let A ∈ B(H ) have closed range. Then, the equation AX = C has a

solution X ∈ B(H ) if and only if AA†C = C, and this if and only if R(C) ⊆ R(A). In this case, the general

solution is X = A†C + (I −A†A)T, where T ∈ B(H ) is arbitrary.

Proposition 3.3. Let A,B ∈ B(H ). Then

(a) If A has closed range and B
∗
≤ A, then X = A† is a solution of the system BXA = B = AXB.

(b) If B has closed range and B
∗
≤ A, then X = B† is a solution of the system BXA = B = AXB.

Proof. (a) Let A be a closed range operator and B
∗
≤ A. It follows from Lemma 3.1 (d) that B = APR(B∗)

and B = PR(B)
A. Hence, R(B) ⊆ R(A) and R(B∗) ⊆ R(A∗). It follows from R(B) ⊆ R(A) and Lemma

3.2 that AA†B = B. It follows from R(B∗) ⊆ R(A∗) and Lemma 3.2 that BA†A =
(
(A†A)∗B∗

)∗
=(

A∗A†
∗
B∗
)∗

= B. Hence, X = A† is a solution of the system of operator equations BXA = B = AXB.

(b) Let B be a closed range operator and B
∗
≤ A. It follows from Lemma 3.1 that B = APR(B∗) and

B = PR(B)A. Applying (1.1), we conclude that AB†B = B and BB†A = B. Hence, X = B† is a solution

of the system BXA = B = AXB.
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Proposition 3.4. Let A,B,X ∈ B(H ). If A
∗
≤ B and BXA = B = AXB, then N (B) = N (A),

R(B) = R(A) and AXA = A.

Proof. Let A
∗
≤ B and BXA = B = AXB. Applying Lemma 3.1 (d), we have A = PR(A)

B = BPR(A∗)
.

Hence, R(A) ⊆ R(B) and N (B) ⊆ N (A). Using Proposition 2.4,

N (B) = N (A), R(B) = R(A) and AXA = A.

Remark 3.5. Note that the converse of Proposition 3.4 is not true, in general. Set A†, A∗, A instead of

A,B,X. If A ∈ B(H ) has closed range, then, by (1.1), we have R(A∗) = R(A†),N (A∗) = N (A†) and

A†AA† = A† but not A†
∗
≤ A∗. Indeed, if A†

∗
≤ A∗, then by utilizing Lemma 3.1 (d), we have A† = PR(A†)A

∗.

It follows from R(A†) = R(A∗) that A† = PR(A∗)A
∗ = A∗.

Theorem 3.6. Let A,B ∈ B(H ) and B
∗
≤ A. Then, the following statements are equivalent:

(a) There exists a solution X ∈ B(H ) of the system BXA = B = AXB.

(b) B
∗
≤ AXA.

Proof. ((a) =⇒ (b)) : Let X ∈ B(H ) is a solution of the system BXA = B = AXB. Hence,

B − BXA = 0 and B − AXB = 0. It follows from the assumption B
∗
≤ A and Lemma 3.1 (d) that

B = PR(B)
A and B = APR(B∗)

. Hence,

PR(B)
(B −AXA) = B − PR(B)

AXA = B −BXA = 0

and

(B −AXA)PR(B∗)
= B −AXAPR(B∗)

= B −AXB = 0.

Therefore, B
∗
≤ AXA.

((b) =⇒ (a)) : Suppose that B
∗
≤ AXA. Applying Lemma 3.1 (d), we infer that PR(B)

(B − AXA) = 0

and (B − AXA)PR(B∗)
= 0. It follows from the assumption B

∗
≤ A and Lemma 3.1 (d) that B = PR(B)

A

and B = APR(B∗)
, whence

B −BXA = B − PR(B)
AXA = PR(B)

(B −AXA) = 0

and

B −AXB = B −AXAPR(B∗)
= (B −AXA)PR(B∗)

= 0.

Therefore, X is a solution of the system BXA = B = AXB.

Let A,B ∈ B(H ) have closed ranges. It follows from Proposition 3.3 that A† and B† are solutions of

the system BXA = B = AXB. Therefore, we are interested in the study of the following system of operator

equations:

BXA = B = AXB, (3.5)

BAX = B = XAB. (3.6)
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Let A,B ∈ B(H ). An operator C ∈ B(H ) is said to be an inverse of A along B if it fulfills one of the

equations (3.5) or (3.6). If A ∈ B(H ) is invertible, then X = A−1 is a solution of the system XA = I = AX.

Hence, A−1 is an inverse of A along I, where I is the identity of B(H ).

Let A ∈ B(H ) have closed range. Using (1.1), we have AA†A = A = AA†A. Hence, A† satisfies Eq.

(3.5). Therefore, A† is the inverse of A along A.

It follows from (1.1) that A∗AA† = A∗ = A†AA∗. Hence, A† satisfies Eq. (3.6). Therefore, A is the

inverse of A along A∗.

Lemma 3.7. [11, Theorem 2.1]. Let C ∈ B(H ) and A,B ∈ B(H ) have closed ranges. Then, the equation

AXB = C has a solution X ∈ B(H ) if and only if R(C) ⊆ R(A),R(C∗) ⊆ R(B∗), and this if and only if

AA†CB†B = C. In this case, X = A†CB† + U −A†AUBB†, where U ∈ B(H ) is arbitrary.

In the next result, we provide a general solution of the system BXA = B = AXB.

Theorem 3.8. Let A,B ∈ B(H ) have closed ranges and B
∗
≤ A. Then, the general solution of the

system of operator equations BXA = B = AXB is

X = A†BB† +A†
[
B(I −AA†) + (A−B)S

]
(A−B)† + T −A†AT (A−B)†(A−B)

−A†B(I −AA†)(A−B)†BB† −A†(A−B)S(A−B)†BB†

−A†ATBB† +A†AT (A−B)†(A−B)BB†,

where S, T ∈ B(H ).

Proof. Let A,B have closed ranges. It follows from the assumption B
∗
≤ A and Lemma 3.1 (d) that B =

APR(B∗). Hence, R(B) ⊆ R(A). Using Lemma 3.2, we have AA†B = B. It follows from AA†BB†B = B

and Lemma 3.7 that the equation AXB = B is solvable. In this case, the general solution is

X = A†BB† +W −A†AWBB†, (3.7)

where W ∈ B(H ) is arbitrary. If X satisfies the equation BXA = B, then

B(A†BB† +W −A†AWBB†)A = B.

It follows from the assumption B
∗
≤ A and Lemma 3.1 (d) that B = PR(B)A. Applying (1.1), BB†A = B.

Hence,

BA†B +BWA−BA†AWB = B.

Therefore, B(A†B+WA−A†AWB) = B. So, A†B+WA−A†AWB is a solution of the equation BX = B.

Utilizing Lemma 3.2 again, we have

A†B +WA−A†AWB = B†B + (I −B†B)S, (3.8)

where S ∈ B(H ) is arbitrary. Multiply the left hand side of Eq. (3.8) by A, to get

AA†B +AWA−AA†AWB = AB†B +A(I −B†B)S.
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It follows from the assumption B
∗
≤ A and Lemma 3.1 (d) that B = APR(B∗). Applying (1.1), AB†B = B.

We derive that

AA†B +AWA−AWB = B + (A−B)S.

Now, we get AW (A − B) = B(I − AA†) + (A − B)S. So, W is a solution of the equation AX(A − B) =

B(I −AA†) + (A−B)S. Using Lemma 3.7, we get that

W = A†
[
B(I −AA†) + (A−B)S

]
(A−B)† + T −A†AT (A−B)†(A−B),

where T ∈ B(H ) is arbitrary. By putting W in Eq. (3.7), we reach

X = A†BB† +A†
[
B(I −AA†) + (A−B)S

]
(A−B)† + T −A†AT (A−B)†(A−B)

−A†A(A†
[
B(I −AA†) + (A−B)S

]
(A−B)†

+T −A†AT (A−B)†(A−B)BB†

= A†BB† +A†
[
B(I −AA†) + (A−B)S

]
(A−B)† + T −A†AT (A−B)†(A−B)

−A†AA†B(I −AA†)(A−B)†BB† −A†AA†(A−B)S(A−B)†BB†

−A†ATBB† +A†AT (A−B)†(A−B)BB† (by (1.1))

= A†BB† +A†
[
B(I −AA†) + (A−B)S

]
(A−B)† + T −A†AT (A−B)†(A−B)

−A†B(I −AA†)(A−B)†BB† −A†(A−B)S(A−B)†BB†

−A†ATBB† +A†AT (A−B)†(A−B)BB†.

Theorem 3.9. Let A,B ∈ B(H ) where A has closed range. If the system BXA = B = AXB is

solvable, then the system XB = A†B,BX = BA† is solvable. Conversely, If B
∗
≤ A and the system

XB = A†B,BX = BA† is solvable, then the system BXA = B = AXB is solvable.

Proof. (=⇒) : Let X̃ be a solution of the system BXA = B = AXB. It follows from B = AX̃B that

R(B) ⊆ R(A). Using Lemma 3.2, AA†B = B. It follows from (1.1) that

PR(A∗)
X̃AA†B = (A†A)X̃(AA†)B = (A†A)X̃(AA†B) = A†(AX̃B) = A†B.

So, PR(A∗)
X̃AA† is a solution of the equation XB = A†B. Since B∗ = (BX̃A)∗ = A∗X̃∗B∗, we have

R(B∗) ⊆ R(A∗). Applying Lemma 2.1, there exists Y ∈ B(H ) such that B = Y A. Hence,

BPR(A∗)
X̃AA† = B(A†A)X̃(AA†) = Y (AA†A)X̃(AA†)

= (Y AX̃A)A† = (BX̃A)A† = BA†.

Therefore, PR(A∗)
X̃AA† is a solution of the equation B = BA†. Thus PR(A∗)

X̃AA† is a solution of the

system XB = A†B,BX = BA†.

(⇐=) : Suppose that X̃ is a solution of the system XB = A†B,BX = BA†. It follows from the

assumption B
∗
≤ A that B = APR(B∗)

and B = PR(B)
A. Hence, R(B) ⊆ R(A) and R(B∗) ⊆ R(A∗). It

follows from R(B) ⊆ R(A) to Lemma 3.2 that AA†B = B. Hence, AX̃B = A(A†B) = AA†B = B. It

follows from R(B∗) ⊆ R(A∗) and Lemma 2.1 that there exists Z∗ ∈ B(H ) such that B = ZA. Hence,

BX̃A = (BA†)A = BA†A = ZAA†A = ZA = B.

Therefore, X̃ is a solution of the system BXA = B = AXB.
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Lemma 3.10. [4, Theorem 4.2]. Let A,B,C,D ∈ B(H ) and A,B,M = B∗(I−A†A) have closed ranges.

Then, the system AX = C, XB = D has a hermitian solution X ∈ B(H ) if and only if

AA†C = C, DB†B = D, AD = CB

and AC∗ and B∗D are hermitian. In this case, the general hermitian solution is

X = A†C + (I −A†A)M†s(T )

+(I −A†A)(I −M†M)
[
A†C + (I −A†A)M†s(T )

]∗
+(I −A†A)(I −M†M)W (I −M†M)∗(I −A†A)∗,

where W ∈ B(H ) is hermitian and s(T ) = D∗ − B∗A†C is the so-called Schur complement of the block

matrix T =

[
A C

B∗ D∗

]
.

Theorem 3.11. Suppose that A,B ∈ B(H ) have closed ranges. If B
∗
≤ A and B∗A†B,BA†

∗
B∗ are

hermitian, then the system BXA = B = AXB has a hermitian solution.

Proof. Replace A,B,C,D in Lemma 3.10 by B,B,BA†, A†B to get

AA†C = BB†(BA†) = BA† = C, DB†B = (A†B)B†B = A†B = D

and

AD = B(A†B) = (BA†)B = CB, AC∗ = B(BA†)∗ = BA†
∗
B∗, B∗D = B∗A†B.

Using Lemma 3.10, the system XB = A†B,BX = BA† has a hermitian solution, say, X̃. It follows from

the assumption B
∗
≤ A that B = APR(B∗)

and B = PR(B)
A. Hence, R(B) ⊆ R(A) and R(B∗) ⊆ R(A∗).

It follows from R(B) ⊆ R(A) and Lemma 3.2 that AA†B = B. Hence, AX̃B = A(A†B) = AA†B = B. It

follows from R(B∗) ⊆ R(A∗) and Lemma 2.1 that there exists Z ∈ B(H ) such that B = ZA. Hence,

BX̃A = (BA†)A = BA†A = ZAA†A = ZA = B.

Therefore, X̃ is a hermitian solution of the system BXA = B = AXB.

4. ∗-Order via other operator equations. Generally speaking, the inequality PB
∗
≤ B dose not

hold for any P ∈ P(H ) even if R(P ) ⊆ R(B). In [2, Lemma 2.6], some conditions are mentioned which

give a one-sided description of the relation A
∗
≤ B regarding (1.2).

The next result is known.

Proposition 4.1. [2, Proposition 2.6]. Let B ∈ B(H ).

(a) If P ∈ OP(H ) and R(P ) ⊆ R(B), then PB
∗
≤ B if and only if PBB∗ = BB∗P .

(b) If Q ∈ OP(H ) and R(Q) ⊆ R(B∗), then BQ
∗
≤ B if and only if QB∗B = B∗BQ.

In the following, we state a generalization of Proposition 4.1.

Proposition 4.2. Let B ∈ B(H ). If there exist P,Q ∈ OP(H ) such that R(P ) ⊆ R(B)and R(Q) ⊆
R(B∗), then PBQ

∗
≤ B if and only if PBQB∗ = BQB∗P and QB∗PB = B∗PBQ.
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Proof. (=⇒) : Let PBQ
∗
≤ B. Applying (1.2), we get that

PBQB∗ = (PBQ)B∗ = B(PBQ)∗ = BQB∗P

and

B∗PBQ = B∗(PBQ) = (PBQ)∗B = QB∗PB.

(⇐=) : Let PBQB∗ = BQB∗P and QB∗PB = B∗PBQ. Applying (1.2), we obtain that

(PBQ)(PBQ)∗ = PBQB∗P = (BQB∗P )P = BQB∗P = B(PBQ)∗

and

(PBQ)∗(PBQ) = QB∗PBQ = Q(QB∗PB) = QB∗PB = (PBQ)∗B.

The next known theorem gives a characterization of the order
∗
≤.

Theorem 4.3. [6, Theorem 2.3]. Let A ∈ B(H ) and C ∈ Q(H ). Then, C
∗
≤ A if and only if there

exists X ∈ B(H ) such that A = C + (I − C∗)X(I − C∗).

In the following, we establish an analogue of Theorem 4.3 for generalized projections on a Hilbert space.

Recall that an operator A ∈ B(H ) is a generalized projection if A2 = A∗.

Lemma 4.4. [14, Theorem A.2]. Let A ∈ B(H ) be a generalized projection.Then, A is a closed range

operator and A3 is an orthogonal projection on R(A). Moreover, H has decomposition

H = R(A)
⊕

N (A)

and A has the following matrix representation

A =

[
A1 0

0 0

]
:

[
R(A)

N (A)

]
→
[

R(A)

N (A)

]
,

where the restriction A1 = A|R(A) is unitary on R(A).

Theorem 4.5. Let A ∈ B(H ) and B ∈ G P(H ). Then, B
∗
≤ A if and only if there exists X ∈ B(H )

such that A = B + (I −BB∗)X(I −B∗B).

Proof. (=⇒) : Let B ∈ G P(H ) and B
∗
≤ A. Employing Lemma 4.4, we infer that B has closed range

and B3 = PR(B). It follows from (1.1) that

R(B∗) = R(B∗B) = R(B3) = R(BB∗) = R(B).

Hence, PR(B) = PR(B∗) = BB∗ = B∗B. Therefore, PN (B) = PN (B∗) = I − BB∗ = I − B∗B. Applying

Lemma 3.1 (c), we get A = B + PN (B∗)APN (B). Hence, A = B + (I −BB∗)A(I −B∗B).

(⇐=) : Let X ∈ B(H ) be a solution of the equation A = B + (I − BB∗)X(I − B∗B). Since B is a

generalized projection, so B∗BB∗ = B∗. Hence,

B∗A = B∗B +B∗(I −BB∗)X(I −B∗B) = B∗B

and

AB∗ = BB∗ + (I −BB∗)X(I −B∗B)B∗ = BB∗.

Therefore, B
∗
≤ A by (1.2).
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In the next result, we show that if A is a generalized projection and B
∗
≤ A

∗
∧ A∗, then AA∗ can be

written as the sum of two idempotents.

Theorem 4.6. Let A ∈ G P(H ) and B ∈ B(H ). If B
∗
≤ A

∗
∧ A∗, then B is an idempotent and there

exists an idempotent X such that AA∗ = B +X and B∗X = XB∗ = 0.

Proof. Let B
∗
≤ A

∗
∧ A∗. It follows from the assumption A2 = A∗ and Lemma 3.1 (d) that

B2 = (PR(B)
A∗)(A∗PR(B∗)

) = PR(B)
A∗2PR(B∗)

= PR(B)
APR(B∗)

= BPR(B∗)
= B.

Using Lemma 3.1, we get that

AB = A(APR(B∗)
) = A2PR(B∗)

= A∗PR(B∗)
= B,

BA = (PR(B)
A)A = PR(B)

A2 = PR(B)
A∗ = B,

A∗B = A∗(A∗PR(B∗)
) = A∗2PR(B∗)

= APR(B∗)
= B

and

BA∗ = (PR(B)
A∗)A∗ = PR(B)

A∗2 = PR(B)
A = B.

Let X = AA∗ −B. It follows from the assumption B
∗
≤ A

∗
∧ A∗ that

X2 = (AA∗ −B)2 =(AA∗)2 +B2 −AA∗B −BAA∗

=AA∗ +B −AB −BA∗

=AA∗ +B −B −B = AA∗ −B = X.

Hence, X is an idempotent. Applying (1.2), we have

B∗X = B∗(AA∗ −B) = B∗AA∗ −B∗B = B∗A∗A−B∗B = B∗A−B∗B = 0

and

XB∗ = (AA∗ −B)B∗ = AA∗B∗ −BB∗ = AB∗ −BB∗ = 0.

Lemma 4.7. Let A ∈ Q(H ) and B ∈ B(H ). Then, B
∗
≤ A if and only if B is an idempotent and there

exists an idempotent X such that A = B +X and B∗X = XB∗ = 0.

Proof. (=⇒) : Let B
∗
≤ A. It follows from the assumption A2 = A and Lemma 3.1 (d) that

B2 = (PR(B)
A)(APR(B∗)

) = PR(B)
A2PR(B∗)

= (PR(B)
A)PR(B∗)

= BPR(B∗)
= B.

Utilizing Lemma 3.1 (d), we obtain that

AB = A(APR(B∗)
) = A2PR(B∗)

= APR(B∗)
= B

and

BA = (PR(B)
A)A = PR(B)

A2 = PR(B)
A = B.

Hence, X = A−B is an idempotent and B∗X = B∗(A−B) = 0 and XB∗ = (A−B)B∗ = 0.

(⇐=) : Let A = B + X and B∗X = XB∗ = 0 for some idempotent X. Then, B∗(A − B) = B∗X = 0

and (A−B)B∗ = XB∗ = 0. Therefore, B
∗
≤ A by (1.2).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 172-183, June 2017.

Mehdi Vosough and Mohammad Sal Moslehian 182

Corollary 4.8. Let A ∈ G P(H ) and B ∈ B(H ). Then, B
∗
≤ AA∗ if and only if B is an idempotent

and there exists an idempotent X such that AA∗ = B +X and B∗X = XB∗ = 0.

Proof. Let A ∈ G P(H ). Then, (AA∗)2 = AA∗AA∗ = AA∗. Hence, AA∗ is an idempotent. Now apply

Lemma 4.7.

We end our work with the following result.

Proposition 4.9. Let A ∈ B(H ) and C ∈ G P(H ). Then, B ∈ B(H ) is common ∗− lower bound of

A and CC∗ if and only if B is an idempotent and there exist X,Y ∈ B(H ) such that

A = B + (I −B∗)X(I −B∗) and CC∗ = B + Y,

where B∗Y = Y B∗ = 0.

Proof. (=⇒) : If B be a common ∗− lower bound of A and CC∗, then B
∗
≤ A and B

∗
≤ CC∗. It follows

from the assumption B
∗
≤ CC∗ and Lemma 4.7 that B is an idempotent and there exists an idempotent

Y ∈ B(H ) such that CC∗ = B + R, where B∗R = RB∗ = 0. Since B is an idempotent and B
∗
≤ A, by

Theorem 4.3, there exists S ∈ B(H ) such that A = B + (I −B∗)S(I −B∗).

(⇐=) : If there exists an idempotent Y such that CC∗ = B + Y with B∗Y = 0 and Y B∗ = 0, then

B
∗
≤ CC∗. The assumption A = B + (I − B∗)S(I − B∗) and the fact that B is an idempotent yield

B∗(A−B) = 0 and (A−B)B∗ = 0. Hence, B
∗
≤ A and B is a common ∗− lower bound of A and CC∗.
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