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SOLUTIONS OF THE SYSTEM OF OPERATOR
EQUATIONS BXA=B=AXB VIA ~-ORDER*

MEHDI VOSOUGH! AND MOHAMMAD SAL MOSLEHIAN#

Abstract. In this paper, some necessary and sufficient conditions are established for the existence of solutions to the
system of operator equations BXA = B = AXB in the setting of bounded linear operators on a Hilbert space, where the
unknown operator X is called the inverse of A along B. After that, under some mild conditions, it is proved that an operator

X is a solution of BXA = B = AXB if and only if B % AXA, where the x-order C % D means CC* = DC*,C*C = C*D.

*
Moreover, the general solution of the equation above is obtained. Finally, some characterizations of C' < D via other operator
equations, are presented.
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1. Introduction and preliminaries. Throughout the paper, 57 and J# are complex Hilbert spaces.
We denote the space of all bounded linear operators from ¢ into J# by B(J¢, %), and write B(2¢) when
H = . Recall that an operator A € B(5) is positive if (Az,z) > 0 for all © € . and then we write
A > 0. We shall write A > 0 if A is positive and invertible. An operator A € B(4¢) is a generalized
projection if A% = A*. Let #(H), 2(H), O P (H), 9 P(H) be the set of all self-adjoint operators on J#,
the set of all idempotents, the set of orthogonal projections and the set of all generalized projections on 2,
respectively.

For A € B(s2,. %), let Z(A) and A4 (A) be the range and the null space of A, respectively. The
projection corresponding to a closed subspace .# of J is denoted by P 4. The symbol A~ stands for an
arbitrary generalized inner inverse of A, that is, an operator A~ satisfying AA~A = A. The Moore—Penrose
inverse of a closed range operator A is the unique operator AT € B(#) satisfying the following equations:

AATA=A, ATAAT = AT, (AAT)* = AAT, (ATA) = ATA.
Then, A*AAT = A* = ATAA*, and we have the following properties:

R(AT) = B(A*) = R(ATA) = B(A*A), N (AD) = ¥ (A*) = ¥ (AAT),
R(A) = R(AAT) = B(AA"), Pgay=AA" and Py = ATA. (1.1)

For A,B € (), A< B means B— A > 0. The order < is said to be the Léwner order on . (.5¢).
If there exists C' € . () such that AC =0 and A+ C = B, then we write A < B. The order = is said to
be the logic order on . (¢).
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For A,B € B(J), let A ; B mean

AA* = BA*, A*A=A"B. (1.2)

It is known that, for A, B € (), A < B if and only if A % B; see [6]. We denote by A A B the infimum

(or the greatest lower bound) of A and B over the x-order and A V B the supremum (or the least upper
bound) of A and B over the -order, if they exist; cf. [12].

It is known that if A € B(J#, %) has closed range, then by considering
H=R(A*)D N (A) and X =ZR(A) ® N (AY),

we can write

S EREEAN ]

where Ay : Z(A*) — Z(A) is invertible; see [7, Lemma 2.1]. Therefore, the Moore—Penrose generalized
inverse of A can be represented as

oo )12

Many results have been obtained on the solvability of equations for matrices and operators on Hilbert
spaces and Hilbert C*— modules. In 1976, Mitra [11] considered the matrix equations AX = B,AXB =C
and the system of linear equations AX = C,XB = D. He got the necessary and sufficient conditions
for existence and expressions of general Hermitian solutions. In 1966, the celebrated Douglas Lemma was
established in [8]. It gives some conditions for the existence of a solution to the equation AX = B for
operators on a Hilbert space. Using the generalized inverses of operators, in 2007, Daji¢ and Koliha [4]
got the existence of the common Hermitian and positive solutions to the system AX = C,XB = D for
operators acting on a Hilbert space. In 2008, Xu [17] extended these results to the adjointable operators.
Several general operator equations and systems in some general settings such as Hilbert C*-modules have
been studied by some mathematicians; see, e.g., [9, 10, 13, 16].

The matrix equation AXB = C is consistent if and only if AATCB~B = C for some A=, B, and
the general solution is X = A-CB~ +Y — A“AY BB, where Y is an arbitrary matrix; see [11]. In
2010, Gonzalez [1] got some necessary and sufficient conditions for existence of a solution to the equation
AX B = C for operators on a Hilbert space.

Let A, B or C have closed range. Then, the operator equation AXB = C is solvable if and only if
Z(C) C Z(A) and Z(C*) C #(B*); see [1, Theorem 3.1]. Therefore, if A or C has closed range, then
the equation AXC = C is solvable if and only if Z(C) C Z(A), and CXA = C is solvable if and only
it Z(C*) C #(A*). Deng [5] investigated the equation CAX = C' = X AC, which is essentially different
from ours. In this paper, we first characterize the existence of solutions of the system of operator equations
BXA = B = AXB by means of x— order. After that, we generalize the solutions to the system of operator
equations BXA = B = AXB in a new fashion.
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2. The existence of solutions of the system BXA = B = AXB. We start our work with the
celebrated Douglas lemma.

LEMMA 2.1 (Douglas Lemma, [8]). Let A,C € B(J). Then, the following statements are equivalent:

(a) Z(C) S Z(A).
(b) There exists X € B(H) such that AX = C.
(c) There exists a positive number X such that CC* < \2AA*.

If one 0f~these conditions holdi then there exists a unique solution X € B(S2) of the equation AX = C such
that Z(X) C Z(A*) and N (X) = A (C).

LEMMA 2.2. Let A,B € B(s). If Z(B) C #(A) and Z(B*) C #(A*), then B = B; @0, where
B, € B(#Z(A*),%(A)).

Proof. Let A, B be operators from the decomposition . = Z(A*) @ A4 (A) into the decomposition
H = R(A)@ N (A*). If Z(B) C Z(A), then, by Lemma 2.1, there exists C' € B(#) such that B = AC
and A (C) = A(B). Since Z(B*) C Z(A*), so Z(C*) C Z(C*) = #(B*) € Z(A*) = N (P 4 (). Hence,

(4)C* =0 and so CP 4 (4) = 0. It follows from .4 (C) = A(B) that BP 44y = 0.

If #2(B*) C %(A*), then a similar reasoning shows that P (4«)B = 0. Therefore, P

Bl ya) =
PJV(A )B j(A y = PJV(A*)BPJV(A) =0. Hence B = Bl@() where Bl P (A)BPJ(A ) 0

THEOREM 2.3. Let A € B(J#) and B € /(). If A has closed range, then the following statements
are equivalent:

Z(A)

(1) The system of operator equations BXA = B = AXB is solvable.

(2) AATBATA = B.

(3) #Z(B) C Z(A) and Z(B) C #(A*).

Proof. ((1) = (2)) : Using (1.1) and B = BXA, we get that Z(B) C #(A*) = #(AtA). Hence,
by Lemma 2.1, there exists C* € B() such that B = ATAC*. Hence, B = CA'A. Applying (1.1) and
AXB = B, we derive that Z(B) C #(A) = #(AA%). Thus, by Lemma 2.1, there exists C' € B(#) such
that B = AATC. It follows that

AATBATA = AAT(AATC)ATA = AATCATA = BATA = (CATA)ATA = CATA = B.
((2) = (3)) : Let AATBATA = B. Then, Z(B) C %#(A). It follows from B = B* = (AATBATA)* =
ATABAAT and (1.1) that 2(B) C Z(AT) = Z(A*).

((3) = (1)) : Let Z(B) C #(A) and Z(B) C #(A*). Upon applying Lemma 2.2, B = B; @0, where
By = PgrayB P4 Since A has closed rang, so by using (1.3) and (1.4) we have

Z(A)
A 0 AN o
A= d AT=| "1 :
KRR R
Hence, AATB = B and BATA = B. Thus X = AT is a solution of the system BXA = B = AXB. ]

PROPOSITION 2.4. Let A, B, X € B(). Then,
H(A) C#(B), N (B)CAH(A) and BXA=B=AXB
if and only if
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Proof. (=) : Suppose that Z(A) C Z(B), /' (B) C A4 (A) and BXA = B = AXB. It follows
from BXA = B and A4 (B) C A (A) that 4 (A) C A (B) C A (A). Hence, A4 (A) = A (B). It follows
from AXB = B and Z(A) C #(B) that Z(A) C #(B) C %#(A). Therefore, Z(A) = Z(B). Moreover,
(I —AX)B =0 and Z(A) C Z(B). Hence, we derive that (I — AX)A=0. So, AXA=A.

(«<=) : Suppose that A (B) = A (A), Z(B) = #(A) and AXA = A. Hence,

(I—AX)A=0= Z(A) C N (- AX) = #(B) C N (I — AX) = B = AXB,
AT - XA) =0= Z(I — XA) C N(A) = Z(I — XA) C N (B)=> B=BXA. O

3. System of operator equations BXA = B = AXB via x-order. We know that (B(5¢), ;) is a
partially ordered set; see [2]. Let G1, Gy € B(J) be invertible and G, ; A, G % A. Then, G1GF = AG}
and G2G5 = AG5. Hence, we obtain G; = G2 = A. This fact leads us to consider the characterizations of

A < B. Now we state the necessary and sufficient conditions in which the common *x— lower or x— upper
bounds of A and B exist.

We need the following essential lemma.

LeEMMA 3.1. [18, Lemma 2.1]. Let A, B € B(J#) and .# denote the closure of a space # . Then,

(a) AA* = BA* <— A= BPgy < A = BQ for some Q € OP(H);

(b) A*A:A*B@A:PMB@A:PB for some P € OP(H);
(C) ASB<:>B:A+PW(A*)BPJV(A);

() A< B <= A= PyB = BPyry = P BPyry

() ASB e A=A@0,B=AQB;

where Ay € B(Z(A*),#(A)), B € B(A (A), A/ (A*)) and AED B means the block matrix [ 61 g }

The following Lemma is a version of Lemma 2.1 when the operator A has closed range.

LEMMA 3.2. [4, Theorem 3.1]. Let A € B(S) have closed range. Then, the equation AX = C has a
solution X € B(J2) if and only if AATC = C, and this if and only if Z(C) C #(A). In this case, the general
solution is X = ATC' + (I — ATA)T, where T € B(J¢) is arbitrary.

PROPOSITION 3.3. Let A, B € B(5¢). Then

(a) If A has closed range and B % A, then X = Al is a solution of the system BXA =B = AXB.
(b) If B has closed range and B % A, then X = B' is a solution of the system BXA = B = AXB.

Proof. (a) Let A be a closed range operator and B % A. Tt follows from Lemma 3.1 (d) that B = APz
and B = PWA' Hence, Z(B) C #(A) and Z(B*) C #Z(A*). It follows from #Z(B) C #(A) and Lemma
3.2 that AATB = B. It follows from %#(B*) C #(A*) and Lemma 3.2 that BATA = ((ATA)*B*)* =

(A*AT*B*) = B. Hence, X = AT is a solution of the system of operator equations BXA = B = AXB.

(b) Let B be a closed range operator and B % A. Tt follows from Lemma 3.1 that B = APgp~) and
B = PgpyA. Applying (1.1), we conclude that AB'B = B and BB'A = B. Hence, X = B! is a solution
of the system BXA =B = AXB. O
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PROPOSITION 3.4. Let A, B,X € B(#). If A < B and BXA = B = AXB, then ¥ (B) = A (A),
R(B) = Z#(A) and AXA = A.

B = BP,

Proof. Let A % B and BXA =B = AXB. Applying Lemma 3.1 (d), we have A = P—~ A"

A(A)
Hence, Z(A) C #(B) and A4 (B) C .4 (A). Using Proposition 2.4,
N(B)=AN(A), #B)=%(A) and AXA=A O

REMARK 3.5. Note that the converse of Proposition 3.4 is not true, in general. Set AT, A*, A instead of
A,B,X. If A € B(J) has closed range, then, by (1.1), we have Z(A*) = Z(A"), /' (A*) = A (AT) and
ATAAT = AT but not AT ; A*. Indeed, if A ; A*, then by utilizing Lemma 3.1 (d), we have AT = Py 41)A*.
It follows from Z(AT) = Z(A*) that AT = Pgya.A* = A%

THEOREM 3.6. Let A,B € B(J¢) and B % A. Then, the following statements are equivalent:

(a) There ezists a solution X € B() of the system BXA =B = AXB.

(b) B< AXA.

Proof. ((a) = (b)) : Let X € B(4) is a solution of the system BXA = B = AXB. Hence,
B —BXA =0and B— AXB = 0. It follows from the assumption B % A and Lemma 3.1(d) that

B = P( A and B = AP )Hence

P%(B)(B AXA) = %(B)AXA B—-BXA=0
and

(B—AXA) %(B)—B AXAP; 5~ )—B AXB=0.

Therefore, B % AXA.

((b) = (a)) : Suppose that B ; AXA. Applying Lemma 3.1 (d), we infer that P F(B (B AXA) =

and (B — AXA)PW = 0. It follows from the assumption B % A and Lemma 3.1 (d) that B = PJ(B)A
and B = AP@(B oF whence
B~ BXA=B — Py AXA=Py(B— AXA) =0
and
B—AXB =B - AXAPgp5y = = (B fAXA)P%(B*) =0.
Therefore, X is a solution of the system BXA =B = AXB. |

Let A, B € B(#) have closed ranges. It follows from Proposition 3.3 that AT and B are solutions of
the system BXA = B = AX B. Therefore, we are interested in the study of the following system of operator
equations:

BXA=B=AXB, (3.5)

BAX = B= XAB. (3.6)
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Let A,B € B(s¢). An operator C' € B(5¢) is said to be an inverse of A along B if it fulfills one of the
equations (3.5) or (3.6). If A € B() is invertible, then X = A~! is a solution of the system XA =1 = AX.
Hence, A~! is an inverse of A along I, where I is the identity of B(J#).

Let A € B(#) have closed range. Using (1.1), we have AATA = A = AATA. Hence, Al satisfies Eq.
(3.5). Therefore, At is the inverse of A along A.

It follows from (1.1) that A*AA" = A* = ATAA*. Hence, A' satisfies Eq. (3.6). Therefore, A is the
inverse of A along A*.

LEMMA 3.7. [11, Theorem 2.1]. Let C' € B(€) and A, B € B(J) have closed ranges. Then, the equation
AXB = C has a solution X € B(J) if and only if Z(C) C Z(A),Z(C*) C Z(B*), and this if and only if
AATCBIB = C. In this case, X = ATCBY + U — ATAUBBT, where U € B(#) is arbitrary.

In the next result, we provide a general solution of the system BXA = B = AXB.

THEOREM 3.8. Let A, B € B(J) have closed ranges and B ; A. Then, the general solution of the
system of operator equations BXA =B = AXB is

X =A'BB" + A" [B(I — AA") + (A- B)S] (A- B)! + T — AYAT(A - B)'(A - B)
—A'B(I — AA"(A - B)'BB" — AT(A — B)S(A — B)'BB'
—~AYATBB' + ATAT(A - B)'(A - B)BB',

where S, T € B(H).

Proof. Let A, B have closed ranges. It follows from the assumption B ; A and Lemma 3.1 (d) that B =
APgp+). Hence, Z(B) C %(A). Using Lemma 3.2, we have AATB = B. It follows from AATBB'B = B
and Lemma 3.7 that the equation AX B = B is solvable. In this case, the general solution is

X = A"BB' + W — ATAWBBT, (3.7)
where W € B(J) is arbitrary. If X satisfies the equation BX A = B, then
B(A'BB' + W — ATAWBB"A = B.
It follows from the assumption B ; A and Lemma 3.1 (d) that B = PgpyA. Applying (1.1), BBTA = B.
Hence,
BA'B+ BWA - BATAWB = B.

Therefore, B(ATB+WA—-ATAWB) = B. So, AT B4+ W A — AT AW B is a solution of the equation BX = B.
Utilizing Lemma 3.2 again, we have

ATB+WA—-ATAWB = B'B + (I - B'B)S, (3.8)
where S € B(J) is arbitrary. Multiply the left hand side of Eq. (3.8) by A, to get

AATB 4+ AWA — AATAWB = AB'B + A(I — B'B)S.
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It follows from the assumption B ; A and Lemma 3.1 (d) that B = APgp+). Applying (1.1), AB'B = B.
We derive that

AATB+ AWA -~ AWB = B + (A — B)S.

Now, we get AW(A — B) = B(I — AAT) + (A — B)S. So, W is a solution of the equation AX(A — B) =
B(I — AAT) + (A — B)S. Using Lemma 3.7, we get that

W = A" [B(I — AA") + (A—B)S] (A—B)' + T — ATAT(A - B)'(A - B),
where T € B(42) is arbitrary. By putting W in Eq. (3.7), we reach

X = A'BB' + A" [B(I - AAY) + (A— B)S] (A— B)' + T — ATAT(A - B)'(A - B)

—AVA(A" [B(I - AAT) + (A—B)S] (A-B)f
+T — ATAT(A — B)'(A — B)BB'

= A'BB" + A" [B(I — AA") + (A- B)S] (A— B)' + T — A'AT(A - B)'(A - B)
—ATAATB(I — AAY)(A - B)'BB' — ATAAT(A — B)S(A — B)'BB'
—ATATBB' + ATAT(A — B)'(A — B)BB' (by (1.1))

= ATBBY + AT [B(I — AAY) + (A— B)S] (A~ B)' + T — ATAT(A - B)(A - B)
—A'B(I — AATY(A - B)'BBT — AT(A - B)S(A - B)'BB'
—ATATBB' + ATAT(A - B)'(A— B)BB'. O

THEOREM 3.9. Let A, B € B(5) where A has closed range. If the system BXA = B = AXB is
solvable, then the system XB = A'B,BX = BAT is solvable. Conversely, If B < A and the system
= A'B,BX = BAT is solvable, then the system BXA = B = AXB is solvable.

Proof. (=) : Let X be a solution of the system BXA = B = AXB. It follows from B = AXB that
Z(B) C %#(A). Using Lemma 3.2, AATB = B. Tt follows from (1.1) that

P

IO )XAAB (AYA)X (AANB = (ATA)X(AATB) = AT(AXB) = A'B.

So, P ZA) X AAT is a solution of the equation XB = A'B. Since B* = (B)?A)* = A*X*B*, we have
# (B ) C %’( *). Applying Lemma 2.1, there exists Y € B(s¢) such that B =Y A. Hence,

/—\

BP—~

e XAAT B(ATA)X(AA) = Y (441 4) X (AAT)

= (YAXA)A' = (BXA)AT = BAT,

Therefore, P%,(A* X AAT is a solution of the equation B = BAY. Thus P XAA is a solution of the

system XB = ATB, BX = BAT.

(=) : Suppose that X is a solution of the system XB = ATB,BX = BAf. Tt follows from the
assumption B < A that B = APz and B = P A. Hence, Z(B ) C Z(A) and Z(B*) C Z(A*). Tt
follows from %Z(B) C Z(A) to Lemma 3.2 that AATB = B. Hence, AXB = A(ATB) = AA'B = B. It
follows from Z(B*) C %(A*) and Lemma 2.1 that there exists Z* € B(#) such that B = ZA. Hence,

BXA=(BANA=BA'A=27AA'4=274=B.

Therefore, X is a solution of the system BXA =B = AXB. O
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LEMMA 3.10. [4, Theorem 4.2]. Let A, B,C, D € B(s#) and A, B, M = B*(I — AT A) have closed ranges.
Then, the system AX = C;, XB = D has a hermitian solution X € B() if and only if

AATC=C, DB'B=D, AD=CB
and AC* and B*D are hermitian. In this case, the general hermitian solution is
X = ATC + (I — ATA)MTs(T)

+(I — ATA)I — MTM) [ATC + (I — ATA)MTs(T)]
+(I — ATA)(IT — MTMYW (I — MTM)*(I — ATA)*,

*

where W € B(H#) is hermitian and s(T) = D* — B*ATC is the so-called Schur complement of the block
matriz T = A C
| B* D*

THEOREM 3.11. Suppose that A, B € B(4) have closed ranges. If B % A and B*ATB, BAT" B* are
hermitian, then the system BXA = B = AXB has a hermitian solution.

Proof. Replace A, B,C, D in Lemma 3.10 by B, B, BAT, ATB to get
AA'C = BB'(BAY)=BA"=C, DB'B=(A'B)B'B=A"B=D
and
AD = B(A'B) = (BAY)B=CB, AC* = B(BA")* = BA""B*, B*D = B*A'B.

Using Lemma 3.10, the system XB = A'B, BX = BA' has a hermitian solution, say, X. It follows from
the assumption B < A that B = APz and B = PgpyA. Hence, #(B) C #(A) and Z(B*) C Z(A*).
It follows from %Z(B) C %#(A) and Lemma 3.2 that AATB = B. Hence, AXB = A(ATB) = AATB=B. It
follows from Z(B*) C #Z(A*) and Lemma 2.1 that there exists Z € B(4¢) such that B = ZA. Hence,

BXA=(BANA=BA'A=27AA'A=274=B.
Therefore, X is a hermitian solution of the system BXA =B = AXB. |

4. %-Order via other operator equations. Generally speaking, the inequality PB ; B dose not
hold for any P € P () even if Z(P) C #(B). In [2, Lemma 2.6], some conditions are mentioned which

give a one-sided description of the relation A < B regarding (1.2).
The next result is known.

PROPOSITION 4.1. [2, Proposition 2.6]. Let B € B(J¢).

(B), then PB % B if and only if PBB* = BB*P.
% (B*), then BQ % B if and only if QB*B = B*BQ).

(a) If P € OP () and Z(P)
(b) If Q € OP () and Z(Q)

c
c

In the following, we state a generalization of Proposition 4.1.

PROPOSITION 4 2. Let B € B(2). If there exist P,Q € OP(H’) such that Z(P) C Z(B)and Z(Q) C
%’(B*), then PBQ § B if and only if PBQB* = BQB*P and QB*PB = B*PBQ.
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Proof. (=) : Let PBQ ; B. Applying (1.2), we get that
PBQB* = (PBQ)B* = B(PBQ)* = BQB*P
and
B*PBQ = B*(PBQ) = (PBQ)"B = QB*PB.
(«<=): Let PBQB* = BQB*P and QB*PB = B*PB(Q. Applying (1.2), we obtain that
(PBQ)(PBQ)* = PBQB*P = (BQB*P)P = BQB*P = B(PBQ)*
and
(PBQ)*(PBQ) = QB*PBQ = Q(QB*PB) = QB*PB = (PBQ)*B. D
The next known theorem gives a characterization of the order %
THEOREM 4.3. [6, Theorem 2.3]. Let A € B(5¢) and C € 2(). Then, C % A if and only if there
exists X € B(H) such that A=C+ (I — C*)X(I —C*).

In the following, we establish an analogue of Theorem 4.3 for generalized projections on a Hilbert space.
Recall that an operator A € B(J#) is a generalized projection if A% = A*.

LEMMA 4.4. [14, Theorem A.2]. Let A € B(47) be a generalized projection.Then, A is a closed range
operator and A3 is an orthogonal projection on %Z(A). Moreover, S has decomposition

H =A(A)EP A (4)
and A has the following matriz representation
(A 0] [ @ #(4)
=[5 LG - L0
where the restriction Ay = Algay is unitary on Z(A).

THEOREM 4.5. Let A € B() and B € 9P (). Then, B % A if and only if there exists X € B()
such that A = B + (I — BB*)X(I — B*B).

Proof. (=): Let B€ 9P () and B ; A. Employing Lemma 4.4, we infer that B has closed range
and B? = Pg(p). It follows from (1.1) that

#(B*) = #(B*B) = #(B*) = #(BB*) = #(B).

Hence, Pyp) = Py+) = BB* = B*B. Therefore, Py gy = Py g~y =1 — BB* = I — B*B. Applying
Lemma 3.1 (c), we get A= B+ P y(p+)AP y(p). Hence, A= B + (I — BB*)A(I — B*B).

(<) : Let X € B() be a solution of the equation A = B + (I — BB*)X (I — B*B). Since B is a
generalized projection, so B* BB* = B*. Hence,

B*A=B*B+ B*(I-BB*)X(I - B*B)=DB"B
and

AB* = BB* + (I — BB*)X(I — B*B)B* = BB*.

Therefore, B % A by (1.2). O
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* *
In the next result, we show that if A is a generalized projection and B < A A A*, then AA* can be
written as the sum of two idempotents.

THEOREM 4.6. Let A € P(H) and B € B(sC). If B < AN A*, then B is an idempotent and there
exists an idempotent X such that AA* = B+ X and B*X = XB* = 0.

Proof. Let B ; A A A*. Tt follows from the assumption A2 = A* and Lemma 3.1 (d) that

2 * * *2
B = (P A ) A" Pggsy) = PamA™ Pamy = PamAraw = BPa@ = B-
Using Lemma 3.1, we get that
AB = A(APg5wy) = A*Pyey = APy = B,
2 *
A*B = A*(A* Pygey) = A" Pygey = APy = B
and
* * * *2

Let X = AA* — B. It follows from the assumption B ; A /*\ A* that
X? = (AA* — B)* =(AA")? + B* - AA*B — BAA®
=AA*+B—- AB — BA*
=AA*+B-B-B=AA"-B=X.
Hence, X is an idempotent. Applying (1.2), we have
B*X = B*(AA* —B)=B*AA*—-B*B=B*A*"A-B*B=B*A—-B*B=0
and
XB*=(AA* — B)B* = AA*B* — BB*=AB*—-BB*=0. D
LEMMA 4.7. Let A € 2(5) and B € B(S). Then, B % A if and only if B is an idempotent and there
exists an idempotent X such that A= B+ X and B*X = XB* = 0.

Proof. (=): Let B < A. Tt follows from the assumption A2 = A and Lemma 3.1 (d) that

2 2
B? = (Py5A)(APg5w5) = P A Pocgy = (PasrA) Pases = BP = B.
Utilizing Lemma 3.1 (d), we obtain that
2
AB = A(APgey) = A"Pgrgey = APz = B
and
BA = (PQ(B)A)A P A = Pgi;mA=B.

Hence, X = A — B is an idempotent and B*X = B*(A —B)=0and XB*=(A—-B)B*=0.

(«<=): Let A= B+ X and B*X = XB* = 0 for some idempotent X. Then, B*(A— B) =B*X =0
and (A — B)B* = XB* = 0. Therefore, B < A by (1.2). O
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COROLLARY 4.8. Let A € Y P(H) and B € B(H). Then, B ; AA* if and only if B is an idempotent
and there exists an idempotent X such that AA* = B+ X and B*X = XB* = 0.

Proof. Let A € 9P (). Then, (AA*)? = AA*AA* = AA*. Hence, AA* is an idempotent. Now apply
Lemma 4.7. O

We end our work with the following result.

PROPOSITION 4.9. Let A € B() and C € 9P (). Then, B € B(S) is common x— lower bound of
A and CC* if and only if B is an idempotent and there exist X,Y € B(J) such that

A=B+ (I -B)X(I—B*) and CC*=B+Y,

where B*Y =Y B* = 0.
Proof. (=) : If B be a common %— lower bound of A and CC*, then B ; A and B ; CC*. Tt follows

from the assumption B < CC* and Lemma 4.7 that B is an idempotent and there exists an idempotent

Y € B(4) such that CC* = B + R, where B*R = RB* = 0. Since B is an idempotent and B % A, by
Theorem 4.3, there exists S € B(.) such that A = B+ (I — B*)S(I — B*).

(<) : If there exists an idempotent ¥ such that CC* = B +Y with B*Y = 0 and YB* = 0, then
B ; CC*. The assumption A = B + (I — B*)S(I — B*) and the fact that B is an idempotent yield
B*(A—B)=0and (A— B)B* =0. Hence, B < A and B is a common *— lower bound of A and CC*. 0O
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