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SHRINKAGE FUNCTION AND ITS APPLICATIONS IN MATRIX APPROXIMATION∗

TOBY BOAS† , ARITRA DUTTA‡ , XIN LI‡ , KATHRYN P. MERCIER§ , AND ERIC NIDERMAN‡

Abstract. The shrinkage function is widely used in matrix low-rank approximation, compressive sensing, and statistical

estimation. In this article, an elementary derivation of the shrinkage function is given. In addition, applications of the shrinkage

function are demonstrated in solving several well-known problems, together with a new result in matrix approximation.

Key words. Shrinkage function, Singular value decomposition, Low-rank approximation, Sparse approximation.

AMS subject classifications. 65F15, 65F30, 65F35, 65F50, 65K10.

1. Introduction. Historically some important mathematical functions have been introduced for con-

venience. For example, the Heaviside step function H(·), a piecewise constant function given by:

H(x) =


1, x > 0
1
2 , x = 0

0, x < 0

,

and the Dirac delta function δ(·) (more precisely, a distribution (see, e.g., [1])), a generalized function whose

discrete analog is referred to as the Kronecker delta function:

δij =

{
1, i = j

0, i 6= j
.

This article concerns a newcomer, the shrinkage function Sλ(·), first introduced by Donoho and Johnstone

in their landmark paper ([7], see also [18]) on function estimation using wavelets in the early 1990’s. Recently,

the shrinkage function has been heavily used in the solutions of several optimization and approximation

problems of matrices (see, e.g., [3, 11, 17, 21]). We give an elementary treatment that is accessible to a

vast group of researchers, as it only requires basic knowledge in calculus and linear algebra and show how

naturally the shrinkage function can be used in solving more advanced problems.

2. A calculus problem. We start with a simple calculus problem. Let λ > 0 and a ∈ R be given.

Consider the following problem:

min
x∈R

[
λ|x|+ 1

2
(x− a)2

]
.
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We adopt the notation a = arg min
x∈A

f(x) to mean that a ∈ A is a solution of the minimization problem

min
x∈A

f(x) and define:

(2.1) Sλ(a) := arg min
x∈R

[
λ|x|+ 1

2
(x− a)2

]
.

Theorem 2.1. Let λ > 0 be fixed. For each a ∈ R, there is one and only one solution Sλ(a), to the

minimization problem (2.1). Furthermore,

Sλ(a) =


a− λ, a > λ

0, |a| ≤ λ
a+ λ, a < −λ

.

Remark 2.2. The function Sλ(·) defined above is called the shrinkage function (also referred to as

shrinkage or soft threshold, [7, 18]). One may imagine that Sλ(a) “shrinks” a to zero when |a| ≤ λ. A plot

of Sλ(·) for λ = 1 is given in Fig. 1.
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Figure 1. A plot of Sλ for λ = 1.

Proof of Theorem 2.1. Let f(x) = λ|x| + 1
2 (x − a)2. Note that f(x) → ∞ when |x| → ∞ and f is

continuous on R and differentiable everywhere except a single point x = 0. So, f achieves its minimum

value on R at one of its critical points. A plot of f for different values of a and λ = 1 is given in Fig. 2. Let

x∗ = arg min
x∈R

f(x).

We consider three cases.

Case 1: x∗ > 0. Since f is differentiable at x = x∗ and achieves its minimum, we must have f ′(x∗) = 0.

Note that, for x > 0, we have

f ′(x) =
d

dx

[
λx+

1

2
(x− a)2

]
= λ+ (x− a).

So,

λ+ (x∗ − a) = 0,
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Figure 2. Plots of f(x) for different values of a with λ = 1.

which implies

x∗ = a− λ.

To be consistent with x∗ > 0, it is necessary that a− λ > 0 or, equivalently, a > λ.

Case 2: x∗ < 0. By proceeding similarly as in Case 1 above, we can arrive at

x∗ = a+ λ with a < −λ.

Case 3: x∗ = 0. Note that f(x) is no longer differentiable at x∗ = 0 (so we could not use the condition

f ′(x∗) = 0 as before). But since f has a minimum at x∗ = 0 and since f is differentiable on each side of

x∗ = 0, it is necessary that

f ′(x) > 0 for x > 0 and f ′(x) < 0 for x < 0.

So,

λ+ x− a > 0 for x > 0 and − λ+ x− a < 0 for x < 0.

Thus,

λ− a > 0 and − λ− a < 0,

or, equivalently,

|a| ≤ λ.

To summarize, we have

x∗ =


a− λ with a > λ

a+ λ with a < −λ
0 with |a| ≤ λ

.

Since one and only one of the three cases 1) a > λ, 2) a < −λ, and 3) |a| ≤ λ holds, we obtain the

uniqueness. With the uniqueness, it is straightforward to verify that each of the three cases would imply the

corresponding formula for x∗.
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3. A sparse recovery problem. Recently, research in compressive sensing leads to the recognition of

the fact that for many optimization problems, the `1-norm of a vector is a good substitute for the count of

the number of non-zero entries of the vector in many minimization problems. In this section, we solve some

simple minimization problems using the count of non-zero entries or the `1-norm. Given a vector v ∈ Rn,

we want to solve

(3.2) min
u∈Rn

[
‖u‖`0 +

β

2
‖u− v‖2`2

]
,

where ‖ · ‖`0 denotes the number of non-zero entries of u, such that, ‖u‖`0 = #{i|ui 6= 0}, the cardinality of

u, ‖ · ‖`2 denotes the Euclidean norm in Rn, and β > 0 is a given balancing parameter. We can solve prob-

lem (3.2) component-wise (in each ui) as follows. Notice that, given u ∈ Rn, each entry ui of u contributes 1

to ‖u‖`0 if ui is non-zero, and contributes 0 if ui is zero. Since we are minimizing g(u) := ‖u‖`0 + β
2 ‖u−v‖2`2 ,

if ui is zero then the contribution to g(u) depending on this ui is β
2 v

2
i ; otherwise, if ui is non-zero, then we

should minimize β
2 (ui − vi)2 for ui ∈ R \ {0}, which forces that ui = vi and contributes 1 to g(u) as the

minimum value. Therefore, the solution u to problem (3.2) is given component-wise by

ui =

{
0, if β

2 (vi)
2 ≤ 1

vi, otherwise
.

Next, we replace ‖u‖`0 by ‖u‖`1 in (3.2) and solve:

(3.3) min
u∈Rn

[
‖u‖`1 +

β

2
‖u− v‖2`2

]
,

where ‖ · ‖`1 denotes the `1 norm in Rn.

Using Theorem 2.1, we can solve (3.3) component-wise as follows.

Theorem 3.1. [10] Let β > 0 and v ∈ Rn be given and let

u∗ = arg min
u∈Rn

[
‖u‖`1 +

β

2
‖u− v‖2`2

]
.

Then

u∗ = S1/β(v),

where, S1/β(v) denotes the vector whose entries are obtained by applying the shrinkage function S1/β(·) to

the corresponding entries of v.

Proof. If ui and vi denote the ith entry of the vectors u and v, respectively, i = 1, 2, . . . , n, then we

have,

u∗ = arg min
u∈Rn

[
‖u‖`1 +

β

2
‖u− v‖2`2

]
= arg min

u∈Rn

[
n∑
i=1

(
1

β
|ui|+

1

2
(ui − vi)2

)]
.

Since the i-th term in the summation depends only on ui, the vector u∗ must have components u∗i satisfying

u∗i = arg min
u∗i∈R

[
1

β
|ui|+

1

2
(ui − vi)2

]
,

for i = 1, 2, . . . , n. But by Theorem 2.1, the solution to each of these problems is given precisely by S1/β(vi).

This yields the result.
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Remark 3.2. The previous proof still works if we replace the vectors by matrices and use the extension

of the `1 and `2-norms to matrices by treating them as vectors. Thus by using the same argument we can

easily show the following matrix version of the previous theorem.

Theorem 3.3. [10] Let β > 0 and V ∈ Rm×n be given. Then

S1/β(V) = arg min
U∈Rm×n

[
‖U‖`1 +

β

2
‖U−V‖2`2

]
,

where S1/β(V) is defined component-wise.

Theorem 3.3 solves the problem of approximating a given matrix by a sparse matrix by using the shrinkage

function.

4. Approximation by low rank matrices. The sparse approximation as given by Theorem 3.3 has

many applications such as data compression and dimension reduction [2, 9]. In these areas, one may also be

interested in finding matrices of low rank (see, e.g., [8, 11, 17, 21]). For example, given a matrix A ∈ Rm×n,

we want to solve the following approximation problem:

min
X∈Rm×n

[
rank(X) +

β

2
‖X−A‖2F

]
,

where ‖ · ‖F denotes the Frobenius norm of matrices (which turns out to be equivalent to the vector l2 norm

if we treat a matrix as a vector - see more discussion on the matrix norms in Subsection 4.1).

This is a harder problem since rank(X) is not a convex function. A convex relaxation (see, e.g., [9])

of the problem is provided by replacing the term rank(X) by the nuclear norm of X, ‖X‖∗, (again, see

subsection 4.1 for a discussion on the nuclear norm and its properties). The problem then becomes:

(4.4) min
X∈Rm×n

[
‖X‖∗ +

β

2
‖X−A‖2F

]
.

This problem again yields an explicit solution ([3, 12]), but in this literature, the formula is derived by using

advanced tools from convex analysis (“subdifferentials” to be more specific) [20]. Here, we will show how we

can obtain the solution by using simple ideas from the previous section.

4.1. Singular value decomposition and matrix norms. It will be beneficial to recall the various

matrix norms. Many useful matrix norms can be defined in terms of the singular values of the matrices. We

will deal with two of them: the nuclear norm ‖ · ‖∗ and the Frobenius norm ‖ · ‖F .

Let A ∈ Rm×n and A = UÃVT be a singular value decomposition (SVD) of A with U ∈ Rm×m and V ∈
Rn×n being two orthogonal matrices (that is, U−1 = UT and V−1 = VT ) and Ã = diag(σ1(A), σ2(A), . . . ,

σmin{m,n}(A)) being a m× n non-square diagonal matrix having σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0

on its diagonal and 0’s elsewhere. The σi(A)’s are called the singular values of A. It is known that every

matrix in Rm×n has a SVD and that SVD of a matrix is not necessarily unique [16]. Then the nuclear norm

of A is defined as

‖A‖∗ =

min{m,n}∑
i=1

σi(A),
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and the Frobenius norm of A as

‖A‖F =

min{m,n}∑
i=1

(σi(A))2

1/2

.

This norm turns out to be the same as the `2 norm of A, treated as a vector in Rmn×1. This is because the

nonzero singular values σi(A)’s are exactly the square root of the nonzero eigenvalues of AAT or ATA. So,

‖A‖2l2 =

m∑
i=1

n∑
j=1

(aij)
2 = trace(AAT ) =

min{m,n}∑
i=1

(σi(A))2.

Here we have used trace(·) to denote the trace of a matrix (which is equal to the sum of all diagonal entries

of the matrix).

We will need the following simple and well-known fact about the nuclear norms of a matrix and that of

its diagonal [15]: Let D(A) denote the diagonal matrix using the diagonal of A then:

(4.5) ‖D(A)‖∗ ≤ ‖A‖∗.

This inequality can be verified by using a SVD of A = UÃVT as follows. For completeness we will provide

a simple proof of (4.5). Write U = (uij), V = (vij), and t = min{m,n}. Then

‖D(A)‖∗ = ‖D(UÃVT )‖∗ =

t∑
i=1

∣∣∣∣∣∣
t∑

j=1

σj(A)uijvij

∣∣∣∣∣∣ ≤
t∑

j=1

σj(A)

t∑
i=1

|uijvij |

≤
t∑

j=1

σj(A) ·

(
t∑
i=1

|uij |2
)1/2( t∑

i=1

|vij |2
)1/2

≤
t∑

j=1

σj(A) = ‖A‖∗,

where we have used the Cauchy-Schwarz inequality in obtaining the second inequality, and the orthogonality

of U and V (so that
∑t
i=1 |uij |2 ≤ 1 and

∑t
i=1 |vij |2 ≤ 1) in the last inequality.

We will also use the fact that for any orthogonal matrices L and R, LAR and A have the same singular

values, and therefore their Frobenius norms and nuclear norms are same:

‖LAR‖F = ‖A‖F and ‖LAR‖∗ = ‖A‖∗.

This is known as the unitary invariance of the Frobenius norm and nuclear norm.

4.2. Solution to (4.4) via problem (2.1). We are ready to show how problem (4.4) is problem (2.1)

in disguise. Let UÃVT be a SVD of A. Given β > 0, using the unitary invariance of the Frobenius norm

and the nuclear norm, we have

min
X

[
‖X‖∗ +

β

2
‖X−A‖2F

]
= min

X

[
‖X‖∗ +

β

2
‖X−UÃVT ‖2F

]
= min

X

[
‖UTXV‖∗ +

β

2
‖UTXV − Ã‖2F

]
.

It can be seen from the last expression that the minimum occurs when X̃ := UTXV is diagonal since both

terms in that expression get no larger when X̃ is replaced by its diagonal matrix (with the help of (4.5)).

So, the matrix E = (eij) := X̃− Ã is a diagonal matrix. Thus,

X = UX̃VT , with X̃ = Ã + E,
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which yields a SVD of X (using the same matrices U and V as in a SVD of A!). Then,

min
X

[
‖X‖∗ +

β

2
‖X−A‖2F

]
= min

X̃∈diag

[
‖X̃‖∗ +

β

2
‖X̃− Ã‖2F

]
= min

X̃∈diag

[∑
i

|x̃ii|+
β

2

∑
i

(x̃ii − σi(A))2

]
,(4.6)

where “diag” is the set of diagonal matrices in Rm×n. Note that (4.6) is an optimization problem similar to

(2.1) (for vectors (x̃11, x̃22, · · · )T as X̃ varies) whose solution is given by

x̃ii = S1/β(σi(A)), i = 1, 2, · · · .

To summarize, we have proven the following.

Theorem 4.1. [3] Suppose that A ∈ Rm×n and β > 0 are given. Then the solution to the minimization

problem (4.4) is given by X̂ = UX̃VT where the diagonal matrix X̃ has diagonal entries

x̃ii = S1/β(σi(A)), i = 1, 2, . . . ,min{m,n},

where UÃVT is a SVD of A.

Remark 4.2. 1. A recent proof of this theorem is given by Cai, Candes, and Shen in [3] where they

give an advanced verification of the result. Our proof given above has the advantage that it is elementary

and allows the reader to “discover” the result.

2. There are many earlier discoveries of related results ([14, 16]) where rank(X) is used instead of the nuclear

norm ‖X‖∗. We will examine one such variant in the next section.

3. A closely related (but harder) problem is compressive sensing ([4, 5]). In a more general set up where

only a subset of the entries of the data matrix is observable, for example, matrix completion problem under

low-rank penalties [3, 4, 12]:

min
X

rank(X) subject to Aij = Xij , (i, j) ∈ Ω,

where Ω ⊆ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, is indeed NP-hard [6]. Note that, the matrix completion problem

is a special case of the affinely constrained matrix rank minimization problem [12]:

min
X

rank(X) subject to A(X) = b,

where X ∈ Rm×n is the decision variable and A : Rm×n → Rp is a linear map. One common idea used in

such a situation is to consider a convex relaxation of the above problem by replacing the rank by its convex

surrogate, the nuclear norm. Readers are strongly recommended to the recent survey by Bryan and Leise

([2]).

5. A variation. More problems can be solved by applying similar ideas. For example, let us consider a

variant of a well-known result of Schmidt (see, e.g., [14, Section 5]), replacing the rank by the nuclear norm:

For a fixed positive number τ , consider

(5.7) min
X∈Rm×n

‖X−A‖F subject to ‖X‖∗ ≤ τ.
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Using similar methods as in Section 3, this problem can be transformed (see the derivation below) into the

following:

(5.8) min
u∈Rmin{m,n}

‖u− v‖`2 subject to ‖u‖`1 ≤ τ.

The LASSO (Least absolute shrinkage and selection operator) is a vastly used regression technique in data

mining and statistics [13, 18, 19]. It follows a simple model for variable selection and regularization. Let the

predictor variables, X ∈ RN×p and the responses, yi, i = 1, 2, . . . , N are given. Assuming that
∑
i xij/N = 0

and
∑
i x

2
ij/N = 1, the LASSO estimate is given by:

(5.9) β̂ = arg min
β
‖y − β0 −Xβ‖2`2 subject to ‖β‖`1 ≤ τ,

where β0 is the mean of the response vector y. Note that, (5.8) shares some similarity with (5.9) [13, 18, 19]. As

in [18], one can form a Lagrangian of (5.8) and solve:

(5.10) u∗ = arg min
u∈Rmin{m,n}

{
1

2
‖u− v‖2`2 + λ‖u‖`1

}
, with ‖Sλ(v)‖`1 = τ,

which has a solution u∗ = Sλ(v) according to Theorem 3.1. (The reason for us to use λ instead of β in (5.8)

is nonessential. It is only for indicating the similarity with the LASSO formulation.) We now sketch the

derivation of converting (5.7) to (5.8): As before, let A = UÃVT be a SVD of A. Then,

min
X∈Rm×n

‖X−A‖F = min
X∈Rm×n

‖UTXV − Ã‖F .

Note that ‖X‖∗ = ‖UTXV‖∗, so (5.7) can be written as

min
X∈Rm×n

‖X− Ã‖F subject to ‖X‖∗ ≤ τ,

which, by using (4.5), can be further transformed to

(5.11) min
X∈Rm×n

‖X− Ã‖F subject to X being diagonal and ‖X‖∗ ≤ τ.

Next, if we let u and v be two vectors in Rmin{m,n} consisting of the diagonal elements of X and Ã,

respectively, then (5.11) is equivalent to (5.8). Since Sλ1
(v) solves (5.10) we have,

1

2
‖Sλ1

(v)− v‖22 + λ1τ ≤
1

2
‖u− v‖2`2 + λ1‖u‖`1 ,

for all u ∈ Rmin{m,n}. Which implies, for all u ∈ Rmin{m,n},

1

2
‖Sλ1

(v)− v‖22 ≤
1

2
‖u− v‖2`2 + λ1(‖u‖`1 − τ).

Therefore,

1

2
‖Sλ1(v)− v‖22 ≤

{
1

2
‖u− v‖2`2

}
,

for all u ∈ Rmin{m,n}, such that ‖u‖`1 ≤ τ . Hence u∗ = Sλ(v) solves (5.8). Thus we have established the

following result.
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Theorem 5.1. [8] With the notations above, the solution to problem (5.7) is given by

X̂ = USλ(Ã)VT ,

for some λ such that ‖Sλ(Ã)‖`1 = τ.
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