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A TRANSFORMATION THAT PRESERVES PRINCIPAL MINORS

OF SKEW-SYMMETRIC MATRICES∗

ABDERRAHIM BOUSSAÏRI† AND BRAHIM CHERGUI†

Abstract. It is well known that two n × n symmetric matrices have equal corresponding principal minors of all orders if

and only if they are diagonally similar. This result cannot be extended to arbitrary matrices. The aim of this work is to give a

new transformation that preserves principal minors of skew-symmetric matrices.
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1. Introduction. Throughout this paper, all matrices are real or complex. The identity matrix of

order n is denoted by In and the transpose of a matrix A by At. A minor of a matrix A is the determinant

of a square submatrix of A, and the determinant of a principal submatrix is a principal minor. The order

of a minor is k if it is the determinant of a k × k submatrix.

In this work, we consider the following problem.

Problem 1.1. What is the relationship between two matrices having equal corresponding principal mi-

nors of all orders?

For symmetric matrices, this problem has been solved by Engel and Schneider [4]. More precisely, it

follows from their work (see [4, Theorem 3.5]) that two symmetric matrices A, B have equal corresponding

principal minors of all orders if and only if there exists a {−1, 1}-diagonal matrix D such that B = D−1AD.

Consider now two arbitrary n × n matrices A and B. We say that A, B are diagonally similar up to

transposition if there exists a nonsingular diagonal matrix D such that B = D−1AD or Bt = D−1AD.

Clearly, diagonal similarity up to transposition preserves all principal minors. But, as observed in [4] and [5]

(see Remark 1.2 below), this is not, in general, the unique way to construct a pair of matrices having equal

principal minors.

Remark 1.2. Consider the following skew-symmetric matrices:

A :=

(
R −T t
T S

)
and B :=

(
Rt −T t
T S

)
,

where R, S are square matrices.

We will see in Corollary 2.7 that if rank T ≤ 1, then A and B have equal corresponding principal minors

of all orders. However, these matrices are not always diagonally similar up to transposition.
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Hartfiel and Loewy [5], and then Loewy [6] considered a class of matrices excluding the situation of

the previous remark. Their work concerns irreducible matrices with an additional condition. In order to

state the main theorem of Loewy [6], we need the following definitions and notations. Let A = [aij ] be

an n × n matrix and let X,Y be two nonempty subsets of [n] (where [n] := {1, . . . , n}). We denote by

A[X,Y ] the submatrix of A having row indices in X and column indices in Y . If X = Y , then A[X,X] is

a principal submatrix of A and we abbreviate this to A[X]. A square matrix A is irreducible if there exists

no permutation matrix P , so that A can be reduced to the form PAP t =

(
X Z

0 Y

)
, where X and Y are

square matrices.

The main theorem of Loewy [6] is stated as follows.

Theorem 1.3. Let A, B be two n× n matrices. Suppose n ≥ 4, A irreducible and for every partition of

[n] into two subsets X,Y with |X| ≥ 2, |Y | ≥ 2, either rank A[X,Y ] ≥ 2 or rank A[Y,X] ≥ 2. If A and B

have equal corresponding principal minors of all orders, then they are diagonally similar up to transposition.

For skew-symmetric matrices with no zeros off the diagonal, we have improved this theorem in [1] by

considering only the principal minors of order at most 4.

We will describe now another way to construct a pair of skew-symmetric matrices having equal corre-

sponding principal minors of all orders. Let A = [aij ] be a n× n matrix. Following [1], a subset X of [n] is

a HL-clan of A if both of matrices A
[
X,X

]
and A

[
X,X

]
have rank at most 1 (where X := [n] \X). By

definition, ∅, [n] and singletons are HL-clans. Consider now the particular case when A is skew-symmetric

and let X be a subset of [n]. We denote by Inv(X,A) := [tij ] the matrix obtained from A as follows. For

any i, j ∈ [n], tij = −aij if i, j ∈ X and tij = aij , otherwise. As we have mentioned in Remark 1.2, if X is an

HL-clan of A, then Inv(X,A) and A have equal corresponding principal minors of all orders. More generally,

let A and B be two skew-symmetric matrices and assume that there exists a sequence A0 = A, . . . , Am = B

of n × n skew-symmetric matrices such that for k = 0, . . . ,m − 1, Ak+1 = Inv(Xk, Ak), where Xk is a

HL-clan of Ak. It is easy to see that A and B have equal corresponding principal minors. Two matrices A,B

obtained in this way are called HL-clan-reversal-equivalent. This defines an equivalence relation between

n× n skew-symmetric matrices which preserves principal minors. In the converse direction, we propose the

following conjecture.

Conjecture 1.4. Two n × n skew-symmetric real matrices have equal corresponding principal minors

of all orders if and only if they are HL-clan-reversal-equivalent.

We will restrict ourselves to the classMn of n×n skew-symmetric matrices with entries from {−1, 0, 1}
and such that all off-diagonal entries of the first row are nonzero. We obtain the following theorem, which

is a partial answer to the conjecture above.

Theorem 1.5. Let A,B ∈Mn. Then, the following statements are equivalent:

i) A and B have equal corresponding principal minors of order at most 4;

ii) A and B have equal corresponding principal minors of all orders;

iii) A and B are HL-clan-reversal-equivalent.

2. HL-clan-reversal-equivalence. In this section, we present some properties of HL-clan-reversal-

equivalence. We start with the following basic facts. Let A = [aij ] be a skew-symmetric n× n matrix.

Fact 2.1. If D = [dij ] is a nonsingular diagonal matrix, then A and D−1AD have the same HL-clans.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 131-137, May 2017.

133 A Transformation that Preserves Principal Minors of Skew-symmetric Matrices

Proof. Let X be a subset of [n]. We have the following equalities:

(D−1AD)
[
X,X

]
= (D−1

[
X
]
)(A

[
X,X

]
)(D [X]),

(D−1AD)
[
X,X

]
= (D−1 [X])(A

[
X,X

]
)(D

[
X
]
).

But, if the matrices D [X] and D
[
X
]

are nonsingular, then (D−1AD)
[
X,X

]
and A

[
X,X

]
(respectively

(D−1AD)
[
X,X

]
and A

[
X,X

]
) have the same rank. Therefore, A and D−1AD have the same HL-clans.

Fact 2.2. If C is an HL-clan of A, then it is an HL-clan of Inv(C,A).

It suffices to see that
A
[
C,C

]
= Inv(C,A)

[
C,C

]
,

A
[
C,C

]
= Inv(C,A)

[
C,C

]
.

Fact 2.3. If C is an HL-clan of A and X is a subset of [n], then C ∩ X is an HL-clan of A[X] and

Inv(C,A)[X] = Inv(C ∩X,A[X]).

Proof. We have rank (A [C ∩X,X \ (C ∩X)]) ≤ rank (A
[
C,C

]
) ≤ 1 because A [C ∩X,X \ (C ∩X)] is

a submatrix of A
[
C,C

]
and C is an HL-clan of A. Analogously, we have rank (A [X \ (C ∩X), C ∩X]) ≤

rank (A
[
C,C

]
) ≤ 1. It follows that C ∩X is an HL-clan of A[X]. The second statement is trivial.

The next proposition states that HL-clan-reversal-equivalence generalizes diagonal similarity up to trans-

position.

Proposition 2.4. Let A = [aij ] and B = [bij ] be two n × n skew-symmetric matrices. If A and B are

diagonally similar up to transposition, then they are HL-clan-reversal-equivalent.

Proof. Let A = [aij ] and B = [bij ] be two n × n skew-symmetric matrices diagonally similar up to

transposition. As Bt = −B = Inv([n], B), we can assume that B = ∆−1A∆ for some nonsingular diagonal

matrix ∆. It is easy to see that bij = ±aij for i, j ∈ [n] and hence ∆ may be chosen to be a {−1, 1}-diagonal

matrix.

We conclude by Lemma 2.5 below.

Lemma 2.5. Let A = [aij ] be an n× n skew-symmetric matrix and let D be a {−1, 1}-diagonal matrix.

Then A and D−1AD are HL-clan-reversal-equivalent.

Proof. We denote by d1, d2, . . . , dn the diagonal entries of D.

Let UD := {i ∈ [n] : di = −1}. We will show by induction on t := |UD| that there exists a sequence A0 =

A, . . . , Am = D−1AD of n×n skew-symmetric matrices such that for k = 0, . . . ,m−1, Ak+1 = Inv(Xk, Ak)

where Xk = ∅, Xk = [n] or [n] \ Xk is a singleton. If t = 0, then D−1AD = A and hence it suffices to

take m = 1, A0 = A and X0 = ∅. Now assume that t > 0. Let j ∈ UD and consider the diagonal matrix

∆(j) = diag(δ1, . . . , δn) where δj = −1 and δi = 1 if i 6= j. Clearly |UD∆(j) | = t− 1 and then, by induction

hypothesis, there exists a sequence A0 = A, . . . , Am = (D∆(j))−1AD∆(j) of n× n skew-symmetric matrices

such that for k = 0, . . . ,m− 1, Ak+1 = Inv(Xk, Ak) where Xk = ∅, Xk = [n] or [n] \Xk is a singleton. To

prove that A and D−1AD are HL-clan-reversal-equivalent, it suffices to extend the sequence A0 = A, . . . , Am
by adding two terms, Am+1 := Inv([n], Am) and Am+2 := Inv([n] \ {j} , Am+1).

The following proposition appears in another form in [5, Lemma 5].

Proposition 2.6. Let A = [aij ] be a skew-symmetric n × n matrix. If X is an HL-clan of A, then

det(Inv(X,A)) = det(A).
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Proof. Without loss of generality, we can assume that X = {1, . . . , p}. We will show that A and

Inv(X,A) have the same characteristic polynomial. As X is an HL-clan of A, the submatrix A[X,X]

has rank at most 1 and hence there are two column vectors α =

 αp+1

...

αn

 and β =

 β1

...

βp

 such that

A[X,X] = αβt.

Let A[X] := R and A[X] := S. Then A =

(
R −βαt
αβt S

)
and Inv(X,A) =

(
Rt −βαt
αβt S

)
, where

Rt = −R. We will prove that A and Inv(X,A) have the same characteristic polynomial.

Let λ satisfying |λ| > λ0 where λ0 is the spectral radius of R. Then R − λIp is nonsingular and hence,

by using the Schur complement, we have

det(A− λIn) = det(R− λIp) det(S − λIn−p + αβt(R− λIp)−1βαt)

= det(R− λIp) det(S − λIn−p + (βt(R− λIp)−1β)ααt)

= det((R− λIp)t) det(S − λIn−p + (βt(R− λIp)−1β)tααt)

= det((Rt − λIp)) det(S − λIn−p + (βt(Rt − λIp)−1β)ααt)

= det(Inv(X,A)− λIn).

It follows that A and Inv(X,A) have the same characteristic polynomial and det(A) = det(Inv(X,A)).

The following corollary is a direct consequence of the previous proposition and Fact 2.3.

Corollary 2.7. Let A = [aij ] be a skew-symmetric n × n matrix. If X is an HL-clan of A, then

Inv(X,A) and A have the same principal minors.

3. Digraphs and orientations of a graphs. We start with some definitions about digraphs. A

directed graph or digraph Γ consists of a nonempty finite set V of vertices together with a (possibly empty)

set E of ordered pairs of distinct vertices called arcs. Such a digraph is denoted by (V,E). The converse of

a digraph Γ denoted by Γ∗ is the digraph obtained from Γ by reversing the direction of all its arcs.

Let Γ = (V,E) be a digraph and let X be a subset of V . The subdigraph of Γ induced by X is the

digraph Γ [X] whose vertex set is X and whose arc set consists of all arcs of Γ which have end-vertices in X.

Two digraphs Γ = (V,E) and Γ′ = (V ′, E′) are said to be isomorphic if there is a bijection ϕ from V

onto V ′ which preserves arcs, that is (x, y) ∈ E if and only if (ϕ(x), ϕ(y)) ∈ E′. Any such bijection is called

an isomorphism. We say that Γ and Γ′ are hemimorphic, if there exists an isomorphism from Γ onto Γ′ or

from Γ∗ onto Γ′.

Let Γ = (V,E) be a digraph. Following [3], a subset X of V is a clan of Γ if for any a, b ∈ X and

x ∈ V�X, (a, x) ∈ E (resp. (x, a) ∈ E)) if and only if (b, x) ∈ E (resp. (x, b) ∈ E). For a subset

X of V , we denote by Inv(X,Γ) the digraph obtained from Γ by reversing all arcs of Γ [X]. Clearly,

Inv(X, Inv(X,Γ)) = Γ and moreover, if X is a clan of Γ, then X is a clan of Inv(X,Γ).

Let G = (V,E) be a simple graph (without loops and multiple edges). An orientation of G is an

assignment of a direction to each edge of G in order to obtain a directed graph
−→
G . For x 6= y ∈ V , x

−→
G→ y

means (x, y) is an arc of
−→
G . For Y ⊆ V and x ∈ V�Y , x

−→
G→ Y means x

−→
G→ y for every y ∈ Y .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 131-137, May 2017.

135 A Transformation that Preserves Principal Minors of Skew-symmetric Matrices

Remark 3.1.

i) There are exactly four possible simple graphs with three vertices: the complete graph K3, the path

P2, the complement of these two graphs, namely K3 and P2 (see Figure 1);

ii) The path P2 has two non-hemimorphic orientations Γ1 and Γ2 (see Figure 2 (a));

iii) The complete graph K3 has two non-hemimorphic orientations Γ3 and Γ4 (see Figure 2 (b)).
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The proof of our main theorem is based on a result of Boussäıri et al. [2] about the relationship between

hemimorphy and clan decomposition of digraphs (see [2, Theorem 3]). Proposition 3.2 below is a special

case of this result.

Proposition 3.2. Let G = (V,E) be a finite simple graph and let Gσ, Gτ be two orientations of G.

Then the following statements are equivalent:

i) Gσ[X] and Gτ [X] are hemimorphic, for any subset X of V of size 3;

ii) There exists a sequence σ0 = σ, . . . , σm = τ of orientations of G such that for i = 0, . . . ,m − 1,

Gσi+1 = Inv(Xi, G
σi) where Xi is a clan of Gσi .

4. Proof of main theorem. Let G = (V,E) be a graph whose vertices are v1, v2, . . . , vn. An orienta-

tion of G can be seen as a skew-symmetric map σ from V × V to the set {−1, 0, 1} such that σ(i, j) = 1 if

an only if (vi, vj) is an arc. Such orientation is denoted by Gσ.

Let Gσ be an orientation of G. The skew-adjacency matrix of Gσ is the real skew-symmetric matrix

S(Gσ) = [si,j ] where si,j = 1 and sj,i = −1 if (vi, vj) is an arc of Gσ, otherwise si,j = sj,i = 0. Clearly,
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the entries of S(Gσ) depend on the ordering of vertices. But the value of the determinant, det(S(Gσ)), is

independent of this ordering. So, we can write det(Gσ) instead of det(S(Gσ)).

Consider now an n× n skew-symmetric {−1, 0, 1}-matrix A. We associate to A its underlying graph G

with vertex set [n] and such that {i, j} is an edge of G if and only if aij 6= 0. Let σ be the map from [n]× [n]

to the set {−1, 0, 1} such that σ(i, j) = aij . Clearly, Gσ is the unique orientation of G such that S(Gσ) = A.

Remark 4.1. Let G = ([n] , E) be a graph and let Gσ be an orientation of G. Then:

i) For every subset X of [n], we have S(Inv(X,Gσ)) = Inv(X,S(Gσ));

ii) Inv([n] , Gσ) = (Gσ)∗ = G−σ;

iii) Every clan of Gσ is an HL-clan of S(Gσ).

In addition to Corollary 2.7, the proof of our main theorem requires the following lemma.

Lemma 4.2. Given a graph G with four vertices i, j, k, l such that i is adjacent to j, k, l. Let Gσ, Gτ be

two orientations of G. If i
Gσ→ {j, k, l}, i G

τ

→ {j, k, l} and det(Gσ) = det(Gτ ), then Gσ [j, k, l] and Gτ [j, k, l]

are hemimorphic.

Proof. By Remark 3.1, we have four cases to consider.

i) If G [j, k, l] is the empty graph, then Gτ [j, k, l] = Gσ [j, k, l].

ii) If G [j, k, l] is the graph P2, then Gτ [j, k, l] = Gσ [j, k, l] or Gτ [j, k, l] = (Gσ [j, k, l])∗.

iii) If G [j, k, l] is the path P2 and Gσ [j, k, l] is hemimorphic to Γ1, then det(Gσ) = 4 and Gτ [j, k, l] is

hemimorphic to Γ1 or Γ2. The case when Gτ [j, k, l] is hemimorphic to Γ2 implies that det(Gτ ) =

0, which is impossible. Analogously, if Gσ [j, k, l] is hemimorphic to Γ2, then G
τ

[j, k, l] must be

hemimorphic to Γ2.

iv) If G [j, k, l] is the complete graph K3 and Gσ [j, k, l] is hemimorphic to Γ3, then det(Gσ) = 9 and

Gτ [j, k, l] is hemimorphic to Γ3 or Γ4. As in iii), the case when Gτ [j, k, l] is hemimorphic to Γ4

implies that det(Gτ ) = 1, which is impossible. Analogously, if Gσ [j, k, l] is hemimorphic to Γ4, then

Gτ [j, k, l] must be hemimorphic to Γ4.

Proof of Theorem 1.5. The implication ii)=⇒i) is obvious. To prove iii)=⇒ii), it suffices to apply Corol-

lary 2.7. Let us prove that i) implies iii). As all off-diagonal entries of the first row in A and B are

nonzero, then there are two {−1, 1}-diagonal matrices D and D′ such that the first row of A′ := D−1AD

(resp B′ := D′−1BD′) is (0, 1, 1, . . . , 1). The matrices A′ and B′ have the same underlying graph G be-

cause A and B have equal corresponding principal minors of order 2. Let Gσ (resp. Gτ ) be the unique

orientation of G such that S(Gσ) = A′ (resp. S(Gτ ) = B′). We will show that i) of Proposition 3.2

holds for Gσ and Gτ . For this, let X = {j, k, l} be a subset of [n] of size 3. If 1 ∈ X (for exam-

ple j = 1), then 1
Gσ→ {k, l}, 1

Gτ→ {k, l} and hence Gσ [j, k, l] is isomorphic to Gτ [j, k, l]. Assume now

that 1 /∈ X and let Y := {1, j, k, l}. We have 1
Gσ→ {j, k, l} and 1

Gτ→ {j, k, l}. Moreover, as A and

A′ (resp. B and B′) are diagonally similar, we have det(A′ [Y ]) = det(A [Y ]), det(B′ [Y ]) = det(B [Y ])

and hence det(A′ [Y ]) = det(B′ [Y ]) because A and B have equal corresponding principal minors of or-

der 4. By definition, we have det(Gσ [Y ]) = det(A′ [Y ]) and det(Gτ [Y ]) = det(B′ [Y ]). It follows that

det(Gσ [Y ]) = det(Gτ [Y ]) and, then by Lemma 4.2, Gσ [j, k, l] and Gτ [j, k, l] are hemimorphic. Now, from

Proposition 3.2, there exists a sequence of orientations σ0 = σ, . . . , σm = τ of G such that for i = 0, . . . ,m−1,

Gσi+1 = Inv(Xi, G
σi) where Xi is a clan of Gσi . Let A′i := S(Gσi) for i = 0, . . . ,m. By Remark 4.1, Xi is is

an HL-clan of A′i and A′i+1 = Inv(Xi, A
′
i) for i = 0, . . . ,m− 1. We conclude by applying Proposition 2.4.
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