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PROJECTIVE PARTITIONS OF VECTOR SPACES∗

MOHAMMAD JAVAHERI†

Abstract. Given infinite-dimensional real vector spaces V,W with |W | ≤ |V |, it is shown that there exists a collection of

subspaces of V that are isomorphic to W , mutually intersect only at 0, and altogether cover V .
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1. Introduction. A topological space X is said to partition another topological space Y if there exists

a collection of topological embeddings of X into Y so that the images of the embeddings partition Y i.e.,

they are mutually disjoint and altogether cover Y . Topological partitions were studied by Bankston and

McGovern in [4], where they showed that every nonempty subset of the n-dimensional sphere Sn partitions

the (2n + 1)-dimensional Euclidean space R2n+1 isometrically, which means that each embedding in the

partition is an isometric embedding. If one is not restricted to isometric embeddings, one can show that any

nonempty subset of Sn partitions Rn+2 [3]. On the other hand, Sn does not partition Rn+1 [10].

In this paper, we study projective partitions of real vector spaces. For a vector space V , let P(V ) be the

projective space modeled by V comprised of 1-dimensional subspaces of V .

Definition 1.1. Let V and W be real vector spaces. We say that W projectively partitions V if P(W )

partitions P(V ) isomorphically, or equivalently, if there exists a collection Λ of subspaces of V such that (i)

each element of Λ is isomorphic to W , (ii) if U1, U2 are distinct elements of Λ, then U1 ∩U2 = {0}, and (iii)

V =
⋃
U∈Λ U .

General subspace coverings of vector spaces have been studied extensively. For example, Khare [11]

obtained an expression for ν(F, V, k), the least number of proper subspaces of codimension k of a vector

space V over a field F needed to cover V ; see also [6]. Subspace partitions in the context of finite-dimensional

vector spaces over a finite field are also discussed extensively; for example, see [5, 7, 9] and the survey article

[8]. Projective partitions are distinct from the subspace partitions in these combinatorial studies, where the

subspaces can have potentially different dimensions.

In Section 2, we consider the finite dimensional case and show that Rn partitions Rm if and only if

m ≥ 2n (Theorem 2.2). As a corollary, it follows that the sphere Sn−1 partitions Sm−1 isometrically if and

only if m ≥ 2n. In section 2, we also discuss the problem of partitioning Euclidean spaces without using the

Axiom of Choice (which is needed in the proof of Theorem 2.2) to arrive at the familiar Hopf fibrations.

In Section 3, we consider the infinite-dimensional case and show that in general if W and V are real

vector spaces where their cardinalities satisfy the inequality |W | ≤ |V |, then W projectively partitions V .
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2. The finite dimensional case. For a set A, let |A| denote the cardinality of A. To consider the

finite dimensional case, we first need a lemma.

Lemma 2.1. Let U be a real vector space and {Uα : α ∈ J} be a collection of k-dimensional proper

subspaces of U , where k is a fixed positive integer. If |J | < |U |, then U 6=
⋃
α∈J Uα.

Proof. Let V be any (k + 1)-dimensional subspace of U (since each Uα is k-dimensional and a proper

subspace of U , such a V exists). Since U =
⋃
α∈J Uα, we have V =

⋃
α∈J(V ∩Uα), where V ∩Uα is a proper

subspace of V for each α ∈ J . By the main result of [6], we conclude that |J | ≥ |R|. Then, we have the

contradiction ∣∣∣∣∣ ⋃
α∈J

Uα

∣∣∣∣∣ = |J | · |R| = |J | < |U |,

and the lemma follows.

Theorem 2.2. Let R and S be real vector spaces of respective dimensions m and n, where m ∈ N∪{∞}
and n ∈ N. Then S projectively partitions R if and only if m ≥ 2n.

Proof. Without loss of generality, we let S = Rn. Suppose that Rn projectively partitions R i.e., there

exists a covering of R by n-dimensional subspaces that mutually intersect only at the origin. Let U1 and

U2 be two distinct members of the covering. Let Bi be a basis of Ui, i = 1, 2. Then B1 ∪ B2 is a linearly

independent set of 2n vectors in R. It follows that m ≥ 2n.

For the converse, let ω denote the least uncountable ordinal that has the same cardinality as R; in

particular, by the well-ordering principle, one can identify R\{0} with the set of ordinals less than ω i.e.,

we can let R\{0} = {Pα : α < ω}. We now construct a collection of n-dimensional subspaces that mutually

intersect only at the origin and altogether cover R by transfinite induction. Let V0 be any n-dimensional

subspace of R that contains P0. For a given α < ω, suppose by induction we have defined a set Λα of n-

dimensional subspaces of R that mutually intersect only at the origin and altogether contain {Pβ : β ≤ α}.
If Pα+1 is included in the union of members of Λα, then let Λα+1 = Λα. Thus, suppose Pα+1 is not included

in the union of members of Λα. We construct an n-dimensional subspace Vα+1 ⊆ R that contains Pα+1 and

intersects each subspace in Λα only at the origin. Let u1 = Pα+1 and suppose ui is defined for 1 ≤ i ≤ k,

where 1 ≤ k < n. Let Wk be the subspace spanned by u1, . . . , uk. By Lemma 2.1, the set

Uk =
⋃

V ∈Λα

V ⊕Wk

does not coincide with R, since each V ⊕ Wk is a proper (n + k)-dimensional subspace of R (note that

n + k < 2n ≤ m). It follows that there exists a vector uk+1 ∈ Rm\Uk. Clearly, the subspace spanned by

u1, . . . , uk+1, intersects each subspace in Λα only at the origin, and the inductive step in defining ui, i =

1, . . . , n, is completed. Now, let Vα+1 be the subspace spanned by u1, . . . , un. Then Vα+1 is an n-dimensional

subspace containing Pα+1 that intersects each subspace in Λα only at the origin. We let Λα+1 = Λα∪{Vα+1}.
This completes the inductive step of the transfinite induction. Finally, the set

⋃
α<ω Λα gives the desired

partition of R by Rn.

For m,n ∈ N, projective partitions of Rm by Rn are in one-to-one correspondence with isometric parti-

tions of Sm−1 by Sn−1. Therefore, we have the following corollary of Theorem 2.2.

Corollary 2.3. For positive integers m and n, Sn−1 partitions Sm−1 isometrically if and only if m ≥
2n.
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In the proof of Theorem 2.2, we used the Axiom of Choice in its equivalent formulation as the existence

of a well-ordering for any set. When n = 1, 2, 4, 8, and m is a multiple of n, one can construct the partition

explicitly without the Axiom of Choice. First, we need a lemma.

Lemma 2.4. Suppose that there exist real n × n matrices A1, . . . , An such that for every (x1, . . . , xn) ∈
Rn\{0} the matrix x1A1 + · · ·+ xnAn is invertible. Then Rn projectively partitions Rkn for all k ≥ 1 (not

assuming the Axiom of Choice).

Proof. The proof is by induction on k ≥ 1. The claim is trivial when k = 1. Suppose the claim is true

for k, and let Λk be a collection of n-dimensional subspaces of {0}×Rkn that mutually intersect only at the

origin and altogether cover {0} × Rkn ⊆ R(k+1)n. For each u = (u1, . . . , uk) ∈ (Rn)k, let

Su = lin {(ei, Aiu1, Aiu2, . . . , Aiuk) : 1 ≤ i ≤ n} ,

where lin(S) means the linear span of S, and ei denotes the n-tuple in Rn with 1 in the ith place and zero

everywhere else, 1 ≤ i ≤ n. Then the collection Λk+1 = {Su : u ∈ Rkn} ∪Λk of n-dimensional subspaces is a

vector space partition of R(k+1)n. To see this, let (x, y1, . . . , yk) ∈ R(k+1)n\{0}, x, y1, . . . , yk ∈ Rn. Suppose

first that x = (x1, . . . , xn) 6= 0. Since x1A1 + · · ·+ xnAn is invertible, the equations

(x1A1 + · · ·+ xnAn)ui = yi, 1 ≤ i ≤ k,

have unique solutions u1, . . . , uk, and so

(x, y1, . . . , yk) =

n∑
i=1

xi(ei, Aiu1, . . . , Aiuk).

If x = 0, then (x, y1, . . . , yn) ∈ {0} × Rkn and so it is included in a unique member of Λk. This completes

the induction step and the lemma follows.

Corollary 2.5. Let n ∈ {1, 2, 4, 8}. Then Rn projectively partitions Rkn for all k ≥ 1 (not assuming

the Axiom of Choice).

Proof. The maximum number of real n×n matrices A1, . . . , Al such that the matrices x1A1 + · · ·+xlAl
are invertible for all nonzero vectors x = (x1, . . . , xl), is given by the Radon-Hurwitz function [1, 2]:

ρ(n) = 2c + 8d,

where n = (2a + 1)2c+4d and 0 ≤ c ≤ 3. It can easily be seen that the only values of n for which ρ(n) = n

are n = 1, 2, 4, 8. The claim then follows from Lemma 2.4.

It follows from Corollary 2.5 that if n ∈ {1, 2, 4, 8} and n | m, then there exists a collection of isometric

copies of Sn−1 that partition Sm−1. Many of these cases follow also from the Hopf fibrations:

S1 ↪→ S2k−1 ↪→ CPk,
S3 ↪→ S4k−1 ↪→ HPk,
S7 ↪→ S8k−1 ↪→ OPk (k < 3),

where CPk,HPk, and OPk are the k-dimensional complex, quaternionic, and octonionic projective spaces

respectively.
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3. The infinite dimensional case. Next, we consider the infinite-dimensional case. By the results of

[13, 14], given an infinite-dimensional separable real Hilbert space, there exist orthogonal linear operators

Ui : H → H, i ≥ 1, such that

U2
i = −I and UiUj = −UjUi,

for all distinct i, j ≥ 1. In particular, if {xi}∞i=1 is a sequence of real numbers such that 0 <
∑∞
i=1 x

2
i < ∞,

then U =
∑∞
i=1 xiUi is invertible since

U2 =

∞∑
i=1

x2
iU

2
i +

∑
i6=j

xixj(UiUj + UjUi) = −

( ∞∑
i=1

x2
i

)
I.

One can then modify the proof of Lemma 2.4 to show that every separable infinite dimensional Hilbert space

can be partitioned by countable-dimensional subspaces. However, we use the theorem below to show the

existence of projective partitions in all infinite dimensions.

Theorem 3.1. Let V be an infinite-dimensional real vector space. Then there exists a set Λ of linear

maps V → V such that |Λ| = |V | and
n∑
i=1

xiTi

is an isomorphism of V for all n ≥ 1, all vectors (x1, . . . , xn) ∈ Rn\{0}, and all distinct elements T1, . . . , Tn ∈
Λ.

Proof. Let Q be a positive definite quadratic form on V , and let W = Cl(V,Q), the Clifford algebra

generated by V and Q. In other words, W is the free algebra generated by V subject to the conditions

v2 = Q(v)1W , where 1W is the multiplicative identity. Since in each representation of an element of W

there are only a finite number of elements of V , the sets V and W have the same cardinality, hence they are

isomorphic. Thus, it is sufficient to prove the claim of the theorem for W instead of V . Let B be a Hamel

basis of V . We let Λ = {Tv : v ∈ B}, where for each v ∈ B, we define Tv : W → W by setting Tv(w) = vw

(the algebra multiplication in W ). Each Tv is a linear map. Moreover, if (x1, . . . , xn) ∈ Rn\{0}, then

T =

n∑
i=1

xiTvi

is invertible, where vi ∈ B are distinct, 1 ≤ i ≤ n. To see this, note that the equation Tw = u is equivalent

to (
n∑
i=1

xivi

)
w = u,

which has a unique solution, since v =
∑n
i=1 xivi is invertible in W with inverse v−1 = Q(v)−1v.

Now, we are ready to prove the main result of this article.

Theorem 3.2. Let V be an infinite-dimensional real vector space and W be a real vector space such that

|W | ≤ |V |. Then W projectively partitions V .

Proof. The case where W is finite-dimensional follows from Theorem 2.2. Thus, suppose W is infinite-

dimensional. By Theorem 3.1, there exists a collection {Ti : i ∈ J} of linear maps such that |J | = |W | and

every nontrivial linear combination of the maps in the collection is invertible. Let B be a Hamel basis of

V . We write B =
⋃
α∈J Bα, where each Bα = {eαi : i ∈ I} has the same cardinality as W and the sets Bα,
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α ∈ J , are mutually disjoint. Let Vα be the subspace spanned by Bα. Then V = ⊕α∈JVα, and each Vα is

a subspace of V isomorphic to W . For each α ∈ J , let Pα : V → Vα be the projection onto Vα; moreover,

choose an isomorphism θα : Vα →W .

Choose an order < on J such that (J,<) is a well-ordered set. For each α ∈ J , let Uα = ⊕β>αVβ . For

α ∈ J and z ∈ Uα, let Xα,z be the subspace spanned by the vectors

eαi +
∑
β>α

θ−1
β ◦ Ti ◦ θβ(Pβ(z)), i ∈ I. (3.1)

For each z ∈ V , there are only finitely many β ∈ J such that Pβ(z) 6= 0, and so the summation in equation

(3.1) is finite. We show that the collection {Xα,z : α ∈ J, z ∈ Uα} is a collection of linear subspaces

isomorphic to W that altogether cover V and mutually intersect only at the origin. The vectors in (3.1) are

linearly independent (since for example their projections on Vα are linearly independent). Therefore, each

Xα,z has a Hamel basis whose cardinality is |I| = |W |, and so it is isomorphic to W .

Next, we show that for every nonzero v ∈ V , there exists α ∈ J and z ∈ Uα such that v ∈ Xα,z. Let α

be the least element of J such that Pα(v) 6= 0 and write

v = Pα(v) +
∑
β>α

Pβ(v) =
∑
i∈I

cie
α
i +

∑
β>α

Pβ(v),

where all but a positive number of ci’s are zero. Therefore, for each β > α, the map Sβ =
∑
i∈I ciθ

−1
β Tiθβ

on Vβ is invertible. It follows that there exists a unique vector zβ ∈ Vβ such that Sβ(zβ) = Pβ(v). Let

z =
∑
β>α zβ (since there are only finitely many β > α with Pβ(v) 6= 0, this is a finite sum). It follows that

v =
∑
i∈I

cie
α
i +

∑
β>α

Sβ(zβ)

=
∑
i∈I

cie
α
i +

∑
β>α

∑
i∈I

ciθ
−1
β Tiθβ(zβ)

=
∑
i∈I

cie
α
i +

∑
i∈I

ci
∑
β>α

θ−1
β Tiθβ(zβ)

=
∑
i∈I

ci

eαi +
∑
β>α

θ−1
β Tiθβ(Pβ(z))

 ,

which belongs to Xα,z.

It is left to show that Xα,z ∩Xα′,z′ = {0} if α 6= α′ or α = α′ but z 6= z′. First suppose that α 6= α′,

and without loss of generality, let α < α′. If v ∈ Xα,z ∩Xα′,z′ is nonzero, it follows from the definition (3.1)

that there exist real numbers ci, di, i ∈ I, such that

∑
i∈I

ci

eαi +
∑
β>α

θ−1
β Tiθβ(Pβ(z))

 =
∑
i∈I

di

eα′

i +
∑
β>α′

θ−1
β Tiθβ(Pβ(z′))

 . (3.2)

By taking Pα of both sides of (3.2), we have
∑
i∈I cie

α
i = 0, which implies that ci = 0 for all i ∈ I, and

so v = 0. Next, suppose that α = α′. By taking Pβ of both sides of (3.2) for each β > α, we have

θ−1
β Tiθβ(Pβ(z)) = θ−1

β Tiθβ(Pβ(z′)), and so Pβ(z) = Pβ(z′) for all β > α, which implies that z = z′. This

completes the proof of Theorem 3.2.
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