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SINGULAR VALUE AND NORM INEQUALITIES ASSOCIATED

WITH 2× 2 POSITIVE SEMIDEFINITE BLOCK MATRICES∗
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Abstract. This paper aims to give singular value and norm inequalities associated with 2 × 2 positive semidefinite block

matrices.
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1. Introduction. Let Mn(C) denote the space of n × n complex matrices. A norm ‖.‖ on Mn(C) is

called unitarily invariant if ‖UAV ‖ = ‖A‖ for all A ∈ Mn(C) and for all unitary matrices U, V ∈ Mn(C).

For Hermitian matrices A, B ∈Mn(C), we write A ≥ B to mean A−B is positive semidefinite, particularly,

A ≥ 0 indicates that A is positive semidefinite. Likewise, if A is positive definite, we write A > 0. For

A ∈Mn(C), the singular values of A, denoted by s1 (A) , s2 (A) , . . . , sn (A), are the eigenvalues of the positive

semidefinite matrix |A| = (A∗A)
1
2 , arranged in decreasing order and repeated according to multiplicity as

s1 (A) ≥ s2 (A) ≥ · · · ≥ sn (A). If A is Hermitian, we label its eigenvalues as λ1 (A) ≥ λ2 (A) ≥ · · · ≥ λn (A).

Several relations between eigenvalues of Hermitian matrices can be obtained by Weyl’s monotonicity principle

[2], which asserts that if A, B are Hermitian and A ≥ B, then

λj (A) ≥ λj (B) for j = 1, . . . , n.

The direct sum of A and B, denoted by A ⊕ B, is defined to be the block diagonal matrix

[
A 0

0 B

]
.

Positive semidefinite block matrices play an important role in deriving matrix inequalities. A survey of

results about 2× 2 positive semidefinite block matrices and related inequalities can be found in Section 7.7

of [8].

It is evident that if A,B,C ∈ Mn(C) are such that

[
A B

B∗ C

]
≥ 0, then A and C are positive

semidefinite.

A norm inequality due to Horn and Mathias [7] says that if A, B, C ∈Mn(C) are such that

[
A B

B∗ C

]
≥

0, then for all p > 0 and for every unitarily invariant norm, we have

(1.1) ‖|B|p‖2 ≤ ‖Ap‖ ‖Cp‖ .
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Recently, Audeh and Kittaneh [1] proved that if A,B,C ∈Mn(C) are such that

[
A B

B∗ C

]
≥ 0, then

(1.2) sj (B) ≤ sj (A⊕ C) for j = 1, . . . , n.

Bhatia and Kittaneh [3] proved that if A, B are positive semidefinite, then

(1.3) sj

(
A

1
2B

1
2

)
≤ sj

(
A+B

2

)
for j = 1, . . . , n.

On the other hand, Hirzallah and Kittaneh have proved in [6] that if A, B ∈Mn(C), then

(1.4) sj

(
A+B

2

)
≤ sj (A⊕B) for j = 1, . . . , n.

In this paper, we are interested in finding singular value versions of the inequality (1.1) . More singular

value inequalities and norm inequalities involving products, sums, and direct sums of matrices based on the

positivity of certain block matrices will be considered.

2. Lemmas. The following lemmas are essential in our analysis. The first lemma is a consequence of the

min-max principle (see [2, p. 75]). The second and third lemmas have been proved in [7]. The fourth lemma

follows from the unitary equivalence of

[
A B

B A

]
and

[
A+B 0

0 A−B

]
. In fact, if U = 1√

2

[
I −I
I I

]
,

then U is unitary and

[
A B

B A

]
= U

[
A+B 0

0 A−B

]
U∗ (see [5]). The fifth lemma has been proved in

[4]. The sixth lemma is a weak log majorization result that is known as the Weyl majorant theorem (see [2,

p. 42]).

Lemma 2.1. Let A,B,C ∈Mn(C). Then

sj (ACB) ≤ s1 (A) sj (C) s1 (B) for j = 1, . . . , n.

Lemma 2.2. Let A,B,C ∈Mn(C) be such that A > 0 and

[
A B

B∗ C

]
≥ 0. Then

B∗A−1B ≤ C.

Lemma 2.3. Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

B∗B ≤ C 1
2U∗AUC

1
2 for some unitary matrix U .

Lemma 2.4. Let A,B ∈Mn(C) be Hermitian. Then

±B ≤ A if and only if

[
A B

B A

]
≥ 0.
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Lemma 2.5. Let A,B ∈Mn(C) be Hermitian and such that ±B ≤ A. Then

(2.5) sj (B) ≤ sj (A⊕A) for j = 1, . . . , n

and

(2.6) ‖B‖ ≤ ‖A‖ for every unitarily invariant norm.

Note that the inequality (2.5) is equivalent to saying that

sj (B) ≤ s[ j+1
2 ] (A) for j = 1, . . . , n,

where [k] denotes the integer part of k. In view of Lemma 2.4, this inequality also follows from the inequality

(1.2) .

Lemma 2.6. Let A ∈ Mn(C) have eigenvalues λ1 (A) , λ2 (A) , . . . , λn (A) arranged in such a way that

|λ1 (A)| ≥ |λ2 (A)| ≥ · · · ≥ |λn (A)|. Then

k∏
j=1

|λj (A)| ≤
k∏

j=1

sj (A) for k = 1, . . . , n− 1,

with equality for k = n.

3. Main results. In view of the inequality (1.1), one might wonder if the singular value inequality

s2j (B) ≤ sj(A)sj(C) for j = 1, . . . , n

holds true. However, this is refuted by considering A =

[
1 1

1 2

]
, C =

[
2 1

1 1

]
, and B = A

1
2C

1
2 . In this

case,

[
A A

1
2C

1
2

C
1
2A

1
2 C

]
=

[
A

1
2 0

C
1
2 0

][
A

1
2 0

C
1
2 0

]∗
≥ 0

and s22

(
A

1
2C

1
2

)
≈ 0.17 > 0.14 ≈ s2(A)s2(C).

A weaker inequality follows from the fact that if

[
A B

B∗ C

]
≥ 0, then B = A

1
2KC

1
2 for some contraction

matrix K (see [2, p. 269]). Using this and Lemma 2.1, we have

s2j (B) ≤ min {sj(A)s1(C), sj(C)s1(A)} for j = 1, . . . , n.

Our next singular value inequality, which involves a commutativity condition, can be stated as follows.
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Theorem 3.1. Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0 and AB = BA. Then

sj (B) ≤ sj
(
A

1
2C

1
2

)
for j = 1, . . . , n.

Proof. First assume that A > 0. The general case follows by a continuity argument. Using Lemma 2.2

and the commutativity of A and B, we have

B∗B = B∗A−1AB

= A
1
2B∗A−1BA

1
2

≤ A 1
2CA

1
2 .

Now, by the Weyl monotonicity principle, we have

sj (B) = λ
1
2
j (B∗B)

≤ λ
1
2
j

(
A

1
2CA

1
2

)
= λ

1
2
j

(
(A

1
2C

1
2 )(A

1
2C

1
2 )∗
)

= sj

(
A

1
2C

1
2

)
for j = 1, . . . , n.

If AB = BA, the singular value inequality in Theorem 3.1 is a refinement of the inequality (1.2). By

the inequalities (1.3) and (1.4), we have

sj (B) ≤ sj
(
A

1
2C

1
2

)
≤ 1

2
sj (A+ C) ≤ sj (A⊕ C) for j = 1, . . . , n.

Theorem 3.1 is not true if the hypothesis of commutativity of A and B is omitted. To see this, let A =

C =

[
1 1√

2
1√
2

1

]
and B =

[
0 − 1√

2
1√
2

0

]
. Then

[
A B

B∗ C

]
≥ 0, but s2(B) ≈ 0.70 > 0.30 ≈ s2(A

1
2C

1
2 ).

Theorem 3.2. Let A,B,C,X, Y ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

(3.7) X∗AX + Y ∗CY ≥ ±(X∗BY + Y ∗B∗X).

Proof. Since[
X∗AX + Y ∗B∗X +X∗BY + Y ∗CY 0

0 0

]
=

[
X 0

Y 0

]∗ [
A B

B∗ C

] [
X 0

Y 0

]
≥ 0

and [
X∗AX − Y ∗B∗X −X∗BY + Y ∗CY 0

0 0

]
=

[
X 0

−Y 0

]∗ [
A B

B∗ C

] [
X 0

−Y 0

]
≥ 0,
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it follows that X∗AX + Y ∗B∗X +X∗BY + Y ∗CY ≥ 0 and X∗AX − Y ∗B∗X −X∗BY + Y ∗CY ≥ 0.

Thus,

X∗AX + Y ∗CY ≥ ±(X∗BY + Y ∗B∗X).

Using Lemma 2.5 and Theorem 3.2, we have the following singular value and norm inequalities involving

sums and direct sums of matrices.

Corollary 3.3. Let A,B,C,X, Y ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

(3.8) sj(X
∗BY + Y ∗B∗X) ≤ sj((X∗AX + Y ∗CY )⊕ (X∗AX + Y ∗CY )) for j = 1, . . . , n

and

(3.9) ‖X∗BY + Y ∗B∗X‖ ≤ ‖X∗AX + Y ∗CY ‖ for every unitarily invariant norm.

Letting X = Y = I in Corollary 3.3, we have the following result.

Corollary 3.4. Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

(3.10) sj(B +B∗) ≤ sj((A+ C)⊕ (A+ C)) for j = 1, . . . , n

and

(3.11) ‖B +B∗‖ ≤ ‖A+ C‖ for every unitarily invariant norm.

The inequality (3.11) has been recently obtained in [9] using a different argument.

If

[
A B

B∗ C

]
≥ 0, then

[
C B∗

B A

]
≥ 0, and so

[
A+ C B +B∗

B∗ +B A+ C

]
≥ 0. Thus, applying Theorem

3.1, we have the following result.

Corollary 3.5. Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0, AB = BA, and BC = CB. Then

sj(B +B∗) ≤ sj(A+ C) for j = 1, . . . , n.

As an application of Corollary 3.5, we have the following singular value inequality for normal matrices.

Corollary 3.6. Let A,B ∈Mn(C) be normal and such that AB = BA. Then

sj(A
∗B +B∗A) ≤ sj(A∗A+B∗B) for j = 1, . . . , n.

Proof. First observe that

[
A∗A A∗B

B∗A B∗B

]
=

[
A 0

B 0

]∗ [
A 0

B 0

]
≥ 0. Since AB = BA, it follows by

the Fuglede-Putnam theorem (see [2, p. 235]) that A∗B commutes with A∗A and B∗B. Thus, by Corollary

3.5, we have

sj(A
∗B +B∗A) ≤ sj(A∗A+B∗B) for j = 1, . . . , n.
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We remark here that Corollary 3.6 is not true if the hypothesis of commutativity of A and B is omitted.

To see this, let A =

[
1 1

1 1

]
and B =

[
0 1

−1 0

]
. Then A and B are normal, but s2(A∗B + B∗A) =

2 > 1 = s2(A∗A + B∗B). Moreover, Corollary 3.6 is not true if the hypothesis of normality of A and B is

omitted. To see this, let A =

[
0 2

0 0

]
and B =

[
1 1

0 1

]
. Then AB = BA, but s2(A∗B +B∗A) ≈ 0.83 >

0.81 ≈ s2(A∗A+B∗B).

In spite of the failure of Theorem 3.1 without the hypothesis of commutativity of A and B, using Lemma

2.3 and the Weyl monotonicity principle, one can prove the following related result.

Theorem 3.7. Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

sj(B) ≤ sj(A
1
2UC

1
2 ) for some unitary matrix U and for j = 1, . . . , n.

Employing Theorem 3.7 and the inequalities (1.3) and (1.4), we can give a different proof of the inequality

(1.2) as follows:

sj(B) ≤ sj(A
1
2UC

1
2 )

= sj(
∣∣∣A 1

2U
∣∣∣C 1

2 )

≤ 1

2
sj(U

∗AU + C)

≤ sj(U∗AU ⊕ C)

= sj(A⊕ C) for j = 1, . . . , n.

4. On the inequality ±B ≤ A. If A,B ∈Mn(C) are Hermitian and if ±B ≤ A, then the inequality

(4.12) sj(B) ≤ sj(A) for j = 1, . . . , n,

which is stronger than the inequalities (2.5) and (2.6), need not be true. To see this, let A =

[
1 1

1 4

]
and

B =

[
0 1

1 0

]
. Then ±B ≤ A, but s2(B) = 1 > 0.70 ≈ s2(A).

In spite of the failure of the inequality (4.12), the inequality (2.6) can be strengthened to the following

weak log majorization relation, which can also be concluded from the inequality (2.4) in [7].

Theorem 4.1. Let A,B ∈Mn(C) be Hermitian and such that ±B ≤ A. Then

k∏
j=1

sj (B) ≤
k∏

j=1

sj (A) for k = 1, . . . , n.

Proof. By Lemma 2.4,

[
A B

B A

]
≥ 0. Thus, B = A

1
2KA

1
2 for some contraction matrix K, and so for
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k = 1, . . . , n, we have

k∏
j=1

sj (B) =

k∏
j=1

|λj (B)|

=

k∏
j=1

∣∣∣λj (A 1
2KA

1
2

)∣∣∣
=

k∏
j=1

|λj (AK)|

≤
k∏

j=1

sj (AK) (by Lemma 2.6)

≤
k∏

j=1

sj(A)s1 (K) (by Lemma 2.1)

≤
k∏

j=1

sj(A).

As an application of Theorem 4.1, in view of the inequality (3.7), we have the following result, which is

stronger than the inequality (3.9).

Corollary 4.2. Let A,B,C,X, Y ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

k∏
j=1

sj(X
∗BY + Y ∗B∗X) ≤

k∏
j=1

sj(X
∗AX + Y ∗CY ) for k = 1, . . . , n.

Letting X = Y = I in Corollary 4.2, we have the following corollary (see [9]), which is stronger than the

inequality (3.11) .

Corollary 4.3. Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then

k∏
j=1

sj(B +B∗) ≤
k∏

j=1

sj(A+ C) for k = 1, . . . , n.

We conclude the paper by observing that the inequalities (2.5) and (3.10) are equivalent.

Theorem 4.4. The following statements are equivalent.

(i) Let A,B ∈Mn(C) be Hermitian and such that ±B ≤ A. Then

sj (B) ≤ sj (A⊕A) for j = 1, . . . , n.

(ii) Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0.Then

sj(B +B∗) ≤ sj((A+ C)⊕ (A+ C)) for j = 1, . . . , n.
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Proof. (i) =⇒ (ii). Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0. Then it follows by the inequality

(3.7) that ±(B +B∗) ≤ A+ C.

Thus, by (i), we have

sj(B +B∗) ≤ sj((A+ C)⊕ (A+ C)) for j = 1, . . . , n.

(ii)=⇒(i). Let A,B ∈Mn(C) be Hermitian and such that ±B ≤ A. Then, by Lemma 2.4,[
A B

B A

]
≥ 0.

Thus, by (ii), we have

sj (2B) ≤ sj (2A⊕ 2A) ,

and so

sj (B) ≤ sj (A⊕A) for j = 1, . . . , n.

In a similar fashion, one can prove the following theorem, which asserts that the inequalities (2.6) and

(3.11) are equivalent.

Theorem 4.5. The following statements are equivalent.

(i) Let A,B ∈Mn(C) be Hermitian and such that ±B ≤ A. Then

‖B‖ ≤ ‖A‖ for every unitarily invariant norm.

(ii) Let A,B,C ∈Mn(C) be such that

[
A B

B∗ C

]
≥ 0.Then

‖B +B∗‖ ≤ ‖A+ C‖ for every unitarily invariant norm.
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