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ORTHOGONAL REPRESENTATIONS, PROJECTIVE RANK, AND

FRACTIONAL MINIMUM POSITIVE SEMIDEFINITE RANK:

CONNECTIONS AND NEW DIRECTIONS∗

LESLIE HOGBEN† , KEVIN F. PALMOWSKI‡ , DAVID E. ROBERSON§ , AND SIMONE SEVERINI¶

Abstract. Fractional minimum positive semidefinite rank is defined from r-fold faithful orthogonal representations and

it is shown that the projective rank of any graph equals the fractional minimum positive semidefinite rank of its complement.

An r-fold version of the traditional definition of minimum positive semidefinite rank of a graph using Hermitian matrices

that fit the graph is also presented. This paper also introduces r-fold orthogonal representations of graphs and formalizes the

understanding of projective rank as fractional orthogonal rank. Connections of these concepts to quantum theory, including

Tsirelson’s problem, are discussed.
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1. Introduction. This paper deals with fractional versions of graph parameters defined by orthogonal

representations, including minimum positive semidefinite rank. In Section 2, we extend the existing idea of

an orthogonal representation for a graph via a “higher-dimensional” construction. With this, we introduce a

new parameter, r-fold orthogonal rank, that is to orthogonal rank as b-fold chromatic number is to chromatic

number (see Section 1.2 for the definition of b-fold chromatic number and other terms related to fractional

chromatic number). This allows us to formally characterize projective rank as “fractional orthogonal rank,”

a concept that was previously understood (e.g., in [15, 11]) but not rigorously presented (formal definitions

of projective rank and other parameters are given in Section 1.3).

In Section 3, we apply this “fractionalization” process to the minimum positive semidefinite rank problem

(viewed via faithful orthogonal representations) and develop two new graph parameters, namely, r-fold and

fractional minimum positive semidefinite rank. We also provide an alternate definition of r-fold minimum

positive semidefinite rank that is based on the minimum rank of a matrix that “r-fits” a graph, allowing us

to view the “higher-dimensional” problem through either of the two viewpoints traditionally associated with

the classical minimum positive semidefinite rank problem.

Our final result, found in Section 3.5, shows that the fractional minimum positive semidefinite rank of a

graph is equal to the projective rank of the complement of the graph. This result serves to connect the two
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seemingly different problems; moving forward, this will allow the extensive existing literature on minimum

positive semidefinite rank to be used to inform new developments in the more recently introduced area of

projective rank.

In the remainder of this introduction, we discuss applications of the fractional parameters discussed

(Section 1.1), give a brief introduction to the fractional approach to chromatic number to motivate our

definitions (Section 1.2), and provide necessary notation and terminology (Section 1.3).

1.1. Applications. Linear algebraic structures and associated graph theoretic frameworks have re-

cently become more important tools to study the fundamental differences that characterize theories of na-

ture, like classical mechanics, quantum mechanics, and general probabilistic theories. Matrices, graphs,

and their related combinatorial optimization techniques turn out to provide a surprisingly general language

with which to approach questions connected with foundational ideas, such as the analysis of contextual

inequalities and non-local games [2, 3], and with concrete aspects, such as quantifying various capacities of

entanglement-assisted channels [6, 10], and the overhead needed to classically simulate quantum computation

[9].

A point of strength of such frameworks is their ability to reformulate mathematical questions in a

coarser manner that is nonetheless effective, in some cases, to single out specific facts. Tsirelson’s problem

[17] provides a remarkable example: deciding whether the mathematical models of non-relativistic quantum

mechanics, where observers have linear operators acting on a finite dimensional tensor product space, and

algebraic quantum field theory, where observers have commuting linear operators on a single (possibly

infinite dimensional) space, produce the same set of correlations. We know that if Tsirelson’s problem has

a positive answer, then the notorious Connes’ Embedding conjecture [4, 12], originally concerned with an

approximation property for finite von Neumann algebras, is true.

Tsirelson’s problem can be seen from a combinatorial matrix point of view by working with graphs

and their associated algebraic structures [14]. Roughly speaking, instead of constructing sets of correlation

matrices, we can try looking for various patterns of zeroes in the sets, as in the spirit of combinatorial matrix

theory. The projective rank, denoted ξf , is a recently introduced graph parameter with the potential for

settling the above discussion. Indeed, it has been shown that if there exists a graph whose projective rank

is irrational, then Tsirelson’s problem has a negative answer [13].

Projective representations and projective rank were originally defined in [11] as a tool for studying

quantum colorings and quantum homomorphisms of graphs. Quantum colorings and the quantum chromatic

number give quantitative measures of the advantage that quantum entanglement provides in performing

distributed tasks and in distinguishing scenarios related to classical and quantum physics, respectively. In

fact, the existence of a quantum n-coloring for a given graph is equivalent to the existence of a projective

representation of value n for the Cartesian product of the graph with a complete graph on n vertices.

It was also shown in [11] that projective rank is monotone with respect to quantum homomorphisms,

i.e., if there exists a quantum homomorphism from a graph G to a graph H, then ξf (G) ≤ ξf (H). This

shows that projective rank is a lower bound for quantum chromatic number, and more generally provides

a method for forbidding the existence of quantum homomorphisms. Indeed, this approach was used to

determine the quantum odd girth of the Kneser graphs in [15]. Projective rank has also been studied

from a purely graph theoretic point of view, and in [5] it was shown that this parameter is multiplicative

with respect to the lexicographic and disjunctive graph products. Using this fact the authors were able to
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find a separation between quantum chromatic number and a recently defined semidefinite relaxation of this

parameter, answering a question posed in [14].

This paper takes a linear algebraic approach to these questions, building connections between recent

graph theoretical approaches to quantum questions and existing literature on orthogonal representations

and minimum positive semidefinite rank.

1.2. A fractional approach. To demonstrate the fractional approach that we use with orthogonal

representations and minimum positive semidefinite rank, consider the following derivation of the fractional

chromatic number as found in [16]. The chromatic number χ(G) of a graph G is the least number c such

that G can be colored with c colors; that is, we can assign to each vertex of G one of c colors in such a

way that adjacent vertices receive different colors. A coloring with c colors can be generalized to a b-fold

coloring with c colors, or a c:b-coloring: from a palette of c colors, assign b colors to each vertex of G such

that adjacent vertices receive disjoint sets of colors. For a fixed b, the b-fold chromatic number of G, χb(G),

is the smallest c such that G has a c:b-coloring. With this, the fractional chromatic number of G as

χf (G) = inf
b

χb(G)

b
.

While it is not obvious, it can be shown that χf (G) is always a rational number, as there is an alternative

linear programming formulation for the parameter for which strong duality holds. For further information

on fractional coloring, including a time-scheduling interpretation of the problem, see the discussions in the

Preface and Chapter 3 of [16].

The process of assigning objects to the vertices of a graph, subject to certain constraints, is a key

element common to the problems we examine in this work, and the procedure of generalizing from assigning

one object to assigning b-many objects (or, in our case, b-dimensional or rank-b objects) is an underlying

theme. At each stage of the process, we are interested in graph parameters that give information about

the “most efficient” set of objects we can use, with the end goal of developing fractional versions of existing

parameters (in the spirit of [16]) and connecting the more recent work on projective rank with existing ideas

from the realm of minimum positive semidefinite rank.

Rather than the colors used for coloring problems, the objects that we assign to the vertices of a graph are

vectors and matrices, which adds a distinctly linear algebraic flavor to both the problems and the constraints:

the idea of “different colors” translates to orthogonality conditions on our objects. As such, our results often

see linear algebra and graph theory working hand-in-hand, with structure found in one discipline influencing

results that are based in the other.

1.3. Background, definitions, and notation. The natural numbers, N, start at 1. We use the

notation [a : b] to denote the set of integers {a, a+1, . . . , b−1, b}. Throughout, d and r are used to represent

natural numbers. Vectors are denoted by boldface font, typically x, and matrices are capital letters, typically

A, B, P , or X, depending on context. The symbol 0 denotes either the scalar zero or a zero matrix, and an

identity matrix is denoted by I; any of these may be subscripted to clarify their sizes. We follow the usual

convention of denoting the jth standard basis vector in Cd (for some d) as ej . Rows and columns of matrices

may be indexed either by natural numbers or by vertices of a graph, depending on context. The elements

of a matrix A are denoted aij ; if A is a block matrix, then its blocks are denoted Aij . Graphs are usually

denoted by G or H, vertices by u, v or i, j, and edges by uv or ij.
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If A ∈ Cp×p and B ∈ Cq×q, then the direct sum of A and B, denoted A⊕B, is the block diagonal matrix[
A 0

0 B

]
∈ C(p+q)×(p+q).

We denote the conjugate transpose of A by A∗. A Hermitian matrix satisfies A = A∗. A Hermitian matrix

A ∈ Cn×n is positive semidefinite, denoted A � 0, if x∗Ax ≥ 0 for all x ∈ Cn, or equivalently, if all of its

eigenvalues are nonnegative.

Typically, G = (V,E) will denote a simple undirected graph on n vertices, where V = V (G) is the set

of vertices of G and E = E(G) is the set of edges of G. An isolated vertex is a vertex that is not adjacent to

any other vertex of G. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).

An induced subgraph of a graph G, denoted G[W ] for some set W ⊆ V (G), is a subgraph with vertex set

W such that if u, v ∈ W and uv ∈ E(G), then uv ∈ E(G[W ]). The union of graphs G and H, denoted

G ∪ H, is the graph with vertex set V (G ∪ H) = V (G) ∪ V (H) and edge set E(G ∪ H) = E(G) ∪ E(H).

If V (G) ∩ V (H) = ∅, then this union is disjoint and denoted G
·
∪ H. The complement of G, denoted G,

is the graph with V (G) = V (G) and E(G) = {uv : u 6= v, uv /∈ E(G)}. An independent set in G is a set

W ⊆ V (G) such that if u, v ∈ W , then uv /∈ E(G). The independence number of G, denoted α(G), is the

largest possible cardinality of an independent set in G. A clique in G is an induced subgraph H that is

a complete graph, i.e., uv ∈ E(H) for every u, v ∈ V (H). The clique number of G, denoted ω(G), is the

largest possible order of a clique in G. A clique-sum of graphs G and H on Kt, i.e., the graph G∪H where

G ∩ H = Kt, is denoted by G 〈Kt〉H; this is also called a t-clique-sum of G and H. A chordal graph is a

graph that does not have any induced cycles of length greater than 3; any chordal graph can be constructed

as clique-sum(s) of complete graphs. A perfect graph is a graph G for which every induced subgraph H of

G satisfies ω(H) = χ(H). A cut-vertex of a connected graph G is a vertex whose deletion disconnects G. A

graph with a cut-vertex can be viewed as a 1-clique-sum.

We work in the vector space Cd for some d ∈ N. We use S to denote a subspace of a vector space. A

basis matrix for an r-dimensional subspace S of Cd is a matrix X ∈ Cd×r that has orthonormal columns

and satisfies S = range(X). We say that two subspaces S1 and S2 of Cd are orthogonal, denoted S1 ⊥ S2, if

u∗1u2 = 0 for all u1 ∈ S1 and all u2 ∈ S2; an equivalent condition is that X∗1X2 = 0, where X1 and X2 are

basis matrices for S1 and S2, respectively.

Given some graph G and d ∈ N, an orthogonal representation in Cd for G is a set of unit vectors

{xu}u∈V (G) ⊂ Cd such that x∗uxv = 0 if uv ∈ E(G). It is clear that such a representation always exists for

d = |V (G)|. Provided that G has at least one edge, it is clear that such a representation cannot be made for

d = 1. We define the orthogonal rank of G to be

ξ(G) = min
{
d : G has an orthogonal representation in Cd

}
.

Let d, r ∈ N with r ≤ d. A d/r-projective representation, or d/r-representation, is an assignment of

matrices {Pu}u∈V (G) to the vertices of G such that

• for each u ∈ V (G), Pu ∈ Cd×d, rankPu = r, P ∗u = Pu, and P 2
u = Pu; and

• if uv ∈ E(G), then PuPv = 0.

In words, a d/r-representation is an assignment of rank-r (d×d) orthogonal projection matrices (projectors)

to the vertices of G such that adjacent vertices receive projectors that are orthogonal. The projective rank
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of G is defined as

ξf (G) = inf
d,r

{
d

r
: G has a d/r-representation

}
.

Projective rank was first introduced in 2012 by Roberson and Mančinska, where it is noted that ξf (G) ≤ ξ(G);

see [15] and [11] for additional information, properties, and applications.

Complementary to the idea of an orthogonal representation is that of a faithful orthogonal representation

(here we follow the complementary usage in the minimum rank literature). In order for the definitions given

next to coincide with those in the minimum rank literature, we must assume that the graph G has no isolated

vertices. A faithful orthogonal representation in Cd for a graph G is a set of unit vectors {xu}u∈V (G) ⊂ Cd

such that x∗uxv = 0 if and only if uv /∈ E(G). We define the minimum positive semidefinite rank of G as

(1.1) mr+(G) = min
{
d : G has a faithful orthogonal representation in Cd

}
.

We say that a matrix A ∈ Cn×n fits the order-n graph G if aii = 1 for all i ∈ [1 : n], and for all i 6= j, we

have aij = 0 if and only if ij /∈ E(G). Let H+(G) = {A ∈ Cn×n : A � 0 and A fits G}. A faithful orthogonal

representation in Cd for G corresponds to a matrix A ∈ H+(G) with rankA ≤ d, and a matrix A ∈ H+(G)

with rank d can be factored as A = B∗B for some B ∈ Cd×n. Thus, an alternate characterization (see, e.g.,

[7]) of mr+(G) is

mr+(G) = min{rankA : A ∈ H+(G)}

(and in fact, this is the customary definition of this parameter).

The definitions and explanation given here coincide with those in the literature provided that the graph

G has no isolated vertices. The most common definition of H+(G) in the literature does not contain the

assumption that aii = 1. If vertex i is adjacent to at least one other vertex, then properties of positive

semidefinite matrices require aii > 0, and so A can be scaled by a positive diagonal congruence to a matrix

of the same rank and nonzero pattern that has all diagonal entries equal to one. However, consider the case

where G consists of n isolated vertices (no edges): then as defined in [1, 7], etc., mr+(G) = 0, whereas with

our definition mr+(G) = n. The two definitions of minimum positive semidefinite rank coincide precisely

when G has no isolated vertices. Our definition facilitates connections to the use of orthogonal rank in the

study of quantum issues, and the assumption of no isolated vertices is needed only when connecting to the

minimum rank literature, so we omit it except when discussing connections to such work (where we state

either this assumption or one that implies it, such as the graph being connected and of order at least two).

We also note that for any graph the values of the parameters studied can be computed from their values

on the connected components of the graph (see Section 3), which facilitates handling cases with isolated

vertices separately.

2. Orthogonal subspace representations and projective rank. In this section, we introduce

and discuss (d; r) orthogonal subspace representations for a graph G, which are extensions of orthogonal

representations in the spirit of fractional graph theory [16]. The r-fold orthogonal rank of a graph, ξ[r](G),

is defined and some properties of this quantity are examined. We then relate these representations to d/r-

projective representations and tie projective rank into the new theory, formalizing the existing understanding

that projective rank and “fractional orthogonal rank” are one and the same.

Unless otherwise specified, all matrices and vectors in this section are assumed to be complex-valued.
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2.1. Orthogonal subspace representations and r-fold orthogonal rank. Let G be a graph and

let d, r ∈ N with d ≥ r. A (d; r) orthogonal subspace representation, or (d; r)-OSR, for G is a set of subspaces

{Su}u∈V (G) such that

• for each u ∈ V (G), Su is an r-dimensional subspace of Cd; and

• if uv ∈ E(G), then Su ⊥ Sv.

The r-fold orthogonal rank of a graph G is defined by

ξ[r](G) = min {d : G has a (d; r) orthogonal subspace representation} .

An orthogonal representation in Cd naturally generates a (d; 1) orthogonal subspace representation, and vice

versa, so ξ(G) = ξ[1](G).

We now explore some properties of ξ[r](G).

Lemma 2.1. ξ[r] is a subadditive function of r, i.e., for every graph G and all r, s ∈ N,

ξ[r+s](G) ≤ ξ[r](G) + ξ[s](G).

Proof. Let dr = ξ[r](G) and ds = ξ[s](G). Then G has a (dr; r) orthogonal subspace representation

containing r-dimensional subspaces of Cdr , say {Sru}u∈V (G), and a (ds; s) orthogonal subspace representation

containing s-dimensional subspaces of Cds , say {Ssu}u∈V (G). We show by construction that there exists an

orthogonal subspace representation for G containing (r + s)-dimensional subspaces of Cdr+ds .

For each u ∈ V (G), let Xr
u ∈ Cdr×r and Xs

u ∈ Cds×s be basis matrices for Sru and Ssu, respectively.

Define

Xu =

[
Xr
u 0dr×s

0ds×r Xs
u

]
∈ C(dr+ds)×(r+s),

and let Su = range(Xu). We immediately see that Su is a subspace of Cdr+ds , Xu is a basis matrix for Su,

and dim(Su) = rankXu = rankXr
u + rankXs

u = r + s.

Suppose u, v ∈ V (G) and let Xr
u, Xr

v , Xs
u, Xs

v , Xu, and Xv be as above; then

X∗uXv =

[
(Xr

u)∗(Xr
v ) 0

0 (Xs
u)∗(Xs

v)

]
.

Suppose uv ∈ E(G). Since {Sru} is an orthogonal subspace representation, we have (Xr
u)∗(Xr

v ) = 0; similarly,

(Xs
u)∗(Xs

v) = 0, so X∗uXv = 0. Since Xu and Xv are basis matrices for Su and Sv, respectively, we conclude

that if uv ∈ E(G), then Su ⊥ Sv.

Thus, {Su}u∈V (G) is a (dr+ds; r+s) orthogonal subspace representation for G, so ξ[r+s](G) ≤ dr+ds =

ξ[r](G) + ξ[s](G).

Corollary 2.2. For every graph G and all r ∈ N,
ξ[r](G)

r ≤ ξ(G).

Proof. Since ξ[1](G) = ξ(G), we have

ξ[r](G) ≤ ξ[r−1](G) + ξ(G) ≤ · · · ≤ r · ξ(G).

Observation 2.3. For every graph G and all r ∈ N, ξ[r](G) ≥ r · ω(G).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 98-115, April 2017.

L. Hogben, K.F. Palmowski, D.E. Roberson, and S. Severini 104

Proposition 2.4. Let r ∈ N and let H be a subgraph of G. Then ξ[r](H) ≤ ξ[r](G).

Proof. Since every edge of H is an edge of G, any (d; r) orthogonal subspace representation for G provides

a (d; r) orthogonal subspace representation for H, and the result is immediate.

Proposition 2.5. Suppose r ∈ N and G =
⋃̇
t
i=1Gi for some graphs {Gi}ti=1. Then ξ[r](G) =

maxi
{
ξ[r](Gi)

}
.

Proof. Since each Gi is an induced subgraph of G, we have ξ[r](Gi) ≤ ξ[r](G) for each i, so

maxi
{
ξ[r](Gi)

}
≤ ξ[r](G).

For each i ∈ [1 : t], let di = ξ[r](Gi) and let d = maxi{di}. Let {Siu}u∈V (Gi) be a (di; r) orthogonal

subspace representation for Gi and for each vertex u ∈ V (Gi) let Xi
u ∈ Cdi×r be a basis matrix for Siu. For

each u ∈ V (G), we have u ∈ V (Gi) for some i; define

Su = range

[
Xi
u

0(d−di)×r

]
.

Each Su is an r-dimensional subspace of Cd, and if uv ∈ E(G), then uv ∈ E(Gk) for some k, so

Sku ⊥ Skv , which implies that Su ⊥ Sv (by construction). Therefore, {Su}u∈V (G) is a (d; r)-OSR for G, so

ξ[r](G) ≤ d = maxi{ξ[r](Gi)} and equality follows.

This result does not hold for arbitrary graph unions, as the following example for the r = 1 case shows.

Example 2.6. Let G = C5 with V (G) = {1, 2, 3, 4, 5} and E(G) = {12, 23, 34, 45, 51}. Define G1 =

P4 with V (G1) = {1, 2, 3, 4} and E(G1) = {12, 23, 34} and define G2 = P3 with V (G2) = {4, 5, 1} and

E(G2) = {45, 51}. We see that G = G1 ∪G2, but since ξ(P3) = ξ(P4) = 2 and ξ(C5) = 3, it is not true that

ξ(G) = max{ξ(G1), ξ(G2)}.

While the maximum property observed in Proposition 2.5 may not carry over to the case when G is a

nondisjoint union of graphs, we are still able to obtain a weaker result, which follows.

Proposition 2.7. Suppose r ∈ N and G =
⋃t
i=1Gi, where Gi is an induced subgraph of G for each i.

Then ξ[r](G) ≤
∑t
i=1 ξ[r](Gi).

Proof. We prove the result for the case where t = 2 and note that recursive application of this case will

prove the more general one.

For each i ∈ {1, 2}, let di = ξ[r](Gi) and {Siu}u∈V (Gi) be a (di; r)-OSR for Gi, and for each u ∈ V (Gi),

let Xi
u ∈ Cdi×r be a basis matrix for Siu.

We partition V (G) = V (G1) ∪ V (G2) into three disjoint sets and consider vertices in each set. If

u ∈ V (G1) \ V (G2), let

Xu =

[
X1
u

0d2×r

]
;

if u ∈ V (G2) \ V (G1), let

Xu =

[
0d1×r
X2
u

]
;

and if u ∈ V (G1) ∩ V (G2), let

Xu =

[
X1
u

X2
u

]
.
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For each u ∈ V (G), let Su = range(Xu). Each Su is an r-dimensional subspace of Cd1+d2 .

We consider multiple cases to show that if uv ∈ E(G), then X∗uXv = 0, so Su ⊥ Sv. Throughout, we

assume that uv ∈ E(G).

First, suppose that u ∈ V (G1) \ V (G2); then either v ∈ V (G1) \ V (G2) or v ∈ V (G1)∩ V (G2). In either

case, uv ∈ E(G1) (since G1 is an induced subgraph), and block multiplication yields X∗uXv = (X1
u)∗X1

v .

Since S1
u ⊥ S1

v , this quantity equals the zero matrix, so Su ⊥ Sv. The case where u ∈ V (G2) \ V (G1) is

similar.

If u, v ∈ V (G1) ∩ V (G2), then uv ∈ E(G1) ∩ E(G2) since G1 and G2 are induced subgraphs. Then

X∗uXv = (X1
u)∗X1

v + (X2
u)∗X2

v . Since S1
u ⊥ S1

v and S2
u ⊥ S2

v , this quantity is again the zero matrix, so

Su ⊥ Sv.

Therefore, {Su}u∈V (G) is a (d1 + d2; r)-OSR for G, so ξ[r](G) ≤ d1 + d2 = ξ[r](G1) + ξ[r](G2).

Lemma 2.8. Suppose that the complete graph Kt is a subgraph of G with V (Kt) = [1 : t] and G has a

(d; r) orthogonal subspace representation. Then d ≥ rt and G has a (d; r) orthogonal subspace representation

in which the vertex i ∈ V (Kt) is represented by

span
{
e(i−1)r+1, . . . , e(i−1)r+r−1, eir

}
.

Proof. By Observation 2.3, d ≥ r · ω(G) ≥ rt.

If M ∈ Cd×` for some ` ≤ d and the columns of M are orthonormal, then by a change of orthonormal

basis there exists a unitary matrix U ∈ Cd×d such that UM = [e1, . . . , e`].

Let {Su}u∈V (G) be a (d; r) orthogonal subspace representation for G and for each u ∈ V (G) let Xu

be a basis matrix for Su. Define M = [X1, . . . , Xt] and choose U so that UM = [e1, . . . , etr]. Define

S′u = range(UXu). Then {S′u}u∈V (G) is a (d; r) orthogonal subspace representation for G with the desired

property.

Theorem 2.9. If G = G1 〈Kt〉G2 and r ∈ N, then ξ[r](G) = max
{
ξ[r](G1), ξ[r](G2)

}
.

Proof. Without loss of generality, let d1 = ξ[r](G1) ≥ d2 = ξ[r](G2) and V (Kt) = [1 : t]. Then by Lemma

2.8, for i = 1, 2, each Gi has a (d1; r) orthogonal subspace representation, {Siu}u∈V (G), in which vertex v ≤ t
is represented by Siv = span

{
e(v−1)r+1, . . . , e(v−1)r+r−1, evr

}
. Thus, for v ∈ [1 : t], S1

v = S2
v ; denote this

common subspace by Sv.

For vertices u ∈ V (Gi) \ [1 : t], define Su = Siu (observe that u > t is in only one of V (G1) or V (G2)).

Then {Su}u∈V (G) is a (d1; r) orthogonal subspace representation for G.

Proposition 2.10. If G is a graph with ω(G) = χ(G), then ξ[r](G) = r · ω(G) for every r ∈ N.

Proof. It is well-known that ξ(G) ≤ χ(G) (see, e.g., [15]). Therefore,

r · ω(G) ≤ ξ[r](G) ≤ r · ξ(G) ≤ r · χ(G) = r · ω(G),

and thus, equality holds throughout.

We note that perfect graphs and chordal graphs are among those that satisfy ω(G) = χ(G), and so

Proposition 2.10 applies to these classes.

Remark 2.11. Since ξ[1](G) = ξ(G) for every graph G, the previous properties of r-fold orthogonal rank

also apply to orthogonal rank, where appropriate.
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2.2. Projective rank as fractional orthogonal rank. It is easy to see that (d; r) orthogonal

subspace representations are in one-to-one correspondence with d/r-representations.

Proposition 2.12. A graph G has a (d; r) orthogonal subspace representation if and only if G has a

d/r-representation.

Proof. Let {Su}u∈V (G) be a (d; r) orthogonal subspace representation for a graph G, so each Su is an

r-dimensional subspace of Cd. For each u ∈ V (G), define Pu = XuX
∗
u, where Xu ∈ Cd×r is a basis matrix

for Su. It is then easy to verify that Pu ∈ Cd×d, rankPu = rankXu = r, P ∗u = Pu, and P 2
u = Pu.

Let uv ∈ E(G), so Su ⊥ Sv. We see that

Su ⊥ Sv ⇐⇒ X∗uXv = 0 ⇐⇒ XuX
∗
uXvX

∗
v = 0 ⇐⇒ PuPv = 0.

Thus, if uv ∈ E(G), then PuPv = 0. We conclude that {Pu}u∈V (G) is a d/r-representation for G.

Conversely, suppose that {Pu}u∈V (G) is a d/r-representation for G. For each u ∈ V (G), let Pu =

XuIrX
∗
u be a reduced singular value decomposition of the projector Pu (where Xu ∈ Cd×r) and define

Su = range(Pu) = range(Xu). Clearly Su is an r-dimensional subspace of Cd. If uv ∈ E(G), then PuPv = 0,

so by the above chain of equivalences Su ⊥ Sv. Therefore, {Su}u∈V (G) is a (d; r) orthogonal subspace

representation for G.

With this in mind, we obtain the following “fractional” definition of projective rank.

Theorem 2.13. For every graph G,

ξf (G) = inf
r

{
ξ[r](G)

r

}
.

Proof.

inf
r

{
ξ[r](G)

r

}
= inf

r

{
min{d : G has a (d; r)-OSR}

r

}
= inf

r

{
min
d

{
d

r
: G has a (d; r)-OSR

}}
= inf

d,r

{
d

r
: G has a (d; r)-OSR

}
= inf

d,r

{
d

r
: G has a d/r-representation

}
= ξf (G).

Given that this expression of ξf (G) is similar to that of χf (G) given in [16], it is not unreasonable to hope

that this could shed some light on the question of the rationality of ξf (G) for all graphs.1 Unfortunately,

finding a b-fold coloring with c colors forG is ultimately a far different problem from finding a (d; r) orthogonal

subspace representation for G. In the b-fold coloring problem, we have a restriction on the number of available

colors, which adds a certain finiteness to the problem: each vertex is assigned a subset of the available c <∞
colors. In contrast, restricting the subspaces to lie in Cd in the orthogonal subspace representation problem

1Recall that χf (G) is rational for any graph G.
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does not impose this same type of finiteness: each vertex is assigned a finite dimensional subspace of Cd,
and d <∞, but there are infinitely many subspaces that can be assigned to each vertex.

We provide one additional equivalent definition of projective rank, for which we need the following utility

result from [16], also commonly known as Fekete’s Lemma.

Lemma 2.14 ([16], Lemma A.4.1). Suppose g : N→ R is subadditive and g(n) ≥ 0 for all n. Then the

limit

lim
n→∞

g(n)

n

exists and is equal to the infimum of g(n)/n (n ∈ N).

Since ξ[r] is subadditive, this yields the following corollary to the previous theorem.

Corollary 2.15. For every graph G,

ξf (G) = inf
r

{
ξ[r](G)

r

}
= lim
r→∞

ξ[r](G)

r
,

and this limit exists.

With this result, we see that many of the properties of ξ[r](G) also apply to ξf (G).

Theorem 2.16. For every graph G:

i) [15, 11] ξf (G) ≥ ω(G).

ii) If H is a subgraph of G, then ξf (H) ≤ ξf (G).

iii) If G =
⋃̇
t
i=1Gi for some graphs {Gi}ti=1, then ξf (G) = maxi {ξf (Gi)}.

iv) If G =
⋃t
i=1Gi for some induced subgraphs {Gi}ti=1, then ξf (G) ≤

∑t
i=1 ξf (Gi).

v) If G = G1 〈Kt〉G2, then ξf (G) = max {ξf (G1), ξf (G2)}.
vi) If G satisfies ω(G) = ξ(G), then ξf (G) = ω(G).

Proof. Consider the second claim. By Proposition 2.4, for any r ∈ N, ξ[r](H) ≤ ξ[r](G), so
ξ[r](H)

r ≤
ξ[r](G)

r . Taking the limit as r approaches ∞ and applying Corollary 2.15, we have ξf (H) ≤ ξf (G).

The remaining claims follow by applying similar arguments to the corresponding r-fold results.

3. Fractional minimum positive semidefinite rank. In this section, we introduce (d; r) faithful

orthogonal subspace representations, r-fold minimum positive semidefinite rank, and fractional minimum

positive semidefinite rank, extending the definitions of faithful orthogonal representations and minimum

positive semidefinite rank. We then introduce faithful d/r-projective representations and connect everything

to projective rank. A connection to positive semidefinite matrices is explored, and properties of our new

quantities are proven.

Unless otherwise specified, all matrices and vectors in this section are assumed to be complex-valued

(the literature on minimum positive semidefinite rank is mixed, with both real and complex cases studied).

3.1. Faithful orthogonal subspace representations and fractional minimum positive semi-

definite rank. Given a graph G and d, r ∈ N with r ≤ d, a (d; r) faithful orthogonal subspace representation,

or (d; r)-FOSR, for G is a set of subspaces {Su}u∈V (G), where

• for each u ∈ V (G), Su is an r-dimensional subspace of Cd; and
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• Su ⊥ Sv if and only if uv /∈ E(G).

A faithful orthogonal representation (as defined in Section 1.3) generates a (d; 1) faithful orthogonal subspace

representation, and vice versa. Further, a (d; r)-FOSR for a graph G is a (d; r)-OSR for its complement G,

but the reverse statement is not true in general.

Now that we have defined an r-fold analogue of a faithful orthogonal representation, it is natural to

consider a corresponding version of mr+(G). The r-fold minimum positive semidefinite rank of G is

mr+[r](G) = min{d : G has a (d; r) faithful orthogonal subspace representation}.

In particular, we have mr+[1](G) = mr+(G), using definition (1.1) of mr+; we caution the reader that this

coincides with the definitions of faithful orthogonal representation and minimum positive semidefinite rank

in the literature (e.g. [1, 7]) if and only if G has no isolated vertices.

We note that mr+[r](G) is subadditive. The proof is analogous to the proof of Lemma 2.1 and is omitted,

as are the proofs for other results in this section that parallel those for the non-faithful case (i.e., the ξ-family

of parameters).

Lemma 3.1. mr+[r] is a subadditive function of r, i.e., for every graph G and all r, s ∈ N,

mr+[r+s](G) ≤ mr+[r](G) + mr+[s](G).

As in the non-faithful case, an immediate corollary relates mr+[r] to mr+.

Corollary 3.2. For every graph G and all r ∈ N,

mr+[r](G)

r
≤ mr+(G).2

For any graph G, we define the fractional minimum positive semidefinite rank of G as

mr+f (G) = inf
r

{
mr+[r](G)

r

}
.

Notice that mr+[r](G) ≤ d if G has a (d; r) faithful orthogonal subspace representation, so mr+f (G) ≤ d
r .

Corollary 3.2 implies that the non-fractional minimum positive semidefinite rank is an upper bound on

the fractional version. Again, recall that this coincides with the literature if and only if the graph G has no

isolated vertices.

Corollary 3.3. For every graph G,

mr+f (G) ≤ mr+(G).3

Since mr+[r](G) is subadditive, we have the following corollary, which follows from Lemma 2.14 ([16],

Lemma A.4.1).

2To apply this result using the definition of mr+(G) in the minimum rank literature requires that G have no isolated

vertices.
3To apply this result using the definition of mr+(G) in the minimum rank literature requires G have no isolated vertices.
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Corollary 3.4. For every graph G,

mr+f (G) = lim
r→∞

mr+[r](G)

r
,

and this limit exists.

We conclude this section with an example that gives further insight into these new parameters.

Example 3.5. Let r ∈ N and consider the graph G = P4 with V (P4) = {1, 2, 3, 4} and E(P4) =

{12, 23, 34}. With ei as the ith standard basis vector in C2r+1, we can verify that the following is a valid (2r+

1; r)-FOSR for P4: S1 = range([e1, e2, . . . , er]), S2 = range([e2, e3, . . . , er+1]), S3 = range([er+1, er+2,

. . . , e2r]), S4 = range([er+2, er+3, . . . , e2r+1]). Therefore, mr+[r](P4) ≤ 2r+ 1. Suppose that {Qu}u∈V (P4) is

a (2r; r)-FOSR for P4; we show that such a representation cannot exist. Since 13, 14 /∈ E(P4), Q1 ⊥ Q3 and

Q1 ⊥ Q4. The underlying space is C2r and each subspace Qi is r-dimensional, so we must therefore have

Q3 = Q4 = Q⊥1 . Now, 23 ∈ E(P4), so Q2 6⊥ Q3, but 24 /∈ E(P4), so it also follows that Q2 ⊥ Q4. Since

Q3 = Q4, this is a contradiction; thus, there is no (2r; r)-FOSR for P4, and so mr+[r](P4) = 2r+ 1. Using the

limit characterization of mr+f , it follows that mr+f (P4) = limr→∞
2r+1
r = 2.

This example demonstrates that the infimum in the definition of the fractional minimum positive semidef-

inite rank cannot be replaced with a minimum, even when mr+f is a rational number. Additionally, since

mr+(P4) = 3, the graph G = P4 satisfies mr+f (G) < mr+(G).

3.2. Faithful d/r-projective representations. Let G be a graph and d, r ∈ N with r ≤ d. A

faithful d/r-projective representation, or faithful d/r-representation for short, is an assignment of matrices

{Pu}u∈V (G) to the vertices of G such that

• for each u ∈ V (G), Pu ∈ Cd×d, rankPu = r, P ∗u = Pu, and P 2
u = Pu; and

• PuPv = 0 if and only if uv /∈ E(G).

A faithful d/r-representation for G is a d/r-representation for G, but the converse is not necessarily true.

It is convenient to note that a (d; r) faithful orthogonal subspace representation for G is equivalent to a

faithful d/r-representation. The proof is analogous to that of Proposition 2.12; as before, we will omit such

parallel proofs.

Proposition 3.6. A graph G has a (d; r) faithful orthogonal subspace representation if and only if G

has a faithful d/r-representation.

An immediate corollary gives an alternate definition for mr+f (G).

Corollary 3.7. For every graph G,

mr+f (G) = inf
d,r

{
d

r
: G has a faithful d/r-representation

}
.

Corollary 3.8. For any graph G with complement G,

ξf (G) ≤ mr+f (G) ≤ mr+(G).4

Proof. This follows from the fact that any faithful d/r-representation for G is also a d/r-representation

for G, as well as from Corollary 3.3.

4To apply this result using the definition of mr+(G) in the minimum rank literature requires G have no isolated vertices.
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3.3. Relation to positive semidefinite matrices. In this section, we connect (d; r) faithful orthog-

onal subspace representations to positive semidefinite matrices, thus generalizing the known results for the

r = 1 case (when the graph in question has no isolated vertices) and connecting mr+[r](G) to the rank of a

positive semidefinite matrix.

We begin with some definitions. Let G be a graph on n vertices and suppose that V (G) = [1 : n]. For

some r ∈ N, let A ∈ Cnr×nr be partitioned into an n×n block matrix [Aij ], where Aij is the r×r submatrix

in (block) row i and (block) column j of A. We say that the matrix A r-fits G if Aii = Ir for each i ∈ V (G)

and Aij = 0 if and only if ij /∈ E(G), and define the set

H+
[r](G) =

{
A ∈ Cnr×nr : A � 0 and A r-fits G

}
.

Example 3.9. We provide a simple example for the r = 2 case. Let G = P3, the path on 3 vertices,

with V (G) = {1, 2, 3} and E(G) = {12, 23}. Choosing X = [e1 e2 | e1 e4 | e3 e4], where ej is the jth standard

basis vector in C4, we can verify that

A = X∗X =



1 0 1 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 1 0 1


∈ H+

[2](P3).

This constructive example gives an intuitive feel for one direction of the proof of the main result of this

section.

Theorem 3.10. For every graph G on n vertices and any r ∈ N,

mr+[r](G) = min
{

rankA : A ∈ H+
[r](G)

}
.

Proof. Let d = mr+[r](G), and let ` = min
{

rankA : A ∈ H+
[r](G)

}
.

First, assume that {Si} is a (d; r) faithful orthogonal subspace representation for G and for each i ∈ V (G)

let Xi ∈ Cd×r be a basis matrix for Si. Define X = [X1 |X2 | · · · |Xn] ∈ Cd×nr and let B = X∗X ∈ Cnr×nr.
We see immediately that B � 0 and rankB = rankX ≤ d. Partitioning B into an n × n block matrix with

blocks [Bij ] of size r×r, we have Bij = X∗i Xj . Since Si ⊥ Sj if and only if X∗i Xj = 0, we have Bij = 0 if and

only if Si ⊥ Sj , which occurs if and only if ij /∈ E(G). Additionally, since Xi has orthonormal columns, we

have Bii = Ir for each i. Therefore, B ∈ H+
[r](G), so min

{
rankA : A ∈ H+

[r](G)
}
≤ rankB ≤ d = mr+[r](G).

For the reverse inequality, suppose that B ∈ H+
[r](G) and rankB = `. Then there exists a matrix

X ∈ C`×nr such that B = X∗X. Partition B into r × r blocks [Bij ] and partition X into ` × r blocks as

X = [X1 |X2 | · · · |Xn]. For each vertex i ∈ V (G), let Si = range(Xi) ⊆ C`. Since X∗i Xi = Ir, we have

rankXi = r, so each Si is an r-dimensional subspace of C`. Additionally, X∗i Xj = Bij = 0 if and only if

ij /∈ E(G), so Si ⊥ Sj if and only if ij /∈ E(G). Therefore, {Si} is an (`; r) faithful orthogonal subspace

representation for G, so mr+[r](G) ≤ ` = min
{

rankA : A ∈ H+
[r](G)

}
, and thus, equality holds.

This matrix-based representation is a powerful theoretical tool that allows us to simplify the proofs of

some properties of r-fold minimum positive semidefinite rank, as well as to more clearly draw parallels to
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the existing and well-established r = 1 case (although again, the connection to the literature requires that

the graph in question has no isolated vertices).

The condition that Aii = Ir if A r-fits a graph G is a strong one, so we conclude this section with a

weaker condition that will be used to further simplify proofs without sacrificing utility. We say that A weakly

r-fits G if Aii is a diagonal matrix with strictly positive diagonal entries for each i ∈ V (G) and Aij = 0 if

and only if ij /∈ E(G). Clearly, any matrix that r-fits G also weakly r-fits G.

Remark 3.11. Suppose that A weakly r-fits a graph G and let D = D1 ⊕ · · · ⊕Dn, where each Di is

the inverse of the positive square root of Aii, i.e., Di = A
− 1

2
ii . Then the matrix B = DAD r-fits G, since D

is a diagonal matrix with strictly positive diagonal entries, so multiplication by D does not change the zero

pattern of A. Further, rankB = rankA, since D has full rank.

This remark yields an immediate corollary to the previous theorem.

Corollary 3.12. For every graph G on n vertices and any r ∈ N,

mr+[r](G) = min
{

rankA : A ∈ Cnr×nr, A � 0 and A weakly r-fits G
}
.

3.4. Properties of mr+[r](G) and mr+f (G). In this section, we prove numerous results regarding prop-

erties of r-fold and fractional minimum positive semidefinite rank, many of which extend known properties

of mr+ to the new parameters.

Observation 3.13. For every graph G and all r ∈ N, mr+[r](G) ≥ r · α(G).

Proposition 3.14. Let r ∈ N and let H be an induced subgraph of G. Then mr+[r](H) ≤ mr+[r](G).

Proof. For any u, v ∈ V (H), uv ∈ E(H) if and only if uv ∈ E(G), since H is induced. Therefore,

any (d; r) faithful orthogonal subspace representation for G provides a (d; r) faithful orthogonal subspace

representation for H, and the result follows immediately.

Proposition 3.15. If G =
⋃̇
t
i=1Gi for some graphs {Gi}ti=1, then mr+[r](G) =

∑t
i=1 mr+[r](Gi) for each

r ∈ N.

Proof. Suppose that V (G) = [1 : n] and that |V (Gi)| = ni for i = 1, 2, . . . , t. Further assume that

V (Gi) =
[
1 +

∑i−1
j=1 nj :

∑i
j=1 nj

]
, so that if A ∈ H+

[r](G), then A = A1⊕A2⊕· · ·⊕At, where Ai ∈ H+
[r](Gi)

for each i. Note that rankA =
∑t
i=1 rankAi. We therefore have

mr+[r](G) = min
{

rankA : A ∈ H+
[r](G)

}

= min

{
t∑
i=1

rankAi : Ai ∈ H+
[r](Gi) for each i

}

=

t∑
i=1

min
{

rankAi : Ai ∈ H+
[r](Gi)

}
=

t∑
i=1

mr+[r](Gi).

Theorem 3.16. If G =
⋃t
i=1Gi for some graphs {Gi}ti=1, then mr+[r](G) ≤

∑t
i=1 mr+[r](Gi) for each

r ∈ N.
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Proof. We prove the result for the case where t = 2 and note that recursive application of this case will

prove the more general one.

Let V (G) = [1 : n] where n > 0 and assume that V (G1) \ V (G2) = [1 : n1], V (G1) ∩ V (G2) =

[n1 + 1 : n1 + c], and V (G2) \ V (G1) = [n1 + c+ 1 : n1 + c+ n2], where n1, n2, c ≥ 0 (it is not assumed

that each of these is strictly nonzero). Note that n = n1 + c + n2, and this ordering asserts that the first

n1 vertices (enumerating in the natural order) lie exclusively in G1, the next c are common to both graphs,

and the last n2 lie exclusively in G2.

For i = 1, 2, let mr+[r](Gi) = di and let Ai ∈ H+
[r](Gi) be chosen so that rankAi = di. Notice that

A1 ∈ C(n1+c)r×(n1+c)r has its rows and columns indexed by V (G1) = [1 : n1 + c] and A2 ∈ C(n2+c)r×(n2+c)r

has its rows and columns indexed by V (G2) = [n1 + 1 : n].

Let

Â1 =

[
A1 0

0 0

]
∈ Cnr×nr, Â2 =

[
0 0

0 A2

]
∈ Cnr×nr,

and define A = Â1 + βÂ2 ∈ Cnr×nr, where β > 0 is chosen so that if A, Â1, and Â2 are partitioned into

n × n block matrices with block size r × r, then Aij = 0 if and only if (Â1)ij = 0 and (Â2)ij = 0 (i.e., no

cancellation of an entire block occurs).

Since A is a positive linear combination of positive semidefinite matrices, A � 0, and by our choice of β

we see that A weakly r-fits G. Therefore,

mr+[r](G) ≤ rankA ≤ rankÂ1 + rankÂ2 = d1 + d2 = mr+[r](G1) + mr+[r](G2).

All of the results we have proven for r-fold minimum positive semidefinite rank can be extended to

results for fractional minimum positive semidefinite rank. The proof is analogous to that of Theorem 2.16

and is omitted.

Theorem 3.17. For every graph G:

i) mr+f (G) ≥ α(G).

ii) If H is an induced subgraph of G, then mr+f (H) ≤ mr+f (G).

iii) If G =
⋃̇
t
i=1Gi for some graphs {Gi}ti=1, then mr+f (G) =

∑t
i=1 mr+f (Gi).

iv) If G =
⋃t
i=1Gi for some graphs {Gi}ti=1, then mr+f (G) ≤

∑t
i=1 mr+f (Gi).

Let G be a connected graph of order at least two. A standard technique for computing the minimum

positive semidefinite rank of G is cut-vertex reduction [1, 7, 18]: Suppose that v ∈ V (G) is a cut-vertex and

(G− v) has connected components {Hi}ti=1. For each i, let Gi be the subgraph of G induced by the union

of the vertices of Hi with v, that is, Gi = G[V (Hi) ∪ {v}]. Then mr+(G) =
∑t
i=1 mr+(Gi). Unfortunately,

this technique does not carry over to the r-fold case when r > 1, as the following example shows.

Example 3.18. Consider the graph G = P4, the path on 4 vertices, with V (G) = {x, y, v, z} in path

order; recall from Example 3.5 that mr+[r](G) = 2r + 1 for any r ∈ N. Taking v as a cut-vertex, we have

G1 = P3 with V (G1) = {x, y, v} and G2 = P2 with V (G2) = {v, z}. Fix r > 1. Since α(G1) = 2, any valid

(d; r)-FOSR for G1 must have d ≥ 2r. Further, it is easy to see that mr+(G1) = 2, so 4 ≤ mr+[r](G1) ≤
2 · mr+(G1) = 2r. Hence, equality holds and mr+[r](G1) = 2r. Next, since mr+(G2) = 1 and d ≥ r for

any valid (d; r)-FOSR, we have r ≤ mr+[r](G2) ≤ r ·mr+(G2) = r, so mr+[r](G2) = r. Hence, if r > 1, then

mr+[r](G) = 2r + 1 < 2r + r = mr+[r](G1) + mr+[r](G2), so cut-vertex reduction does not apply.
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3.5. Fractional minimum positive semidefinite rank and projective rank. Recall that any

(d; r)-FOSR for G is a (d; r)-OSR for G, but the converse statement does not apply in general. It thus

follows that ξ[r](G) ≤ mr+[r](G) for any graph G and r ∈ N, and the next example demonstrates that this

inequality can be strict.

Example 3.19. Consider the graph G = P4 with V (P4) = {1, 2, 3, 4} and E(P4) = {12, 23, 34} and fix

r ∈ N. Since ω(P4) = 2, we have ξ[r](P4) ≥ 2r. With ei as the ith standard basis vector for C2r, it is

easy to verify that the following is a (2r; r)-OSR for P4: S1 = S3 = range([e1, e2, . . . , er]), S2 = S4 =

range([er+1, er+2, . . . , e2r]). Therefore, ξ[r](P4) = 2r. Since P4 = P4 and mr+[r](P4) = 2r+ 1 (Example 3.5),

we have 2r = ξ[r](P4) < mr+[r](P4) = 2r + 1.

Recall from Corollary 3.8 that ξf (G) ≤ mr+f (G) for any graph G. While strict inequality may hold in

the r-fold case for an arbitrary graph G, we now demonstrate that equality always holds in the “fractional

case” for any graph G. For this result, we require the following lemma.

Lemma 3.20. Let G be a graph with complement G. Let {Pu}u∈V (G) be a d/r-representation for G and

let {Ru}u∈V (G) be a faithful b/1-representation for G. Then for any k ∈ N, G has a faithful (kd+b)/(kr+1)-

representation {Qu}u∈V (G). Further, given any ε > 0, k can be chosen such that
∣∣∣dr − kd+b

kr+1

∣∣∣ < ε, i.e., the

value of the faithful representation {Qu} for G is within ε of the value of the (non-faithful) representation

{Pu} for G.

Proof. Since {Pu} is a d/r-representation for G, we have Pu ∈ Cd×d with rankPu = r for each u ∈
V (G) = V (G), and PuPv = 0 if uv ∈ E(G), so PuPv = 0 if uv /∈ E(G).

Let ε > 0 be arbitrary and choose k >
(
|d−rb|
r2ε −

1
r

)
.

For each vertex u ∈ V (G), let Qu ∈ C(kd+b)×(kd+b) be the block diagonal matrix constructed from k

copies of Pu and one copy of Ru, i.e.,

Qu =

(
k⊕
i=1

Pu

)
⊕Ru.

We see immediately that rankQu = kr+ 1, and since Pu and Ru are projectors, so is Qu. Since PuPv = 0 if

uv /∈ E(G) and RuRv = 0 if and only if uv /∈ E(G), we conclude that QuQv = 0 if and only if uv /∈ E(G).

Therefore, {Qu}u∈V (G) is a faithful (kd+ b)/(kr + 1)-representation for G, which verifies the first claim.

By choice of k, we have kr + 1 > |d−rb|
rε . Consider∣∣∣∣dr − kd+ b

kr + 1

∣∣∣∣ =

∣∣∣∣d(kr + 1)− r(kd+ b)

r(kr + 1)

∣∣∣∣
=
|d− rb|

r
· 1

kr + 1

<
|d− rb|

r
· rε

|d− rb|
= ε,

which verifies the second claim.

It was previously noted that any faithful d/r-representation for G is also d/r-representation for G.

Lemma 3.20 is a partial converse in the sense that, given any d/r-representation for G, we can construct a
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faithful d1/r1-representation for G such that the two representations have essentially the same value. This

yields the next result.

Theorem 3.21. For every graph G with complement G,

ξf (G) = mr+f (G).

Proof. Let

R =

{
d

r
: G has a d/r-representation

}
,

F =

{
d

r
: G has a faithful d/r-representation

}
.

For any d
r ∈ R and ε > 0, Lemma 3.20 asserts that there exists some d1

r1
∈ F such that

∣∣∣dr − d1
r1

∣∣∣ < ε. It

follows that inf R = inf F , i.e., ξf (G) = mr+f (G).
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