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SEMILINEAR PRESERVERS OF THE IMMANANTS IN THE SET
OF DOUBLY STOCHASTIC MATRICES*

M. ANTONIA DUFFNER' AND ROSARIO FERNANDESH

Abstract. Let S, denote the symmetric group of degree n and M,, denote the set of all n-by-n matrices over the complex
field, C. Let x : S, — C be an irreducible character of degree greater than 1 of S,,. The immanant dy : M, — C associated
with x is defined by

n
d(X)= > x(@) [T X0y, X =[Xj] € Ma.
0ESn j=1
Let Q,, be the set of all n-by-n doubly stochastic matrices, that is, matrices with nonnegative real entries and each row and

column sum is one. We say that a map T from €2, into Q,

e is semilinear if T(AS1 + (1 — X)S2) = AT(S1) + (1 — A\)T(S2) for all S1, S2 € Qp and for all real number A such that
0< A<,
o preserves dy if dy(T(S)) = dy(S) for all S € Q.

We characterize the semilinear surjective maps 1" from €2, into 2, that preserve dy, when the degree of x is greater than one.
Key words. Immanants, Linear preserver problems, Doubly stochastic matrices.
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1. Introduction. Let M, denote the set of all n-by-n matrices over the complex field, C. We denote
by I the identity in M,,. Let S, be the symmetric group of degree n. We denote by ¢d the identity in S,,.
Let x : S, — C be an irreducible character of S,, with degree greater than 1 (note that if the degree of x is
one then y is the sign character or the principal character). The immanant d, is defined by

dy(X) = Z x(o) HXja(j)7 X = [Xji] € M,,.
ogES, 7j=1

If the degree of the character x is one, then d, is the determinant or the permanent. We denote the

permanent by per,

peT(X) = Z l_A[AX'jCI(j)7 X = [Xj ] S Mn.

o€S, j=1

Let Q,, denote the set of all n-by-n doubly stochastic matrices, that is, matrices with nonnegative real
entries and each row and column sum is one. £, is a convex polyhedron in the euclidean n2-space whose
vertices are the n-by-n permutation matrices, [2].

DEFINITION 1.1. Let T be a map from (2,, into €2,,. We say that T
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e is a semilinear map if
T(AS1 + (1= A)Sa) = AT(S1) + (1 — A)T(S2)

for all Sy, S5 € ©,, and for all real number A such that 0 < A < 1;
e preserves d, if d, (T'(S)) = d,(S) for all S € Q,,.

The behavior of the permanent on 2, has been studied extensively. In [9], the linear maps T from
Q,, into §,, which preserve the permanent are characterized, and in [4], those that verify T'(9,) = Q,. In
this paper, we characterize the semilinear surjective maps 1" from €2, into 2, that preserve d,, where the
character x has degree greater than one.

Let a = (a1,...,q,) be a partition of n of length r, that is, a sequence of positive integers which are
assumed to be nonincreasing and with sum equal to n, [2, B]. Each partition a = (a1, ..., ) of n is related
to a Young diagram, denoted by [«], which consists of 7 left justified rows of boxes, where the number of
boxes in the ith row is ;. The irreducible characters of S,, are in a bijective correspondence with the ordered
partitions of n, [I]. We identify the irreducible character x with the partition that corresponds to x, or with
the Young diagram [x] associated with x.

Denote by P(c) the permutation matrix associated with o € S,,, that is,

1 ifi=o(j),
P(o);; = .
S { 0 otherwise.

We denote by ST the transpose of the matrix S. Recall that (P(c))T = P(o71).
The main result of this paper is the following theorem.

THEOREM 1.2. Let x be an irreducible character of S,, of degree greater than one. Let T be a semilinear
surjective map from §, into Q. The map T preserves dy, if and only if there are o, € S, with x(o) =
x(id), such that one of the following conditions must hold:

(1) T(S) = P(o)P(a)SP(a™t) for all S € Q,.
(2) T(S) = P(o)P(a)STP(a™') for all S € ,,.

Moreover, if x # [2,2], then P(o) = I.

In Section 2, we shall present some preliminary definitions and propositions about the immanant of a
matrix § € Q,,. To characterize the semilinear surjective maps 1" from €2,, into 2, that preserve d,, we will
consider several steps. So, in Section 3, we will prove that 7" must be injective. In Section 4, we will prove
that the image by T of a permutation matrix is a permutation matrix. Finally, in Section 5, we will present
the proof of the main result.

2. Preliminares. Let x be an irreducible character of S,,. The boundary of the diagram [x] is the set
of boxes whose right edge, bottom edge, or bottom right vertex belong to the geometric boundary of the
diagram. We will denote by p the number of boundary boxes of [x]. Note that if x is an irreducible character
of S, of degree grater than 1 then p > 3.

A set of successive boundary boxes whose deletion leads to another Young diagram is called a regular
boundary part. The number of vertical steps of a regular boundary part is equal to the number of rows
involved minus one.
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The Murnaghan-Nakayama Rule is important to calculate the value of x(o), for o € S,,. For more
details, see for example [IJ.

PROPOSITION 2.1. (Murnaghan-Nakayama Rule) Let the disjoint cycles of o € Sy, have lengths aq, . .., a4
in any order. Determine all ways in which the diagram [x] can be reduced to 0 by successively omitting reqular
boundary parts of lengths a1, ..., aq. Let the boundary parts occurring in the sth way contain kg vertical steps
altogether. Then x(o) = > _(—1)%s.

In what follows, we will use this rule, namely, to state the following facts:
e If o is a cycle of length equal to p then x(o) # 0.

e If o is a cycle of length greater than p then x(o) = 0.
e If y is a single hook, that is, an irreducible character x = [x1,...,Xx»] of S, such that yo = --- =

X = 1, and o is the product of disjoint cycles of length greater than one, o1,...,0, with h > 2,
and there is an integer 4, such that 1 < ¢ < h with the length of o; greater than max{x; — 1, r — 1}
then x(o) = 0.

e If x is a single hook and o is the product of two disjoint cycles of length greater than one, o1, 02,
with the length of o7 equal to x1 —1 and the length of o5 equal to r— 1, or vice-versa, then x(o) # 0.

In [5], M. Marcus and M. Newman proved the following result.

ProPOSITION 2.2. If S € Q,,, then
perS < 1.

Moreover, perS =1 if and only if S = P(o), for some o € S,,.

If m, 0 € Sp, we denote by 7o ¢ the composition of these two permutations and we denote by o(k) the
image of the value k under the map o. Furthermore, if 7 € S, is a cycle, its length is denoted by (7).

REMARK 2.1. Let x be an irreducible character of S,,. We refer to [I} [0, [7, §] for a general study in
multilinear algebra.

1. x(0) € Z for all 0 € S,,, and

0  if x is not the principal character,
> v = {

n!  otherwise.
o€eSy

2. x(c7Y) =x(o) for all 0 € S, and x(mr oo onm™ 1) = x(o) for all 7, 0 € S,,.

| x(0) |< x(id) for all o € S,,.

4. If n > 4 and x is a character of S,, of degree greater than one, then | x(o) |< x(id) for all o € S, \{id},
[10].

5. Using direct computation, if x is a character of S,, of degree greater than one and o € S, \ {id}
verify | x(o) |= x(id) then n = 4, x = [2,2] and o € {(12)(34), (13)(24), (14)(23)}. Moreover, if
X = [2,2] and o € {(12)(34), (13)(24), (14)(23)}, then x(7 o o) = x(7), V7 € S4.

bt

From the following proposition, we can conclude that whenever x # [2,2] and S € ,,, the maximum
value of d, (S) is attained when S = I, and the minimum value is attained when S = P(7), where x(7) <
x(m), for all * € S,,.
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PROPOSITION 2.3. Let x be an irreducible character of degree greater than 1 of S,. If S € Q, then
dy(S) < x(id), and the equality holds if and only if

S =P(o) and x(o)= x(id).
Moreover, d,(S) > x(7), where x(7) < x(m) for all m € S,,, with equality if and only if

S=P(p) and x(p) = x(7).

Proof. Since

1 dy () [= | D2 X)) [ Siwin| < D Ix(@) [ T] Siwiy < D x(id) [ Siois) = x(id)pers

ocES, j=1 oc€eS, j=1 o€eSy j=1
and since perS < 1, it follows that | d,(S) |< x(id).

If x(id) =| dy(S) |< x(id)perS, then perS > 1. But as perS < 1, for all S € Q,,, then perS = 1. By
Proposition we have that S = P(o) for some o € S,,. By definition and hypothesis, x(id) = d,,(5) =
dy(P(0)) = x(o). Therefore, x(o) = x(id).

Since x(7) < 0 if x(7) = min{x (o) : o € S,}, we have that

dy(8) = > x( H jot) 2 D X0 [ Sj00) =x(7) 3 H j.o() = X(T)per(S) = x(7).
oc€Sy oSy j=1 ocesS, j=1
Consequently, d,(S) > x(7). If d,(S5)

= X( ), then per(S) = 1. By Proposition this implies that
S = P(o), for some o € S,,. Because x(7) =

dy(S) = dy(P(0)) = x(0) then x(0) = x(7). O

COROLLARY 2.4. Let x be an irreducible character of degree greater than 1 of S,,. Let T be a map from
Q,, into Q,, that preserves dy. If x # [2,2], then T(I) = I. Moreover, when x = [2,2], there is o € Sy such
that T(I) = P(o) and x(o) = x(id).

Proof. Since T'(I) € Q,, and dy(T(I)) = dy(I) = x(id), by last proposition, there is o € S, such that
T(I) = P(c), with x(c) = x(id). By Remark [2.1} we have that T'(I) = I if x # [2,2]. O

REMARK 2.2.

1. Using last corollary we conclude that T'(I) is invertible.

2. Using the main result of [I1] (characterization of the subgroup of M,,, S(Sn,x) = {4 € My,; d,(AX)
= dy(X), for all X € M,}) we have that if 0 € S,, and x(o) = x(id), then d, (P(0)S) = d,/(S) for
all S € Q,.

To prove the following lemmas, we will use the Murnaghan-Nakayama Rule (see the considerations at
the beginning of this section and [I]).

LEMMA 2.5. Let n > 4, and x be an irreducible character of Sy, of degree greater than one. Ifi,j, k €
{1,...,n}, are distinct on pairs, then there are o,7 € S, such that

o(i) =34, olk)=k, T=o00(ik), x(o)#0, x(r)=0.
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Proof. Suppose that x is not a single hook, and let p be the number of boundary boxes of [x]. Then
p<n-—1.

If 0 € S, is a cycle of length p such that o (i) = j,o(k) = k, since 7 = o o (ik) then 7 is a cycle of length
p + 1. Using the Murnaghan-Nakayama Rule we have that x(c) # 0 and x(7) = 0.

Suppose that x = [x1,- ., Xv+1] 18 a single hook, with y;1 =« > 1 and v > 1.

Ifu—12>w,sincen=u+v >4 then u—1+v > 3. So, (note that v > 1 because x has degree greater
than one, n > 4) u — 1 > 2. Therefore, there exist ¢ € S,,, and disjoint cycles o1, o2, where ¢ = g1 0 03,
l(c1) = u—1 and I(02) = v, such that 01(i) = j, o(k) = k. Consequently, 7 = o o (ik) = 71 o T2 with
T1,72 € Sp and I(11) = u, {(12) = v. Using the Murnaghan-Nakayama Rule we have that x(o) # 0 and
x(r) = 0.

If u— 1 < v, then, there are o € S, disjoint cycles o1, o2 , where 0 = 01 0 09, I(01) = v — 1 and
l(c2) = v, such that o5(i) = j, and o(k) = k. Therefore, 7 = o o (ik) = 7 o 7o with I(13) = v+ 1. Using the
Murnaghan-Nakayama Rule we have that x(o) # 0 and x(7) = 0. O

LEMMA 2.6. Letn >3, 4,5,k € {1,...,n}, distinct on pairs and o,7 € S, such that
o(i)y=173, ok)=k, 7=o0o0/(ik).
Then for every m € Sy, there are s, 1 € {1,...,n} and l # s that verify

) Ew(s), ) £w(s), o (W) Aw(), TN # (D).

Proof. Suppose that there is m € S,, with a unique s € {1,...,n} such that

Consequently,

if 1 #s, then o (1) =7(l) or 77(1) = =(l).

Let u and v be elements such that o= (u) =t = m(s), 771(v) =t = 7(s), (note that u # s, v # s).

If u = v then 7(u) = 0~ (u) =t or 7(u) = 77 1(v) = t. But m(s) = t, therefore we have a contradiction,
u=s.

Consequently, v # v. Since 7 = o o (ik) then (t =4, u=j, v=Fk)or (t =k, u=Fk, v =j). We only
prove the case t =i, u = j, v = k, because the proof of the other case is analogous. In the case that we will
prove, 0~ 1(j) =i =7(s), 77 H(k) =i = 7(s).

Since s # j, s # kthen 7n(j) = 07 1(j) or n(j) = 771(4). lf 7(j) = 071 (j) then 7 (j) = o ~1(j) = n(s) and

we can conclude that s = j (impossible). So, 7(j) = ’1( j) = k. Since s # k then n(k) = o~ (k) or 7(k) =

“Y(k). If (k) = 7 1(k) then w(k) = 771 (k) = m(s) and we can conclude that s = k (impossible). Therefore,
m(k

7(k) = o~ 1(k) = k. But this implies that 7(j) = 7(k) = k which is impossible. O
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3. The injectivity of T. Let x be an irreducible character of S,, of degree greater than 1 and T be a
semilinear map from (2,, into €,, that preserves d,. In the main result of this section we will prove that T
must be injective.

THEOREM 3.1. Let x be an irreducible character of Sy, of degree greater than 1 and T be a semilinear
map from Qy, into Qy that preserves d,. Then T is injective.

Proof. Let S, S’ € Q,, such that T(S) = T(S’). Let B € Q,, and z € [0, 1]. Since
dy(zS+ (1 —2)B) =dy(T(zS+ (1 —z)B)) =
— 4 (aT(S") + (1 - D)T(B)

— (@S + (1 - 2)B),

dy (¢T(S) + (1 - )T(B))
) = dy(T(xS" + (1 - 2)B))

it follows that d, (S + (1 — z)B) = d, («S" + (1 — z)B).

Case (i) Let n > 4. If i,5,k € {1,...,n} are distinct on pairs, then by Lemma there are o, 7 € S,
such that o(i) = j, o(k) = k, 7 = 0 o (ik), x(o) # 0, x(7) = 0.

For each b € [0, 1], let us consider the matrix
B, =bP(o) + (1 —b)P(r).

So, for all p € {1,...,n},

1 if m(p) = o' (p) = 771 (p),
By =4 b HTO) =0 @) ) £ 7 ),
pr(p) 1-b ifnw(p) # o7 p), n(p) =7 1(p),
0 otherwise.

Now we will compute the coefficient of the term associated with = of the polynomial

dy(@S+(1—2)By) = Y x(m) [[(@S + (1 = 2)B)inq)-

TESH =1

If there is s € {1,...,n} such that for some 7 € S,,, 7(s) # o~ !(s) and 7(s) # 77 1(s) then
(:L‘S + (1 - x>Bb)s7r(s) = xSSW(S)'

To obtain the coefficient of the term associated with @ of the polynomial x(7)[];_; (xS +(1 — x)Bb)ix()
the other terms of H?Zl’l#s(xS + (1 = 2)By) i) must verify (By)i-qy # 0. Consequently, if I # s then
7(l) = o71(1) or w(l) = 77%(I). But this is impossible by Lemma Therefore, if s € {1,...,n} and
7 € Sy, then 7(s) = o7 1(s) or m(s) = 771(s). Since 7 = o o (ik) then 7(s) = 071(s) = 771(s), when
s€{l,...,n}\ {j,k}. Because 7(j) = o~1(j) or 7(j) = 771(4), and 7 (k) = o~ (k) or w(k) = 7= (k) then
m(j) =i or n(j) =k, and w(k) = k or w(k) = . But 7 is a bijection, so we have two cases:

o If 7(j) =i, then n(k) = k and m = o~ L.
° If ﬂ-(j) = k, then W(k) = Z and T = 7—71.

Therefore, the coefficient of the term associated with = of the polynomial dy (xS + (1 — x)By) appears

1 1

whenm=oc orm=7"".
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As x(771) = 0, it is enough to compute x(o=") [T;2; (2S + (1 — ) By)15—1(1)- Since o (01 (1)) = 1, for all
le{l,....,n} and 7(6 (1)) # 1 when [ € {j, k}, then

x(e ) [[@S+1=2)By)io-10) = x(0™")(@Sj0-1() + (1= 2)b) (@Sko-1 () + (1 =2)b) [] (@Si-10)+(1—2)).
=1 [y

Consequently, the coefficient of the term associated with x in the polynomial d, (xS + (1 — z)By) is

X (Sjo=10) = Db+ (Sko-1(e) = Db +* > (Sio—1(1y — 1))
145k

Since 071(j) = i and 0~ (k) = k then the coefficient of the term associated with z in the polynomial
A8+ (1= 2)By) 35 x(o™)((Sjs = )b+ (S — Db+ 2 511y (St — 1)

Using the fact that
dy (xS + (1 —2)By) = dy(xS" + (1 — x)By,)
for all b € [0, 1], we have that

X(o7)(S5i = b)b+ (S —0)b+b% D (Sig-10y = 1)) = X(07 ) (8] = )b+ (S —0)b+b7 D (Sj-1(py — 1),
I#5k 1#5,k

for all b € [0, 1]. Consequently,

(Sji+ Sk)b+ 0 | > (Siory = 1) =2 | = (S + Spa)b+ 0> [ D (Slyry — 1) — 2
1#5,k I#5,k

for all b € [0, 1].

Then the coefficient of the term associated with b of the last polynomials are equal, i.e.,
Sji 4 Skx = Sj; + Sy (3.1)
for all i,j,k € {1,...,n}, distinct on pairs. Since n > 4, there is p ¢ {4, j, k} such that

Sji + Spp = Sg/‘i +5

pp’

and subtracting the equalities (3.1) and (3.2)), we obtain that
Skk — Sk = Spp — Sy
for all k,p € {1,...,n}.

If ¢ is the constant defined by ¢ = Sk — Sy, then Sk = S, + ¢, and by (3.1)), we obtain Sj; = Sj’-l- —c,
for all i,5 € {1,...,n}, i # j.

As S,8" € Q, we have Sj; + 377, Sj = Land S, +c+ 37, (S, — ¢) = 1, which implies
that >37_; S%; + (2 —n)c = 1. Since n # 2 then ¢ = 0, which means that Syx = S}, and Sj; = S}, for all
kyi,j € {1,...,n}. Therefore, S =5’ and T is injective.
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Case (i) Let n = 3 and x = [2,1]. Let us consider o = (ij) and 7 = (ijk) for {7, j, k} = {1, 2, 3}.
Then x(o) = 0 and x(7) # 0. For each b € [0, 1], consider the matrix B, = bP(c) + (1 — b)P(7). So, for all
p € {1,2,3} and 7 € S5,

1 if 7(p) = o~ (p) =77 (p),
(Bo)ymi) = if 7(p) = o7 (p), w(p) # 771 (p),
b/pm(p) 1-b ifn(p)#o~ (
0 otherwise.

Then

3
dy(zS+ (1-2)By) = > x(m) [[@S + (1 = 2)By)i=q

TES3 =1
= X(1)(@Sir(i) + (1 = 2)0) (€87 ()) (@ Skr (i) + X(T7 1) (@Sir-105) + (1 — 2)(1 = b))
(@Sjr-1) + (L= 2))(@Skr 1) + (1 = 2)(1 = b)) + x(id) (25:) (#5;;) (@Skr + (1 — x)b).

Since 771(i) = k, 771(j) = i and 7~ 1(k) = j, the coefficient of the term associated with x of the polynomial
dX(IL'S + (1 — :L')Bb) is X(Tﬁl)((l - b)((Szk + sz' + Skj - 3) + b(*Sji + 3))) for all b € [0, 1]

Using the fact that
dy(zS+ (1 —2)Bp) = dy(zS" + (1 — 2)By),
we have that
XTI (A = b)((Si5 + Sji + Sug = 3) +b(=Sji +3))) = x(r7)((1 = 0)((S}; + S} + Sij — 3) + b(=5j; +3)))

for all b € [0,1]. So, the coefficient of the term associated with b? of last polynomials are equal and this
implies that

Sji = Sj;
for all i # j. Since Si; + Sji + Spi = 1 = S, + 5%, + S}, then S;; = S}, for all i € {1,2,3}. Consequently,
S =5". So, T is injective. O

4. The image of a permutation matrix by 7. Let C C €, be a convex polyhedron. An element
S € C is a vertex of C, if S satisfies:

VS5,5€C: S=aS + (1 — O&)SQ, with o E]O, 1[, it follows S; = Sy = S.

Let T be a semilinear map from Q,, into €, that preserves d,. Since €2, and T'(2,,) are convex poly-
hedrons, and the permutation matrices are the vertices of €, (see [2]), in the next step we will see that if
o € S, then T(P(0)) is a vertex of T'(Q2,,).

PROPOSITION 4.1. Let x be an irreducible character of degree greater than 1 of Sy,. LetT be a semilinear
map from §Q,, into S, that preserves dy. If o € S, then T(P(0)) is a vertex of the convex polyhedron T'(§1,,).

Proof. Let S1,52 € Q,, and o € S, such that T'(P(0)) = aT(S1) + (1 —a)T(S2), for some a €0, 1[. Then
by semilinearity of T we have T'(P(c)) = T(aS1 + (1 — )S2). Using Theorem [3.1} P(o) = aS1 + (1 — «)Sa,
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with « €]0,1[. As P(0) is a vertex of §2,,, then S; = Sy = P(0), which means that T'(S1) = T(S2) = T(P(0)),
and T'(P(0)) is a vertex of T(Q,,). O

In what follows, we consider that the semilinear map T from €2, into €2, is surjective. Since T preserves
d,, we have that T is bijective and T'(Q,,) = Q.

COROLLARY 4.2. Let x be an irreducible character of degree greater than 1 of S,,. Let T be a semilinear
surjective map from ), into Q,, that preserves dy. Then for each o € Sy, there is a ™ € Sy, such that

T(P(0)) = P(w), where x(o) = x(m).

DEFINITION 4.3. We say that two matrices S; and S, are equal to one in the position (4, j), if (51):; =
(S2)ij =1

We denote by ¢[S7, S2] the number of positions where S; and Sy are equal to one. Consequently, if P is
a permutation matrix and S € Q,,, then ¢[P, S] is equal to the number of ones of the matrix 2P 4 (1 — x)S,
for all z €]0, 1[. In particular ¢[I, S] is equal to the number of ones in the main diagonal of S.

PROPOSITION 4.4. Let x be an irreducible character of degree greater than 1 of S,,. LetT be a semilinear
surjective map from €, into ,, that preserves dy. Let o € S, such that x(oc) # 0 and S € Q,. If
T(P(o)) = P(n) and T(S) = 5’', then

n n
> Sie16) = X Sjr-1y:
j=1 j=1

Proof. Let x € [0, 1]. First we will compute the coefficient of the term associated with x of the polynomial
dy(2S+ (1 = 2)P(0)) = 3 cq, X(T) [[j=1 (#S + (1 = 2) P(0))7(j). If 7 # 0", then there is s € {1,...,n}
such that (xS + (1 — z)P(c ))ST(S = a:SST(S Since 7 and o are bijections, there are, at least two 1ntegers

s,ho€ {1,...,n} with s # h and (2S5 + (1 — 2)P(0))sr(s) = TSsr(s), (S + (1 = 2)P(0))hr(n) = TShr(n)-
Consequently, H?Zl(xS + (1 —x)P(0));-(;) is a polynomial with the coefficient associated with x equal to
zero. So, the coefficient of the term associated with « of the polynomial dy (xS + (1 — z)P(c)) is obtained
when 7 = o' and is equal to

n

x(e™h) Z(Sjrl(j) —1).

Asdy (xS + (1 —z)P(0)) = dy(xS"+ (1 — z)P(m)) we have that

n

_1 Z jo=t(g) Z Jr=t) —
Jj=1

Jj=1
Consequently, we get the desired conclusion using Corollary and the fact that x(o) #0.0

COROLLARY 4.5. Let x be an irreducible character of degree greater than 1 of S,,. Let T be a semilinear
surjective map from Q, into Q, that preserves d,. Let o € S, such that x(c) # 0 and p € S,. If
T(P(o)) = P(n), then
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Proof. By Proposition [£.4]

So we get the desired conclusion. O

LEMMA 4.6. Let x be an irreducible character of degree greater than 1 of S,. Let T be a semilinear
surjective map from Y, into §, that preserves d,. Let p,0 € S, such that T(P(p)) = P(8). If p is a
transposition then 0 is a transposition, and if p is a cycle of length three then 0 is a cycle of length three.

Proof. Let p be a cycle of length 2 <[ < 3, such that T(P(p)) = P(f), then by Corollary
clI,P(p)l=n—1=c[,P(0)).
If | = 2, then there are 4,5 € {1,...,n} such that i # j, P(6);; = P(0);; =0, P(Q)xx, = 1, for all k # 1,7,
and consequently, P(6);; = P(6);, = 1.
The case | = 3 can be proved using the same arguments. O

A semilinear map 7T is called unital if T'(I) = I. When T is a semilinear map from 2, into §,, the
case of a nonunital map can be reduced to the unital case by considering the semilinear map ® defined by
®(S) = T(I)~'T(S), since T(I) is invertible. Recall that by Corollary if the irreducible character of
degree greater than one, x, verifies x # [2,2] and T preserves d, then T'(I) = I.

PROPOSITION 4.7. Let x be an irreducible character of degree greater than 1 of S,,. LetT be a semilinear
unital surjective map from €y, into ), that preserves dy. Then there is o € S,, such that for all i,j €

{L...,n}, i # ],

T(P(ij)) = P(a(i)a(s))-

Proof. First we will prove two claims.
If X is a set, we denote by |X| the cardinality of X.

Claim 1. Let i,7,1,a,e,¢,d € {1,...,n} with ¢, j, [ distinct on pairs. If T(P(ij)) = P(ae) and T(P(il)) =
P(cd) then |{a,e,c,d}| = 3.

Proof of Claim 1. Using Lemma [4.6] since T is injective, |{a, e, c,d}| # 2.

Suppose that |{a,e,c,d}| = 4, which does not happen if n = 3. Let S = bP(ij) + (1 — b)P(il), with
b € [0,1]. Since, T'(S) = bP(ae)+(1—b)P(cd), where b € [0, 1], and dy (zS+ (1 —z)I) = dy (2T(S)+(1—2x)I),
then the coefficient of the term associated with z2b2 of both polynomials must be equal.

First we will compute the term associated with 22b? of the polynomial

dy(xS+ (1 —2)) = > x( Hxs+ 1—2)1)n(s)-
s=1

TeS,
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When 7 € 5,
1 itse{l,...,n}\{i,5,l}, w(s)=s,
. if (s,7(s ), (4,9), (4,7},
(St = OP+ (1= DP st = 1y it (oo € (0 (o0
otherwise.
Consequently, when 7 € S,
1 if se{l,...,n}\{i,5,1}, w(s)=
1—2z if (S,W(S)) = (4,1),
1 - ab i (s, 7(5)) = (j ),
@S+ (1 —2))snsy = 1—2(1=0) if(s,7(s)) = (I,1),
b if (s,7(s)) € {(1,5), (4,9},
l‘(l - b) if (5777( )) € {(171)7 (Zrl)}a
0 otherwise.

So, if m ¢ {id, (i5), (i)} and there is h € {1,...,n} \ {7, 4,1} with 7w(h) # h then (2S5 + (1 — 2)I)prn) = 0
and x(7) [T0—_, (@S 4+ (1 — 2)I)4r(s) = 0. Consequently, if x(7) [To_, (zS + (1 — 2)I)sr(s) # 0 then 7(h) = h,
forall h € {1,...,n}\ {4,7,l} and 7 € {id, (i), (il), (41), (ijl), (ilj)}.

If 7 = (j1) or m = (ijl) then (xS + (1 — 2)I);x(j) = 0 and x(m) [[o_; (xS + (1 — 2)I) 4r(s) = 0.
If 7 = (ilj) then (S + (1 — 2)I)1rqy = 0 and x(7) [To_; (xS 4+ (1 — )I) 4r(s) = 0.

So, dy (2S+(1—2)I) = x(ij)(1—2(1-b)) (zb) (xb)+x (id) (1—z(1—b)) (1—zb) (1—z)+x (i) (1—xb) (z(1—b))?.
Therefore, the coefficient of the term associated with 22b? of the polynomial dy (zS + (1 — x)I) is

—x(id) + x(ig) + x(il).

Now we will compute the term associated with z2b? of the polynomial

dy(T(S)+ (1 —2)1) = > x(m) [[@T(S) + (1 = 2)1)r(s)-

TESy
When 7 € S,
1 if se{l,...,n}\{a,e,c,d}, w(s)=s,
e (LBt b (s (s) € (@), (e.a), (e.0). (A ),
(T()ex = (bPlac) + (1= Pl = § |, 7T < Cptenan fe o) (A
otherwise.
Consequently, when 7 € S,,,
1 itse{l,...,n}\{a,e,c,d}, w(s)=
1—xb if (s,m(s)) € {(a,a), (e,e)},
. _ ) 11—z =0b) if(s,7(s)) €{(d.d)(c,c)},
@TE) + =2 or) =4 4y, if (s, 7(s)) € {(as¢), (esa)),
I(l*b) if (537(5)) € {(C,d),(d,c)},
0 otherwise.
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So, if w & {id, (ae), (cd)} and thereis h € {1,...,n}\{a,e,c,d} with w(h) # h then (zT(S)+(1—2)I)prpn) = 0
and x(7) [[o_1 (2T (S) + (1 — 2)I)sr(s) = 0. Consequently, if x(7) [To_, (zT(S) + (1 — )I)sr(s) # O then
w(h) =h, for all h € {1,...,n}\ {a,e,¢,d}.

If 7(r) € {m(a),m(e)} C {c,d} or n(r) € {n(c),n(d)} C {a,e}, then (xT(S) + (1 — z)I),r() = 0 and
X(m) TTe—1 (2T(S) + (L = 2)1) 4 (s) = 0.

So, dy (zT(S)+(1—z)I) = x(ae)(1—z(1-b))?(zb)?+x(id) (1—2(1-b))*(1—xb)*+x(cd) (1—zb)? (z(1—b))>.
Therefore, the coefficient of the term associated with z%b? of the polynomial d, (z1'(S) + (1 — z)I) is

—2x(id) + x(ae) + x(cd).

Since the polynomials d, (xS + (1 —z)I) and d, (zT(S) + (1 — x)I) are equal then the coefficients of the

term associated with 22b? of each polynomial are equal, i.e.,

—x(id) + x(ij) + x(il) = —2x(id) + x(ae) + x(cd).

Because x(id) # 0, we obtain a contradiction. Consequently, |{a,e,c,d}| = 3.1
Claim 2. Let i,7,l,a,e,d € {1,...,n} with ¢, 4,1 distinct on pairs and a,e,d distinct on pairs. If
T(P(ij)) = P(ae) and T(P(il)) = P(ad), then

T(P(jl)) = P(ed).

Proof of Claim 2.  T(P(j1)) = P(gf), using Claim 1, we conclude that |{a,e, g, f}| = 3 and |{a,d, g, }|
=3.

Let us assume that g = a. Then f # a, f # e and f # d, and consequently |{a,e,d, f}| = 4.

Let S = blp(Z]) +b2P(ll) + (1 — (bl +b2))P(]l), with bl, b2 S [O, 1] and b1 +b2 S 1. Since, dX(IS+ (1 —
x)I) = dy (2T (S) + (1 — x)I), then the coefficient of the term associated with z*b;bs of both polynomials
must be equal.

First we will compute the term associated with z*b1b, of the polynomial

dy(zS+ (1 —2z)I) Z H (@S + (1 = 2)1)gr(s)-

TES, s=1

When 7 € S,

(S)sm(s) = (b1 P(ig) + b2 P(il) + (1 = (b1 + b2)) P(51))sm(s)

1 ifse{l,...,n}\ {4,451}, w(s)=s,
by if (s,7(s)) € {(l,1), (4,4), (4,9},

=9 b2 if (s,m(s)) € {(5,4), (4,0), (1, 9)},
L= (b1 +b2) if (s,7(s)) € {(¢,9), (5,1), (1, )},

0 otherwise.
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Consequently, when 7 € S,,,

1 ifse{l,...,n}\{i,5,1}, w(s)=s,
1—x(by + bo) if (s,7(s)) = (4,14),
L—o(l—by) i (5,7(5) = (),
1—a(1—1b) if (s,m(s)) = (,1),
@5+ (1= 0)ari = {1 i (5,7(5)) € {(:,9), (i)},
xby if (s,7(s)) € {(4,1),(1,4)},
21— (b +b2)) it (5,7(5)) € {(1, ), G D},
0 otherwise.

So, if 7 € S, and there is b € {1,...,n} \ {i,4,1} with 7(h) # h then (S + (1 — 2)I)pr) = 0 and
X(m) [ (x2S + (1 = 2)])sn(s) = 0. If 7 € S, and for all h e {1,...,n}\ {i,5,1}, 7(h) = h then (xS + (1 —
2)I)pr(ny = 1. Consequently, the degree of the polynomial dy (xS 4 (1 — 2)I) is less than or equal to three.

Therefore, the coefficient of the term associated with z%b;by of the polynomial d, (xS + (1 — x)I) is zero.

Now we will compute the term associated with z%b1bs of the polynomial d, (zT(S) +(1 — z)I) =
>ores, X(M) 1o (#T(S) + (1 = 2) 1) 4r(s)- When 7 € S,

(T(5))sm(s) = (b1 P(ae) +ba Plad) + (1 = (b1 + b2)) P(af))sn(s)

1 ifse{l,...,n}\{a,e,c,d}, w(s)=s,
b1 if (s,7(s)) € {(a,e),(e,a)},
by if (s,7(s)) € {(a,d), (d,a)},
_ 1- (b1+b2) if (S,?T(S)) € {(avf)a(faa)}a
1—b if (s,7(s)) = (e, e),
1—by if (s,7(s)) = (d,d),
bi+ b2 if (s,m(s)) = (f. f),
0 otherwise.
Consequently, when 7 € S,,,
1 if se{l,...,n}\{a,e,¢d}, w(s)=s,
xby if (s,m(s)) € {(a,e),(e,a)},
xby if (s,7(s)) € {(a,d), (d,a)},
{,C(l— (b1+b2)) if (S,TF(S)) € {(a, f)7(f7a)}7
(@T(S)+ (1 =) )grsy = 1—aby if (s,7(s)) = (e, e),
1— by if (s,7(s)) = (d,d),
L—z(l—= (b1 +b2)) if (s,m(s)) = (f. [),
1—2z if (s,7(s)) = (a,a),
0 otherwise.

If m & {id, (ae), (af), (ad)} then there is h € {1,...,n} with (h,7(h)) &€ {(h, h), (a,€), (e,a), (a, ), (f,a),
(a,d), (d,a)}. Consequently, (T°(S) + (1 — 2)I)prn) = 0. Then x(7) [Th_; (2T(S) + (1 — 2)1)pr(ny = 0.
So, dy (zT(S) + (1 — 2)I) = x(id)(1 — xb1)(1 — zbe)(1 — z)(1 — (1 — (b1 + b2))) + x(ae)(xb1)?(1 — xbe)(1 —
21— (b1 +52))) + x(ad) (@52)*(1 — 21 )(1— (1 — (b + b)) + x(aF)22(L — (by +B2))2(1 — 2b) (1 — 3by) =
x(id)(1 — z(by + by + 1) + 2%(by + bg + brba) — 23b1bo) (1 — (1 — (by +b2))) + - - + x(af)z?(1 — 2by — 2by +
b% + b% + 2b1b2)(1 — .’Iﬁ(bl + b2> + .%'lebg).
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Then the coefficient of the polynomial d, (2T(S) + (1 — x)I) associated with zb1bs is x(id) + x(af).

Since dy (zS + (1 — z)I) = dy (zT(S) + (1 — z)I), then the coefficient of the term associated with z%b1bs
of both polynomials must be equal, i.e.,

0 = x(id) + x(af).

But this is impossible by Remark when y # [2,2], and because x(id) = 2, x(af) = 0, when x = [2,2].
Thus, ¢ # a, and using the same argument, we have that f # a. Therefore, ¢ = e, so f = d since
Ha,d, g, f}| = 3, and we conclude that T'(P(jl)) = P(ed).

For all 4,5 € {1,...,n} with i # j let us consider k € {1,...,n}, such that k # i, k # j. Let us assume
that {i,5,k} = {1,2,3}.

Using Lemma there are j1, j2, 43, 44 € {1,...,n} such that T(P(12)) = P(j1j2), T(P(13)) = P(j3ja).
By Claim 1 [{j1,J2,43,74} = 3. Let «(1) = 41 where i1 € {j1,j2} N {43,74}. Let a(2) = iz, where
iz € {j1,J2} \ {i1}, and «(3) = i3, where i3 € {js,ja} \ {i1}.

Using this construction, we can define a function
a:{1,...,n} —{1,...,n},
where a(r) = i,.
Using Claim 2 and the injectivity of T, we conclude that a € S,,. O
5. Proof of the main result. Let y be an irreducible character of degree greater than 1 of S,,. In this
section, we characterize the semilinear surjective maps T' from £, into Q that preserve d, (Theorem .

By the Murnaghan-Nakayama Rule (mentioned in Section 2), if x is an irreducible character of S,, and
p is the number of boundary boxes of the Young Diagram associated with x, then x(£) # 0 whenever ¢ is a
cycle of length p. On what follows we consider a € S,, obtained using Proposition [4.7

PROPOSITION 5.1. Let x be an irreducible character of S, of degree greater than one and p be the
number of boundary bozes of the Young Diagram associated with x. Let T be a semilinear unital surjective
map from Q,, into Q,, that preserves dy,. Let £ € S,, be a cycle of length p and T(P(§)) = P(p). Then

p=aotoa

or

p=aof toa l

Proof. Let £ = (i1i2---1p). Then, by Corollary c[I,P()] = c[I,P(p)] =n —p. Let S = P(iyia).
Then

and, by Corollary
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ie., p~1(a(i1)) = aliz), or p~(a(iz)) = a(i1), and both cases cannot happen at the same time because p is
not a transposition.

Repeating the same argument with S = P(isis+1), where t € {2,...,p — 1}, and using the bijectivity of
p and «, we must have

(1) p~Halir)) = aliz), p~'(aliz)) =

(2) p~Ha(in)) = alip), p~ (a(ip) =
So by definition of £ we have that

(1) atoptoa=¢"1 or

(2) atopltoa=¢.
Then p=aofoatorp=aofloa™t. 0O

In Proposition we will prove that if 3, v € S, are cycles of length p, then we cannot have T(P(3)) =
PlaoBoa™t), and T(P(y)) = Plaoytoa™).

PROPOSITION 5.2. Let x be an irreducible character of S, of degree greater than one and p be the
number of boundary boxes of the Young Diagram associated with x. Let T be a semilinear unital surjective
map from §y, into U, that preserves d,. Suppose that if p =4 then n # p. Let £ € Sy, be a cycle of length p
and T(P(£)) = P(p).

1) If p=aofoa ! then T(P()) = P(acofoa™t) whenever § € S,, is a cycle of length p.
2) If p=ao&toa! then T(P(A)) = P(ao =t oa™t) whenever § € S, is a cycle of length p.

Proof. We will prove part 1). The proof will be divided into two cases:

Case 1. Let p # n.

Claim 1. If 4,5 € {1,...,n} with ¢ # j, verify £(¢) = i and &(j) # j then T(P((ij) o £ o (i))) =
Pla o (ij) 0 € o (ij) 0 a~).

Proof of Claim 1. Since (ij) o € o (ij) is a cycle of length p, by Proposition T(P((ij) o € o (i5)))
P(ao(ij)oto(if)oa) or T(P((if)oko(if))) = Plac(if)oéo(if)oa~"). Suppose that T(P((if)oto(ij))) =
P(ao(ij) o o (ij) oa™).

Let S = P((ij)o&o(ij)). By Proposition Sie-11)y+ + Sne-1(n) = Sip,l(l) +-- —i—S;Lp,l(n), where
S" =T(S). Since

Sig=1(1) + 00+ Sngmrmy = {a 2 (i) 0 €7 (a) =& o (ig) ()} =n — 3
and
Sip-ry T+ Shm1my = Ha s (i) o Ha)=¢o (ij)(a)} =n—p—1,
then p = 2 (impossible). So T(P((ij) o € o (i) = Pl (i) o € o (if) oa~"). B
Let 0 = (a 6(a) --- 8P~1(a)) be a cycle of length p, 6 # &, where a € {1,...,n} and

a ifl=0,
#'(a) :{ (61 (a)) if > 0.
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If £(a) = a, let t be an integer such that £(t) # ¢t. Using Claim 1,
TP((at) o€ o (at)) = Plao (at)ofo(at) oa™)
and if 8 = (at) o £ o (at) then S is a cycle of length p verifying S(a) # a. So, we can assume that £(a) # a.

Let s be the smallest positive integer that 6°(a) # £(0°~1(a)). Consequently, s < p and 6%(a) = £%(a),
foru=0,...,s—1.

o If£(6%(a)) = 0%(a), let £(0°~1(a)) = r (note that we have £(60571(a)) # 6°~1(a) because £(0°~1(a)) =
0°=1(a) implies that £(a) = a). Using Claim 1,

TP((0°(a)r) 0§ o (6°(a)r)) = Plao (6°(a)r) 0§ o (% (a)r) o a™)

and if 81 = (0°(a)r) o £ o (6%(a)r) then B; is a cycle of length p verifying Si(a) = 6%(a), for

u=0,...,s.
o If £(6°(a)) # 6°(a), let £(6°"1(a)) = r. Since n # p, let k be an integer such that £(k) = k. Using
Claim 1,

TP((0°(a)k) o £ o (A*(a)k)) = P(ao (B%(a)k) o Eo (6°(a)k) o a™t)

and if 8o = (0%(a)k) o £ o (0°(a)k) then By is a cycle of length p verifying 8% (a) = 6%(a), for u =
0,...,58—1, B2(6°(a)) = 0°(a) and B2(6°"!(a)) = r. Using what we proved above, we conclude that
there is a cycle of length p, 33, such that 8%(a) = 0“(a), for u =0,...,s and TP(33) = P(aBza™1).

Repeating this argument, we prove the result.
Case 2. Let n =p # 4.
Claim 2.1fi,5 € {1,...,n}, with i # j, verify £(i) = 4, then T(P((ij)o&o(ij))) = P(ao(ij)ofo(ij)oa1).

Proof of Claim 2. Using a similar argument as in Claim 1, suppose that T'(P((ij) o £ o (ij))) = P(a o
(if) o £~ o (i) o a™h).

Let S = P((ij)o&o(ij)). By Proposition Sie-1(y+ +Sne-1(n) = S{p,l(l) +-- S;L,rl(n)’ where
S’ =T(S). Since

Sie-1(1) -+ Sng-imy = {a: (i) 0§ a) =€ o (if) ()} =n — 3
and
Slpiy + Sy = Ha (i) 07 a) = Eo (ij)(a)}| = n, if p=3
or
Sipry o+ Sy = Ha: (i) o€ a) = o (if)(a)} =n—p+1, if p>3
then p = 4 (impossible). So T(P((ij) o € o (i) = P(ao (if) oo (if) oa~).
Let 0 = (a 6(a) --- 0P~(a)) be a cycle of length p, 6 # £, where a € {1,...,n} and

a ifl=0,
#'(a) :{ (61 (a)) if > 0.
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Since n = p then £(a) # a. Let s be the smallest positive integer that 6°(a) # £(6°~*(a)). Consequently,
s<p—1and 0"(a) = £“(a), for u=0,...,s — 1. Since n = p, there is an integer k such that p— 1>k > s
and £¥(a) = 6%(a). Using Claim 2,

TP((€ (a)e" (@) 0 € o (6" ()6 (a)) = Pao (€"(a)€" " (a)) 0 € 0 (€°(a)€" M (a)) 0 a™1),

and if By = (£F(a)€F 1 (a)) o € o (£ (a)¢*~1(a)), then B, is a cycle of length p verifying 8} (a) = 6%(a), for
u=0,...,5—1and 857 (a) = €¥(a) = 6°(a). Using this argument we obtain a cycle of length p, 85, such
that B¥(a) = 6“(a), for u=0,...,s and TP(35) = P(afBsa™1).

Repeating this argument, we prove the result.
The proof of part 2) is analogous. O

For each i,j € {1,...,n} let U; ; be the subset of Q,, such that
Uij ={P € Q, : P is a permutation matrix and P;; = 1}.

These sets are very important for our study.

PROPOSITION 5.3. Let x be an irreducible character of S, of degree greater than one, x, and p be the
number of boundary bozxes of the Young Diagram associated with x. Let T be a unital semilinear surjective
map from §, into Q, that preserves dy,. Leti,j € {1,...,n} where i # j, and P be a permutation matriz,
such that P € U; j. Assume that & is a cycle of length p, and T(P(§)) = P(p). Then one of the following
conditions must hold:

(1) If p=aofoa™!, then T(P) € Ua(i),a(5)-
(2) Ifp=ao& toa™, then T(P) € Un(j.a()-

Proof. We will prove (1). Let m € S,, such that m(j) = 4. Therefore, P(w) # I and P(w) € U; ;. By
hypothesis, p = a0 £ o !, We will see that T(P (7)) € Uq(i),aj)- Let P(6) = T(P(r)). We shall consider
several cases:

Case 1. Let n > 5. If n > 5, and the number of boundary boxes of the Young diagram associated with
X is p, then p > 4. Suppose that T(P(7)) = P(0) € Ua(i),a(j), i-€-»

atobhoal(j) #£i

. Let = a0 oa, then by Corollary

whenever ¢ is a cycle of length p.

Since n > 5, we can choose a € {1,...,n} such that

ati, atj wa)#,
and we can choose b € {1,...,n} such that

b#i, b#j, bFa, 0'(a)#b, and 0'(b) #J.
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Let us consider the cycles &, and 7 of length p, defined by
§i(a) =b, &) =J, &) =1 nla)=j n@)=0b nb)=i
and &1(q) = n(q) for all ¢ & {a, b, j}.
Since &(j) = 7(j) and n(q) # 7(q) for all ¢ € {a, b, j}, then
c[P(&), P(m)] > c[P(n), P()],
which implies that
c[T(P(&)), P(0)] > c[T(P(n)), P(0)].

By Proposition [5.2} we have

c[P(ao&oa™),P(0)] > c[P(aonoa™t), PH)).
Since & (q) # 0'(q) for all ¢ € {a,b,}, then

c[Placg&oa™), PO)] < c[Paonoa™), P(O)],
which is a contradiction. So T'(P(1)) € Un(i),a())-

Case 2. Let n = 3 and x = [2,1]. Since p = 3, if 7 is a cycle of length 3, then the result is obtained
using Proposition If 7 is a cycle of length 2, then the result is obtained using Proposition 4.7

Case 3. Let n =4 and x = [3,1] or x = [2,1,1]. In this case, we can not use Proposition since the
number of boundary boxes of the Young Diagram associated with x is p = 4. If 7 is a cycle of length 2, then
the result is obtained using Proposition [£.7]

Let m = (ij)o(kl) with 4, j, k, [ distinct on pairs, then by Corollary (in this case, if o is a transposition
then x(o) =1 or —1),

c[P(ij), P(m)] = 2 = c[P(a(i)a(5)), T(P(r))].

Since c¢[I, P(w)] = 0 then ¢[I,T(P(w))] = 0. So, #(a(i)) = «(j) and 0(a(j)) = «(i). Therefore, P(0) €
Ua(i),a(i)-

Let 4,7,k distinct on pairs. If 7 = (jik), using Lemma T(P(jik)) = P(abc), where a,b,c are
distinct on pairs. Since x(ij) # 0 (in this case, x(ij) = 1 or x(ij) = —1), by Corollary we have
c[P(ij), P(m)] = 2 = ¢[P(a(i)a(j)), T (P(m))]. Since ¢[I, P(w)] = 1 then ¢[I,T(P(m))] = 1. So,

(abe)(a(i)) = a(j) or (abe)(a(jf)) = a(i),
(only one of these conditions because (abc) is not a transposition).

In the same way, using the transposition (ik),

(abe)(a(i)) = a(k) or (abe)(a(k)) = a(i)

and using the transposition (kj),

(abe)(a(k)) = a(j) or (abe)(a(h)) = a(k).
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Consequently,

(abe) = (a(i)a(j)a(k)) or (abe) = (a(j)a(i)a(k)).

Since £ is a cycle of length 4, then ¢ is one of the following permutations
(jikl) or (jilk) or (jlik) (5.1)
or
(jlki) or (jkil) or (jkli), (5.2)
with [ € {1,2,3,4}\ {4,4, k}.

If £ is equal to a permutation of (5.2)), then ¢[P(¢), P(w)] = 0. Using Corollary [4.5] (recall that x(§) # 0),
c[P(ao&oat), P(abc)] = 0. Since a0 & o a™t(a(i)) = a(j) or ao&oat(a(j)) = a(k), we conclude that
(abe) = (a(j)a(i)a(k)).

If ¢ is equal to a permutation of (5.1)), then c[P(¢), P(m)] = 2. Using Corollary c[P(actoa™1), P(abc)]
= 2. Since (abe)(a(l)) = a(l), we conclude that (abe) = (a(j)a(i)a(k)). Therefore, P(0) = T(P(jik)) =
Pla(j)a(i)a(k)) € Uagi),ai)-

If # = (jikl) is a cycle of length 4, with 4,7, k, 1 distinct on pairs, then c[I, P(7)] = 0 = c[I, P(9)].
Considering the transposition (ij) and using Corollary we get ¢[P(ij), P(m)] = 1 = ¢[P(a o (ij) o
a1, P(6)]. Then

Suppose that 6(a(i)) = a(j). Considering the permutation (jik) and using Corollary [4.5] we get c[P(jik),
P(m)] = 2 = c[P(a o (jik) o a™1), P(A)]. Then

0(a(i)) = a(k) and  O(a(k)) = a(j).

So, a(k) = 0(a(i)) = a(j). Impossible because 6 is a permutation. Consequently, §(a(j)) = «a(i) and
P(9) =T(P(jikl)) € Ua(i),a(j)~

Case 4. Let n = 4 and y = [2,2]. Since p = 3, if 7 is a cycle of length 3, then the result is obtained
using Proposition [5.2] If 7 is a cycle of length 2, then the result is obtained using Proposition [£.7}

Let i, j, k, 1 distinct on pairs. Let m = (ij) o (kl) then
c[P(if), P(m)] = 2 = c[P(a(i)a(j)), T(P(m))]

(in this case, x((ij) o (kl)) = 2 # 0). Since ¢[I, P(w)] = 0 then ¢[I,T(P(w))] = 0. So, 8(a(i)) =
a(j) and 0(a(j)) = a(i). Therefore, P(0) € Uy(i),a())-

Let m = (jikl) with 4, j, k, I distinct on pairs, then
c[P(jik), P(m)] = 2 = c[P(a(j)a(i)a(k)), T(P(7))]

(in this case, x(jik) = —1 # 0). Since c[I, P(n)]

= 0 then ¢[I,T(P(m))] = 0. So, we must have two of
these cases, 0(a(j)) = a(i) or O(a(i)) = ak) or O(a(k

) = a(j), (recall that P(0) = T(P(n))). In the
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same way, using (jil) we must have two of these cases, 8(«(i)) = a(l) or 8(a(l)) = a(j) or (a(j)) = «a(i).
If 0(a(j)) # i) then O(a(i)) = alk), 0(a(k)) = «(j) and 6(a(i)) = «(l). Impossible because 6 is a
permutation. Consequently, 8(«a(j)) = a(7).

Therefore, P(0) = T(P(ijkl)) € Ua(s),a(j)-
The proof of part 2) is analogous. O
Now we are in conditions to prove the main result of this paper.
Proof of Theorem 1.2. If there are o, € S,,, with x(o) = x(id), such that
T(S) = P(o)P(a)SP(a™),
for all S € Q,,, we have that
4 (T(9) = D> x(m) [[T(9)j=ty = D xlacpoa= oo ™) ] Sjii)-
TESy, j=1 pES,, j=1

Since x(0) = x(id) then x(aopoa~too™) = x(aopoa™) = x(p) (see Remark 2.1)). Consequently,
A (T(S)) = 3 jes, X() [T=1 Sjp(s) = dx(S). Therefore, the map T' preserves d.

The proof of the case when T'(S) = P(0)P(a)ST P(a™1) is similar.
Conversely, suppose that the map 1" preserves d, and is unital.

Let p be the number of boundary boxes of the Young Diagram associated with y and let a € .S,, obtained
using Proposition [£.7]

Claim 1. Let P be a permutation matrix, such that P € U;;. Then T(P) € Uy (i)a(i)-

Proof of Claim 1. Suppose that P = P(w) with 7 € S,,. Let k = c[P, I]. By Corollary [l.5] k = ¢[T(P), I].
Let 41,...,in—k be distinct on pairs, such that 7(i;) # i;, for all j € {1,...,n — k}.

Assume that £ is a cycle of length p, T(P(£)) = P(p), with p = a0 oa™! (condition 1) of Proposition
5.3). Since P € Upr(i;yi;» then T(P) € Un(r(i;))a(iy), for all j € {1,...,n —k}. As k = ¢[T(P), ], then
T(P) € Up,p,, where 1y € {1,...,n}\ {a(i1),...,a(in_k)}

Let us consider py, for all t € {1,...,k}, such that a(p;) = 7¢, thenpy, ..., pr € {1,...,n\{i1, ..., bn—k}
Since P € U;,; then m(i) = i and there exists p; € {p1,...,px} such that p; = i. Since a(i) = a(p;) = r;
then T'(P) € Ua(i)a(i)-

If we are in the condition 2) of Proposition the proof is analogous.

Claim 2. Assume that £ is a cycle of length p, and T'(P(£)) = P(p). Then one of the following conditions
must hold:

(1) fp=aocfoa™, then T(U; ;) = Ungiy,a@): Vi J-
(2) Ifp=ao 671 o Ozil, then T(Ui,j) = Ua(j),a(i)a Vi, j.

Proof of Claim 2. By Propositions [5.3] and Claim 1, we know that

(1) if p=aofoa™!, then T(Us,j) € Ua(i),a(y), V4,75
(2) ifp=aocttoa ! then T(Ui,;) € Uags),ati), Vi, 4.
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Since
@ :U;j — Uy

P+ P(ik)PP(j1)
is a bijective map, then
Uil = Ugal, Vi, j, kL

So,

(1) if p=aofo Oz_l, then T(Ui,j) = Ua(i),a(j)a Vi, J;

(2) if p=ao&toa, then T(U;;) = Un(j),a(i), Visj-

Claim 3. Assume that £ is a cycle of length p, and T'(P(£)) = P(p). Then one of the following conditions
must hold:

(1) f p=aofoa™!, then T(A) = P(a)AP(a™1), for all A € Q,.
(2) fp=ao& toa™!, then T(A) = P(a)ATP(a™1), for all A € Q,,.

Proof of Claim 3. Since there exist o1,...,0; € Sy, and A1, ..., ¢ € [0,1] with Ay +--- 4+ A\, = 1 such
that A =\ P(o1) + -+ M P(oy) then

(1) if p=aofoa™?, by Claim 2,

T(A) =T(MP(o1) + -+ P(or)) = MT(P(o1)) + - + MT(P(0y))
=MP(aoogioa )+ -+ NPlacooa™?)
= P(a)(\MP(oy) + -+ MP(0y))P(a™h)
= P(a)AP(a™).

(2) f p=aoétoat by Claim 2,

T(A) =T(AP(o1)+ -+ AP(or)) = MT(P(o1)) + -+ MT(P(0v))
=M P(aoco;toa™)+ -+ NPlaoo;t

= P(a)(\P(o7") + -+ NP(oy )P(a™)

= P(a)(MP(o1+ -+ \P(0y) ' P(a™h)

= P()ATP(a™!). &

oofl)

Using Corollary we have that if x # [2,2], then T'(I) = I. By Claim 3 and Corollary the map
T must have one of the forms (1) or (2).

If the map T is nonunital, then T'(I) # I, and in this case, by Corollary we must have x = [2,2].
Since T(I) = P(o) with x (o) = x(id), we can consider the semilinear map ® defined by ®(S) = T'(I)~1T(S),
since T'(I) is invertible. The map @ is unital, and

d(B(5)) = dy (T(1)7'T(S)) = dy (P(c™)T(S)).
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Using Remark [2.1] and

dy(P(e™T(8) = > x(p) [[(P(e™ T (9))jpi) = D x(woo) [T(T(9))jx()
pPESs Jj=1 TESy j=1
= 3 XM [T@(S)in05) = du(T(9)) = di (S),
TESy j=1

we conclude that ® preserves d,.

By Claim 3 and Corollary [£:2] the result follows. O
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