I L
AS

SEMILINEAR PRESERVERS OF THE IMMANANTS IN THE SET OF DOUBLY STOCHASTIC MATRICES*

M. ANTÓNIA DUFFNER[†] AND ROSÁRIO FERNANDES[‡]

Abstract. Let S_n denote the symmetric group of degree n and M_n denote the set of all n-by-n matrices over the complex field, \mathbb{C} . Let $\chi : S_n \to \mathbb{C}$ be an irreducible character of degree greater than 1 of S_n . The immanant $d_{\chi} : M_n \to \mathbb{C}$ associated with χ is defined by

$$d_{\chi}(X) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n X_{j\sigma(j)}, \quad X = [X_{jk}] \in M_n.$$

Let Ω_n be the set of all *n*-by-*n* doubly stochastic matrices, that is, matrices with nonnegative real entries and each row and column sum is one. We say that a map T from Ω_n into Ω_n

- is semilinear if $T(\lambda S_1 + (1 \lambda)S_2) = \lambda T(S_1) + (1 \lambda)T(S_2)$ for all $S_1, S_2 \in \Omega_n$ and for all real number λ such that $0 \le \lambda \le 1$;
- preserves d_{χ} if $d_{\chi}(T(S)) = d_{\chi}(S)$ for all $S \in \Omega_n$.

We characterize the semilinear surjective maps T from Ω_n into Ω_n that preserve d_{χ} , when the degree of χ is greater than one.

Key words. Immanants, Linear preserver problems, Doubly stochastic matrices.

AMS subject classifications. 15A69, 15A60, 15A42, 15A45, 15A04, 47B49.

1. Introduction. Let M_n denote the set of all *n*-by-*n* matrices over the complex field, \mathbb{C} . We denote by *I* the identity in M_n . Let S_n be the symmetric group of degree *n*. We denote by *id* the identity in S_n . Let $\chi: S_n \to \mathbb{C}$ be an irreducible character of S_n with degree greater than 1 (note that if the degree of χ is one then χ is the sign character or the principal character). The immanant d_{χ} is defined by

$$d_{\chi}(X) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n X_{j\sigma(j)}, \quad X = [X_{jk}] \in M_n.$$

If the degree of the character χ is one, then d_{χ} is the determinant or the permanent. We denote the permanent by *per*,

$$per(X) = \sum_{\sigma \in S_n} \prod_{j=1}^n X_{j\sigma(j)}, \quad X = [X_{jk}] \in M_n.$$

Let Ω_n denote the set of all *n*-by-*n* doubly stochastic matrices, that is, matrices with nonnegative real entries and each row and column sum is one. Ω_n is a convex polyhedron in the euclidean n^2 -space whose vertices are the *n*-by-*n* permutation matrices, [2].

DEFINITION 1.1. Let T be a map from Ω_n into Ω_n . We say that T

^{*}Received by the editors on December 10, 2015. Accepted for publication on February 22, 2017. Handling Editor: Raphael Lowey.

[†]CEAFEL and Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal (mamonteiro@fc.ul.pt).

[‡]CMA and Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal (mrff@fct.unl.pt).

• is a semilinear map if

 $T(\lambda S_1 + (1 - \lambda)S_2) = \lambda T(S_1) + (1 - \lambda)T(S_2)$

- for all $S_1, S_2 \in \Omega_n$ and for all real number λ such that $0 \leq \lambda \leq 1$;
- preserves d_{χ} if $d_{\chi}(T(S)) = d_{\chi}(S)$ for all $S \in \Omega_n$.

The behavior of the permanent on Ω_n has been studied extensively. In [9], the linear maps T from Ω_n into Ω_n which preserve the permanent are characterized, and in [4], those that verify $T(\Omega_n) = \Omega_n$. In this paper, we characterize the semilinear surjective maps T from Ω_n into Ω_n that preserve d_{χ} , where the character χ has degree greater than one.

Let $\alpha = (\alpha_1, \ldots, \alpha_r)$ be a partition of n of length r, that is, a sequence of positive integers which are assumed to be nonincreasing and with sum equal to n, [2, 3]. Each partition $\alpha = (\alpha_1, \ldots, \alpha_r)$ of n is related to a Young diagram, denoted by $[\alpha]$, which consists of r left justified rows of boxes, where the number of boxes in the *i*th row is α_i . The irreducible characters of S_n are in a bijective correspondence with the ordered partitions of n, [1]. We identify the irreducible character χ with the partition that corresponds to χ , or with the Young diagram $[\chi]$ associated with χ .

Denote by $P(\sigma)$ the permutation matrix associated with $\sigma \in S_n$, that is,

$$P(\sigma)_{ij} = \begin{cases} 1 & \text{if } i = \sigma(j), \\ 0 & \text{otherwise.} \end{cases}$$

We denote by S^T the transpose of the matrix S. Recall that $(P(\sigma))^T = P(\sigma^{-1})$.

The main result of this paper is the following theorem.

THEOREM 1.2. Let χ be an irreducible character of S_n of degree greater than one. Let T be a semilinear surjective map from Ω_n into Ω_n . The map T preserves d_{χ} if and only if there are $\sigma, \alpha \in S_n$, with $\chi(\sigma) = \chi(id)$, such that one of the following conditions must hold:

- (1) $T(S) = P(\sigma)P(\alpha)SP(\alpha^{-1})$ for all $S \in \Omega_n$. (2) $T(S) = P(\sigma)P(\alpha)S^TP(\alpha^{-1})$ for all $S \in \Omega_n$.
- Moreover, if $\chi \neq [2, 2]$, then $P(\sigma) = I$.

In Section 2, we shall present some preliminary definitions and propositions about the immanant of a matrix $S \in \Omega_n$. To characterize the semilinear surjective maps T from Ω_n into Ω_n that preserve d_{χ} , we will consider several steps. So, in Section 3, we will prove that T must be injective. In Section 4, we will prove that the image by T of a permutation matrix is a permutation matrix. Finally, in Section 5, we will present the proof of the main result.

2. Preliminares. Let χ be an irreducible character of S_n . The boundary of the diagram $[\chi]$ is the set of boxes whose right edge, bottom edge, or bottom right vertex belong to the geometric boundary of the diagram. We will denote by p the number of boundary boxes of $[\chi]$. Note that if χ is an irreducible character of S_n of degree grater than 1 then $p \geq 3$.

A set of successive boundary boxes whose deletion leads to another Young diagram is called a regular boundary part. The number of vertical steps of a regular boundary part is equal to the number of rows involved minus one.

The Murnaghan-Nakayama Rule is important to calculate the value of $\chi(\sigma)$, for $\sigma \in S_n$. For more details, see for example [1].

PROPOSITION 2.1. (Murnaghan-Nakayama Rule) Let the disjoint cycles of $\sigma \in S_n$ have lengths a_1, \ldots, a_q in any order. Determine all ways in which the diagram $[\chi]$ can be reduced to 0 by successively omitting regular boundary parts of lengths a_1, \ldots, a_q . Let the boundary parts occurring in the sth way contain k_s vertical steps altogether. Then $\chi(\sigma) = \sum_{s} (-1)^{k_s}$.

In what follows, we will use this rule, namely, to state the following facts:

- If σ is a cycle of length equal to p then $\chi(\sigma) \neq 0$.
- If σ is a cycle of length greater than p then $\chi(\sigma) = 0$.
- If χ is a single hook, that is, an irreducible character $\chi = [\chi_1, \ldots, \chi_r]$ of S_n such that $\chi_2 = \cdots =$ $\chi_r = 1$, and σ is the product of disjoint cycles of length greater than one, $\sigma_1, \ldots, \sigma_h$, with $h \geq 2$, and there is an integer i, such that $1 \le i \le h$ with the length of σ_i greater than $\max\{\chi_1 - 1, r - 1\}$ then $\chi(\sigma) = 0$.
- If χ is a single hook and σ is the product of two disjoint cycles of length greater than one, σ_1, σ_2 , with the length of σ_1 equal to $\chi_1 - 1$ and the length of σ_2 equal to r - 1, or vice-versa, then $\chi(\sigma) \neq 0$.

In [5], M. Marcus and M. Newman proved the following result.

PROPOSITION 2.2. If $S \in \Omega_n$, then

 $perS \leq 1.$

Moreover, perS = 1 if and only if $S = P(\sigma)$, for some $\sigma \in S_n$.

If π , $\sigma \in S_n$, we denote by $\pi \circ \sigma$ the composition of these two permutations and we denote by $\sigma(k)$ the image of the value k under the map σ . Furthermore, if $\pi \in S_n$ is a cycle, its length is denoted by $l(\pi)$.

REMARK 2.1. Let χ be an irreducible character of S_n . We refer to [1, 6, 7, 8] for a general study in multilinear algebra.

1. $\chi(\sigma) \in \mathbb{Z}$ for all $\sigma \in S_n$, and

$$\sum_{\sigma \in S_n} \chi(\sigma) = \begin{cases} 0 & \text{if } \chi \text{ is not the principal character,} \\ n! & \text{otherwise.} \end{cases}$$

- 2. $\chi(\sigma^{-1}) = \chi(\sigma)$ for all $\sigma \in S_n$, and $\chi(\pi \circ \sigma \circ \pi^{-1}) = \chi(\sigma)$ for all $\pi, \sigma \in S_n$.
- 3. $|\chi(\sigma)| \leq \chi(id)$ for all $\sigma \in S_n$.
- 4. If n > 4 and χ is a character of S_n of degree greater than one, then $|\chi(\sigma)| < \chi(id)$ for all $\sigma \in S_n \setminus \{id\}$, [10].
- 5. Using direct computation, if χ is a character of S_n of degree greater than one and $\sigma \in S_n \setminus \{id\}$ verify $|\chi(\sigma)| = \chi(id)$ then $n = 4, \chi = [2, 2]$ and $\sigma \in \{(12)(34), (13)(24), (14)(23)\}$. Moreover, if $\chi = [2, 2]$ and $\sigma \in \{(12)(34), (13)(24), (14)(23)\}$, then $\chi(\pi \circ \sigma) = \chi(\pi), \forall \pi \in S_4$.

From the following proposition, we can conclude that whenever $\chi \neq [2,2]$ and $S \in \Omega_n$, the maximum value of $d_{\chi}(S)$ is attained when S = I, and the minimum value is attained when $S = P(\tau)$, where $\chi(\tau) \leq 1$ $\chi(\pi)$, for all $\pi \in S_n$.

PROPOSITION 2.3. Let χ be an irreducible character of degree greater than 1 of S_n . If $S \in \Omega_n$ then $d_{\chi}(S) \leq \chi(id)$, and the equality holds if and only if

$$S = P(\sigma)$$
 and $\chi(\sigma) = \chi(id)$.

Moreover, $d_{\chi}(S) \geq \chi(\tau)$, where $\chi(\tau) \leq \chi(\pi)$ for all $\pi \in S_n$, with equality if and only if

$$S = P(\rho)$$
 and $\chi(\rho) = \chi(\tau)$.

Proof. Since

$$\mid d_{\chi}(S) \mid = \left| \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n S_{j,\sigma(j)} \right| \leq \sum_{\sigma \in S_n} \mid \chi(\sigma) \mid \prod_{j=1}^n S_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) perS_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) perS_{j$$

and since $perS \leq 1$, it follows that $|d_{\chi}(S)| \leq \chi(id)$.

If $\chi(id) = |d_{\chi}(S)| \leq \chi(id) perS$, then $perS \geq 1$. But as $perS \leq 1$, for all $S \in \Omega_n$, then perS = 1. By Proposition 2.2, we have that $S = P(\sigma)$ for some $\sigma \in S_n$. By definition and hypothesis, $\chi(id) = d_{\chi}(S) = d_{\chi}(P(\sigma)) = \chi(\sigma)$. Therefore, $\chi(\sigma) = \chi(id)$.

Since $\chi(\tau) < 0$ if $\chi(\tau) = \min\{\chi(\sigma) : \sigma \in S_n\}$, we have that

$$d_{\chi}(S) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n S_{j,\sigma(j)} \ge \sum_{\sigma \in S_n} \chi(\tau) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(\tau) \sum_{\sigma \in S_n} \prod_{j=1}^n S_{j,\sigma(j)} = \chi(\tau) per(S) \ge \chi(\tau).$$

Consequently, $d_{\chi}(S) \geq \chi(\tau)$. If $d_{\chi}(S) = \chi(\tau)$, then per(S) = 1. By Proposition 2.2, this implies that $S = P(\sigma)$, for some $\sigma \in S_n$. Because $\chi(\tau) = d_{\chi}(S) = d_{\chi}(P(\sigma)) = \chi(\sigma)$ then $\chi(\sigma) = \chi(\tau)$. \Box

COROLLARY 2.4. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a map from Ω_n into Ω_n that preserves d_{χ} . If $\chi \neq [2,2]$, then T(I) = I. Moreover, when $\chi = [2,2]$, there is $\sigma \in S_4$ such that $T(I) = P(\sigma)$ and $\chi(\sigma) = \chi(id)$.

Proof. Since $T(I) \in \Omega_n$ and $d_{\chi}(T(I)) = d_{\chi}(I) = \chi(id)$, by last proposition, there is $\sigma \in S_n$, such that $T(I) = P(\sigma)$, with $\chi(\sigma) = \chi(id)$. By Remark 2.1, we have that T(I) = I if $\chi \neq [2, 2]$. \Box

Remark 2.2.

- 1. Using last corollary we conclude that T(I) is invertible.
- 2. Using the main result of [11] (characterization of the subgroup of M_n , $S(S_n, \chi) = \{A \in M_n; d_{\chi}(AX) = d_{\chi}(X), \text{ for all } X \in M_n\}$) we have that if $\sigma \in S_n$ and $\chi(\sigma) = \chi(id)$, then $d_{\chi}(P(\sigma)S) = d_{\chi}(S)$ for all $S \in \Omega_n$.

To prove the following lemmas, we will use the Murnaghan-Nakayama Rule (see the considerations at the beginning of this section and [1]).

LEMMA 2.5. Let $n \ge 4$, and χ be an irreducible character of S_n of degree greater than one. If $i, j, k \in \{1, \ldots, n\}$, are distinct on pairs, then there are $\sigma, \tau \in S_n$ such that

$$\sigma(i) = j, \quad \sigma(k) = k, \quad \tau = \sigma \circ (ik), \quad \chi(\sigma) \neq 0, \quad \chi(\tau) = 0.$$

Proof. Suppose that χ is not a single hook, and let p be the number of boundary boxes of $[\chi]$. Then $p \leq n-1$.

If $\sigma \in S_n$ is a cycle of length p such that $\sigma(i) = j, \sigma(k) = k$, since $\tau = \sigma \circ (ik)$ then τ is a cycle of length p + 1. Using the Murnaghan-Nakayama Rule we have that $\chi(\sigma) \neq 0$ and $\chi(\tau) = 0$.

Suppose that $\chi = [\chi_1, \dots, \chi_{v+1}]$ is a single hook, with $\chi_1 = u > 1$ and $v \ge 1$.

If $u-1 \ge v$, since $n = u + v \ge 4$ then $u-1+v \ge 3$. So, (note that $v \ge 1$ because χ has degree greater than one, $n \ge 4$) $u-1 \ge 2$. Therefore, there exist $\sigma \in S_n$, and disjoint cycles σ_1 , σ_2 , where $\sigma = \sigma_1 \circ \sigma_2$, $l(\sigma_1) = u-1$ and $l(\sigma_2) = v$, such that $\sigma_1(i) = j$, $\sigma(k) = k$. Consequently, $\tau = \sigma \circ (ik) = \tau_1 \circ \tau_2$ with $\tau_1, \tau_2 \in S_n$ and $l(\tau_1) = u$, $l(\tau_2) = v$. Using the Murnaghan-Nakayama Rule we have that $\chi(\sigma) \neq 0$ and $\chi(\tau) = 0$.

If u - 1 < v, then, there are $\sigma \in S_n$, disjoint cycles σ_1 , σ_2 , where $\sigma = \sigma_1 \circ \sigma_2$, $l(\sigma_1) = u - 1$ and $l(\sigma_2) = v$, such that $\sigma_2(i) = j$, and $\sigma(k) = k$. Therefore, $\tau = \sigma \circ (ik) = \tau_1 \circ \tau_2$ with $l(\tau_2) = v + 1$. Using the Murnaghan-Nakayama Rule we have that $\chi(\sigma) \neq 0$ and $\chi(\tau) = 0$. \Box

LEMMA 2.6. Let $n \geq 3$, $i, j, k \in \{1, ..., n\}$, distinct on pairs and $\sigma, \tau \in S_n$ such that

$$\sigma(i) = j, \quad \sigma(k) = k, \quad \tau = \sigma \circ (ik).$$

Then for every $\pi \in S_n$, there are $s, l \in \{1, \ldots, n\}$ and $l \neq s$ that verify

$$\sigma^{-1}(s) \neq \pi(s), \quad \tau^{-1}(s) \neq \pi(s), \quad \sigma^{-1}(l) \neq \pi(l), \quad \tau^{-1}(l) \neq \pi(l).$$

Proof. Suppose that there is $\pi \in S_n$ with a unique $s \in \{1, \ldots, n\}$ such that

$$\pi(s) = t, \quad \sigma(t) \neq s, \quad \tau(t) \neq s.$$

Consequently,

if
$$l \neq s$$
, then $\sigma^{-1}(l) = \pi(l)$ or $\tau^{-1}(l) = \pi(l)$.

Let u and v be elements such that $\sigma^{-1}(u) = t = \pi(s), \ \tau^{-1}(v) = t = \pi(s)$, (note that $u \neq s, v \neq s$).

If u = v then $\pi(u) = \sigma^{-1}(u) = t$ or $\pi(u) = \tau^{-1}(v) = t$. But $\pi(s) = t$, therefore we have a contradiction, u = s.

Consequently, $u \neq v$. Since $\tau = \sigma \circ (ik)$ then (t = i, u = j, v = k) or (t = k, u = k, v = j). We only prove the case t = i, u = j, v = k, because the proof of the other case is analogous. In the case that we will prove, $\sigma^{-1}(j) = i = \pi(s), \tau^{-1}(k) = i = \pi(s)$.

Since $s \neq j$, $s \neq k$ then $\pi(j) = \sigma^{-1}(j)$ or $\pi(j) = \tau^{-1}(j)$. If $\pi(j) = \sigma^{-1}(j)$ then $\pi(j) = \sigma^{-1}(j) = \pi(s)$ and we can conclude that s = j (impossible). So, $\pi(j) = \tau^{-1}(j) = k$. Since $s \neq k$ then $\pi(k) = \sigma^{-1}(k)$ or $\pi(k) = \tau^{-1}(k)$. If $\pi(k) = \tau^{-1}(k)$ then $\pi(k) = \tau^{-1}(k) = \pi(s)$ and we can conclude that s = k (impossible). Therefore, $\pi(k) = \sigma^{-1}(k) = k$. But this implies that $\pi(j) = \pi(k) = k$ which is impossible. \Box

3. The injectivity of T. Let χ be an irreducible character of S_n of degree greater than 1 and T be a semilinear map from Ω_n into Ω_n that preserves d_{χ} . In the main result of this section we will prove that T must be injective.

THEOREM 3.1. Let χ be an irreducible character of S_n of degree greater than 1 and T be a semilinear map from Ω_n into Ω_n that preserves d_{χ} . Then T is injective.

Proof. Let $S, S' \in \Omega_n$ such that T(S) = T(S'). Let $B \in \Omega_n$ and $x \in [0, 1]$. Since

$$\begin{aligned} d_{\chi}(xS + (1-x)B) &= d_{\chi}(T(xS + (1-x)B)) = d_{\chi}(xT(S) + (1-x)T(B)) \\ &= d_{\chi}(xT(S') + (1-x)T(B)) = d_{\chi}(T(xS' + (1-x)B)) \\ &= d_{\chi}(xS' + (1-x)B), \end{aligned}$$

it follows that $d_{\chi}(xS + (1-x)B) = d_{\chi}(xS' + (1-x)B).$

Case (i) Let $n \ge 4$. If $i, j, k \in \{1, ..., n\}$ are distinct on pairs, then by Lemma 2.5, there are $\sigma, \tau \in S_n$ such that $\sigma(i) = j, \sigma(k) = k, \tau = \sigma \circ (ik), \chi(\sigma) \neq 0, \chi(\tau) = 0$.

For each $b \in [0, 1]$, let us consider the matrix

$$B_b = bP(\sigma) + (1-b)P(\tau)$$

So, for all $p \in \{1, \ldots, n\}$,

$$(B_b)_{p\pi(p)} = \begin{cases} 1 & \text{if } \pi(p) = \sigma^{-1}(p) = \tau^{-1}(p), \\ b & \text{if } \pi(p) = \sigma^{-1}(p), \ \pi(p) \neq \tau^{-1}(p), \\ 1 - b & \text{if } \pi(p) \neq \sigma^{-1}(p), \ \pi(p) = \tau^{-1}(p), \\ 0 & \text{otherwise.} \end{cases}$$

Now we will compute the coefficient of the term associated with x of the polynomial

$$d_{\chi}(xS + (1-x)B_b) = \sum_{\pi \in S_n} \chi(\pi) \prod_{l=1}^n (xS + (1-x)B_b)_{l\pi(l)}.$$

If there is $s \in \{1, \ldots, n\}$ such that for some $\pi \in S_n$, $\pi(s) \neq \sigma^{-1}(s)$ and $\pi(s) \neq \tau^{-1}(s)$ then

$$(xS + (1-x)B_b)_{s\pi(s)} = xS_{s\pi(s)}$$

To obtain the coefficient of the term associated with x of the polynomial $\chi(\pi) \prod_{l=1}^{n} (xS + (1-x)B_b)_{l\pi(l)}$ the other terms of $\prod_{l=1, l \neq s}^{n} (xS + (1-x)B_b)_{l\pi(l)}$ must verify $(B_b)_{l\pi(l)} \neq 0$. Consequently, if $l \neq s$ then $\pi(l) = \sigma^{-1}(l)$ or $\pi(l) = \tau^{-1}(l)$. But this is impossible by Lemma 2.6. Therefore, if $s \in \{1, \ldots, n\}$ and $\pi \in S_n$, then $\pi(s) = \sigma^{-1}(s)$ or $\pi(s) = \tau^{-1}(s)$. Since $\tau = \sigma \circ (ik)$ then $\pi(s) = \sigma^{-1}(s) = \tau^{-1}(s)$, when $s \in \{1, \ldots, n\} \setminus \{j, k\}$. Because $\pi(j) = \sigma^{-1}(j)$ or $\pi(j) = \tau^{-1}(j)$, and $\pi(k) = \sigma^{-1}(k)$ or $\pi(k) = \tau^{-1}(k)$ then $\pi(j) = i$ or $\pi(j) = k$, and $\pi(k) = k$ or $\pi(k) = i$. But π is a bijection, so we have two cases:

- If $\pi(j) = i$, then $\pi(k) = k$ and $\pi = \sigma^{-1}$.
- If $\pi(j) = k$, then $\pi(k) = i$ and $\pi = \tau^{-1}$.

Therefore, the coefficient of the term associated with x of the polynomial $d_{\chi}(xS + (1-x)B_b)$ appears when $\pi = \sigma^{-1}$ or $\pi = \tau^{-1}$.

As $\chi(\tau^{-1}) = 0$, it is enough to compute $\chi(\sigma^{-1}) \prod_{l=1}^{n} (xS + (1-x)B_b)_{l\sigma^{-1}(l)}$. Since $\sigma(\sigma^{-1}(l)) = l$, for all $l \in \{1, \ldots, n\}$ and $\tau(\sigma^{-1}(l)) \neq l$ when $l \in \{j, k\}$, then

$$\chi(\sigma^{-1})\prod_{l=1}^{n}(xS+(1-x)B_{b})_{l\sigma^{-1}(l)} = \chi(\sigma^{-1})(xS_{j\sigma^{-1}(j)}+(1-x)b)(xS_{k\sigma^{-1}(k)}+(1-x)b)\prod_{l\neq j,k}(xS_{l\sigma^{-1}(l)}+(1-x)).$$

Consequently, the coefficient of the term associated with x in the polynomial $d_{\chi}(xS + (1-x)B_b)$ is

$$\chi(\sigma^{-1})((S_{j\sigma^{-1}(j)}-b)b+(S_{k\sigma^{-1}(k)}-b)b+b^2\sum_{l\neq j,k}(S_{l\sigma^{-1}(l)}-1)).$$

Since $\sigma^{-1}(j) = i$ and $\sigma^{-1}(k) = k$ then the coefficient of the term associated with x in the polynomial $d_{\chi}(xS + (1-x)B_b)$ is $\chi(\sigma^{-1})((S_{ji} - b)b + (S_{kk} - b)b + b^2 \sum_{l \neq j,k} (S_{l\sigma^{-1}(l)} - 1)).$

Using the fact that

$$d_{\chi}(xS + (1-x)B_b) = d_{\chi}(xS' + (1-x)B_b)$$

for all $b \in [0, 1]$, we have that

$$\chi(\sigma^{-1})((S_{ji}-b)b + (S_{kk}-b)b + b^2 \sum_{l \neq j,k} (S_{l\sigma^{-1}(l)}-1)) = \chi(\sigma^{-1})((S'_{ji}-b)b + (S'_{kk}-b)b + b^2 \sum_{l \neq j,k} (S'_{l\sigma^{-1}(l)}-1)),$$

for all $b \in [0, 1]$. Consequently,

$$(S_{ji} + S_{kk})b + b^2 \left(\sum_{l \neq j,k} (S_{l\sigma^{-1}(l)} - 1) - 2 \right) = (S'_{ji} + S'_{kk})b + b^2 \left(\sum_{l \neq j,k} (S'_{l\sigma^{-1}(l)} - 1) - 2 \right)$$

for all $b \in [0, 1]$.

Then the coefficient of the term associated with b of the last polynomials are equal, i.e.,

$$S_{ji} + S_{kk} = S'_{ji} + S'_{kk} \tag{3.1}$$

for all $i, j, k \in \{1, ..., n\}$, distinct on pairs. Since $n \ge 4$, there is $p \notin \{i, j, k\}$ such that

$$S_{ji} + S_{pp} = S'_{ji} + S'_{pp}, ag{3.2}$$

and subtracting the equalities (3.1) and (3.2), we obtain that

$$S_{kk} - S'_{kk} = S_{pp} - S'_{pp}$$

for all $k, p \in \{1, ..., n\}$.

If c is the constant defined by $c = S_{kk} - S'_{kk}$, then $S_{kk} = S'_{kk} + c$, and by (3.1), we obtain $S_{ji} = S'_{ji} - c$, for all $i, j \in \{1, ..., n\}, i \neq j$.

As $S, S' \in \Omega_n$, we have $S_{jj} + \sum_{j=1, j \neq i}^n S_{ji} = 1$ and $S'_{jj} + c + \sum_{j=1, j \neq i}^n (S'_{ji} - c) = 1$, which implies that $\sum_{j=1}^n S'_{ji} + (2 - n)c = 1$. Since $n \neq 2$ then c = 0, which means that $S_{kk} = S'_{kk}$ and $S_{ji} = S'_{ji}$, for all $k, i, j \in \{1, \ldots, n\}$. Therefore, S = S', and T is injective.

Case (ii) Let n = 3 and $\chi = [2, 1]$. Let us consider $\sigma = (ij)$ and $\tau = (ijk)$ for $\{i, j, k\} = \{1, 2, 3\}$. Then $\chi(\sigma) = 0$ and $\chi(\tau) \neq 0$. For each $b \in [0, 1]$, consider the matrix $B_b = bP(\sigma) + (1 - b)P(\tau)$. So, for all $p \in \{1, 2, 3\}$ and $\pi \in S_3$,

$$(B_b)_{p\pi(p)} = \begin{cases} 1 & \text{if } \pi(p) = \sigma^{-1}(p) = \tau^{-1}(p), \\ b & \text{if } \pi(p) = \sigma^{-1}(p), \ \pi(p) \neq \tau^{-1}(p), \\ 1 - b & \text{if } \pi(p) \neq \sigma^{-1}(p), \ \pi(p) = \tau^{-1}(p), \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$d_{\chi}(xS + (1-x)B_b) = \sum_{\pi \in S_3} \chi(\pi) \prod_{l=1}^3 (xS + (1-x)B_b)_{l\pi(l)}$$

= $\chi(\tau)(xS_{i\tau(i)} + (1-x)b)(xS_{j\tau(j)})(xS_{k\tau(k)}) + \chi(\tau^{-1})(xS_{i\tau^{-1}(i)} + (1-x)(1-b))$
 $\cdot (xS_{j\tau^{-1}(j)} + (1-x))(xS_{k\tau^{-1}(k)} + (1-x)(1-b)) + \chi(id)(xS_{ii})(xS_{jj})(xS_{kk} + (1-x)b).$

Since $\tau^{-1}(i) = k$, $\tau^{-1}(j) = i$ and $\tau^{-1}(k) = j$, the coefficient of the term associated with x of the polynomial $d_{\chi}(xS + (1-x)B_b)$ is $\chi(\tau^{-1})((1-b)((S_{ik}+S_{ji}+S_{kj}-3)+b(-S_{ji}+3)))$ for all $b \in [0,1]$.

Using the fact that

$$d_{\chi}(xS + (1-x)B_b) = d_{\chi}(xS' + (1-x)B_b),$$

we have that

$$\chi(\tau^{-1})((1-b)((S_{ij}+S_{ji}+S_{kj}-3)+b(-S_{ji}+3))) = \chi(\tau^{-1})((1-b)((S'_{ij}+S'_{ji}+S'_{kj}-3)+b(-S'_{ji}+3)))$$

for all $b \in [0, 1]$. So, the coefficient of the term associated with b^2 of last polynomials are equal and this implies that

$$S_{ji} = S'_{ji}$$

for all $i \neq j$. Since $S_{ii} + S_{ji} + S_{ki} = 1 = S'_{ii} + S'_{ji} + S'_{ki}$, then $S_{ii} = S'_{ii}$, for all $i \in \{1, 2, 3\}$. Consequently, S = S'. So, T is injective. \Box

4. The image of a permutation matrix by T. Let $C \subseteq \Omega_n$ be a convex polyhedron. An element $S \in C$ is a vertex of C, if S satisfies:

 $\forall S_1, S_2 \in C: S = \alpha S_1 + (1 - \alpha)S_2$, with $\alpha \in]0, 1[$, it follows $S_1 = S_2 = S$.

Let T be a semilinear map from Ω_n into Ω_n that preserves d_{χ} . Since Ω_n and $T(\Omega_n)$ are convex polyhedrons, and the permutation matrices are the vertices of Ω_n (see [2]), in the next step we will see that if $\sigma \in S_n$ then $T(P(\sigma))$ is a vertex of $T(\Omega_n)$.

PROPOSITION 4.1. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a semilinear map from Ω_n into Ω_n that preserves d_{χ} . If $\sigma \in S_n$ then $T(P(\sigma))$ is a vertex of the convex polyhedron $T(\Omega_n)$.

Proof. Let $S_1, S_2 \in \Omega_n$ and $\sigma \in S_n$ such that $T(P(\sigma)) = \alpha T(S_1) + (1-\alpha)T(S_2)$, for some $\alpha \in]0, 1[$. Then by semilinearity of T we have $T(P(\sigma)) = T(\alpha S_1 + (1-\alpha)S_2)$. Using Theorem 3.1, $P(\sigma) = \alpha S_1 + (1-\alpha)S_2$,

I L
AS

M. Antónia Duffner and Rosário Fernandes

with $\alpha \in]0,1[$. As $P(\sigma)$ is a vertex of Ω_n , then $S_1 = S_2 = P(\sigma)$, which means that $T(S_1) = T(S_2) = T(P(\sigma))$, and $T(P(\sigma))$ is a vertex of $T(\Omega_n)$. \Box

In what follows, we consider that the semilinear map T from Ω_n into Ω_n is surjective. Since T preserves d_{χ} , we have that T is bijective and $T(\Omega_n) = \Omega_n$.

COROLLARY 4.2. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_{χ} . Then for each $\sigma \in S_n$ there is a $\pi \in S_n$, such that

$$T(P(\sigma)) = P(\pi)$$
, where $\chi(\sigma) = \chi(\pi)$.

DEFINITION 4.3. We say that two matrices S_1 and S_2 are equal to one in the position (i, j), if $(S_1)_{ij} = (S_2)_{ij} = 1$.

We denote by $c[S_1, S_2]$ the number of positions where S_1 and S_2 are equal to one. Consequently, if P is a permutation matrix and $S \in \Omega_n$, then c[P, S] is equal to the number of ones of the matrix xP + (1-x)S, for all $x \in [0, 1[$. In particular c[I, S] is equal to the number of ones in the main diagonal of S.

PROPOSITION 4.4. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_{χ} . Let $\sigma \in S_n$ such that $\chi(\sigma) \neq 0$ and $S \in \Omega_n$. If $T(P(\sigma)) = P(\pi)$ and T(S) = S', then

$$\sum_{j=1}^{n} S_{j\sigma^{-1}(j)} = \sum_{j=1}^{n} S'_{j\pi^{-1}(j)}.$$

Proof. Let $x \in [0,1]$. First we will compute the coefficient of the term associated with x of the polynomial $d_{\chi}(xS + (1-x)P(\sigma)) = \sum_{\tau \in S_n} \chi(\tau) \prod_{j=1}^n (xS + (1-x)P(\sigma))_{j\tau(j)}$. If $\tau \neq \sigma^{-1}$, then there is $s \in \{1, \ldots, n\}$ such that $(xS + (1-x)P(\sigma))_{s\tau(s)} = xS_{s\tau(s)}$. Since τ and σ are bijections, there are, at least two integers $s, h \in \{1, \ldots, n\}$ with $s \neq h$ and $(xS + (1-x)P(\sigma))_{s\tau(s)} = xS_{s\tau(s)}$, $(xS + (1-x)P(\sigma))_{h\tau(h)} = xS_{h\tau(h)}$. Consequently, $\prod_{j=1}^n (xS + (1-x)P(\sigma))_{j\tau(j)}$ is a polynomial with the coefficient associated with x equal to zero. So, the coefficient of the term associated with x of the polynomial $d_{\chi}(xS + (1-x)P(\sigma))$ is obtained when $\tau = \sigma^{-1}$ and is equal to

$$\chi(\sigma^{-1}) \sum_{j=1}^{n} (S_{j\sigma^{-1}(j)} - 1).$$

As $d_{\chi}(xS + (1-x)P(\sigma)) = d_{\chi}(xS' + (1-x)P(\pi))$ we have that

$$\chi(\sigma^{-1})\sum_{j=1}^{n} (S'_{j\sigma^{-1}(j)} - 1) = \chi(\pi^{-1})\sum_{j=1}^{n} (S_{j\pi^{-1}(j)} - 1).$$

Consequently, we get the desired conclusion using Corollary 4.2 and the fact that $\chi(\sigma) \neq 0$.

COROLLARY 4.5. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_{χ} . Let $\sigma \in S_n$ such that $\chi(\sigma) \neq 0$ and $\rho \in S_n$. If $T(P(\sigma)) = P(\pi)$, then

$$c[P(\sigma), P(\rho)] = c[P(\pi), T(P(\rho))].$$

Proof. By Proposition 4.4,

$$\sum_{j=1}^{n} P(\rho)_{j\sigma^{-1}(j)} = \sum_{j=1}^{n} T(P(\rho))_{j\pi^{-1}(j)}.$$

So we get the desired conclusion. \Box

LEMMA 4.6. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_{χ} . Let $\rho, \theta \in S_n$ such that $T(P(\rho)) = P(\theta)$. If ρ is a transposition then θ is a transposition, and if ρ is a cycle of length three then θ is a cycle of length three.

Proof. Let ρ be a cycle of length $2 \le l \le 3$, such that $T(P(\rho)) = P(\theta)$, then by Corollary 4.5,

$$c[I, P(\rho)] = n - l = c[I, P(\theta)].$$

If l = 2, then there are $i, j \in \{1, ..., n\}$ such that $i \neq j$, $P(\theta)_{ii} = P(\theta)_{jj} = 0$, $P(\theta)_{kk} = 1$, for all $k \neq i, j$, and consequently, $P(\theta)_{ij} = P(\theta)_{ji} = 1$.

The case l = 3 can be proved using the same arguments. \Box

A semilinear map T is called unital if T(I) = I. When T is a semilinear map from Ω_n into Ω_n the case of a nonunital map can be reduced to the unital case by considering the semilinear map Φ defined by $\Phi(S) = T(I)^{-1}T(S)$, since T(I) is invertible. Recall that by Corollary 2.4, if the irreducible character of degree greater than one, χ , verifies $\chi \neq [2, 2]$ and T preserves d_{χ} then T(I) = I.

PROPOSITION 4.7. Let χ be an irreducible character of degree greater than 1 of S_n . Let T be a semilinear unital surjective map from Ω_n into Ω_n that preserves d_{χ} . Then there is $\alpha \in S_n$ such that for all $i, j \in \{1, \ldots, n\}, i \neq j$,

$$T(P(ij)) = P(\alpha(i)\alpha(j)).$$

Proof. First we will prove two claims.

If X is a set, we denote by |X| the cardinality of X.

Claim 1. Let $i, j, l, a, e, c, d \in \{1, ..., n\}$ with i, j, l distinct on pairs. If T(P(ij)) = P(ae) and T(P(il)) = P(cd) then $|\{a, e, c, d\}| = 3$.

Proof of Claim 1. Using Lemma 4.6, since T is injective, $|\{a, e, c, d\}| \neq 2$.

Suppose that $|\{a, e, c, d\}| = 4$, which does not happen if n = 3. Let S = bP(ij) + (1-b)P(il), with $b \in [0, 1]$. Since, T(S) = bP(ae) + (1-b)P(cd), where $b \in [0, 1]$, and $d_{\chi}(xS + (1-x)I) = d_{\chi}(xT(S) + (1-x)I)$, then the coefficient of the term associated with x^2b^2 of both polynomials must be equal.

First we will compute the term associated with x^2b^2 of the polynomial

$$d_{\chi}(xS + (1-x)I) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^n (xS + (1-x)I)_{s\pi(s)}.$$

86

M. Antónia Duffner and Rosário Fernandes

When $\pi \in S_n$,

$$(S)_{s\pi(s)} = (bP(ij) + (1-b)P(il))_{s\pi(s)} = \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{i, j, l\}, \ \pi(s) = s, \\ b & \text{if } (s, \pi(s)) \in \{(l, l), (i, j), (j, i)\}, \\ 1-b & \text{if } (s, \pi(s)) \in \{(l, i), (i, l), (j, j)\}, \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, when $\pi \in S_n$,

$$(xS + (1-x)I)_{s\pi(s)} = \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{i, j, l\}, \ \pi(s) = s, \\ 1-x & \text{if } (s, \pi(s)) = (i, i), \\ 1-xb & \text{if } (s, \pi(s)) = (j, j), \\ 1-x(1-b) & \text{if } (s, \pi(s)) = (l, l), \\ xb & \text{if } (s, \pi(s)) \in \{(i, j), (j, i)\}, \\ x(1-b) & \text{if } (s, \pi(s)) \in \{(l, i), (i, l)\}, \\ 0 & \text{otherwise.} \end{cases}$$

So, if $\pi \notin \{id, (ij), (il)\}$ and there is $h \in \{1, ..., n\} \setminus \{i, j, l\}$ with $\pi(h) \neq h$ then $(xS + (1 - x)I)_{h\pi(h)} = 0$ and $\chi(\pi) \prod_{s=1}^{n} (xS + (1 - x)I)_{s\pi(s)} = 0$. Consequently, if $\chi(\pi) \prod_{s=1}^{n} (xS + (1 - x)I)_{s\pi(s)} \neq 0$ then $\pi(h) = h$, for all $h \in \{1, ..., n\} \setminus \{i, j, l\}$ and $\pi \in \{id, (ij), (il), (jl), (ijl), (ilj)\}$.

If
$$\pi = (jl)$$
 or $\pi = (ijl)$ then $(xS + (1-x)I)_{j\pi(j)} = 0$ and $\chi(\pi) \prod_{s=1}^{n} (xS + (1-x)I)_{s\pi(s)} = 0$.

If $\pi = (ilj)$ then $(xS + (1-x)I)_{l\pi(l)} = 0$ and $\chi(\pi) \prod_{s=1}^{n} (xS + (1-x)I)_{s\pi(s)} = 0$.

So, $d_{\chi}(xS+(1-x)I) = \chi(ij)(1-x(1-b))(xb)(xb) + \chi(id)(1-x(1-b))(1-xb)(1-x) + \chi(il)(1-xb)(x(1-b))^2$. Therefore, the coefficient of the term associated with x^2b^2 of the polynomial $d_{\chi}(xS+(1-x)I)$ is

$$-\chi(id) + \chi(ij) + \chi(il).$$

Now we will compute the term associated with x^2b^2 of the polynomial

$$d_{\chi}(xT(S) + (1-x)I) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^n (xT(S) + (1-x)I)_{s\pi(s)}.$$

When $\pi \in S_n$,

$$(T(S))_{s\pi(s)} = (bP(ae) + (1-b)P(cd))_{s\pi(s)} = \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{a, e, c, d\}, \ \pi(s) = s, \\ b & \text{if } (s, \pi(s)) \in \{(a, e), (e, a), (c, c), (d, d)\}, \\ 1-b & \text{if } (s, \pi(s)) \in \{(c, d), (d, c), (a, a), (e, e)\}, \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, when $\pi \in S_n$,

$$(xT(S) + (1-x)I)_{s\pi(s)} = \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{a, e, c, d\}, & \pi(s) = s \\ 1 - xb & \text{if } (s, \pi(s)) \in \{(a, a), (e, e)\}, \\ 1 - x(1-b) & \text{if } (s, \pi(s)) \in \{(d, d), (c, c)\}, \\ xb & \text{if } (s, \pi(s)) \in \{(d, e), (e, a)\}, \\ x(1-b) & \text{if } (s, \pi(s)) \in \{(c, d), (d, c)\}, \\ 0 & \text{otherwise.} \end{cases}$$

So, if $\pi \notin \{id, (ae), (cd)\}$ and there is $h \in \{1, ..., n\} \setminus \{a, e, c, d\}$ with $\pi(h) \neq h$ then $(xT(S) + (1-x)I)_{h\pi(h)} = 0$ and $\chi(\pi) \prod_{s=1}^{n} (xT(S) + (1-x)I)_{s\pi(s)} = 0$. Consequently, if $\chi(\pi) \prod_{s=1}^{n} (xT(S) + (1-x)I)_{s\pi(s)} \neq 0$ then $\pi(h) = h$, for all $h \in \{1, ..., n\} \setminus \{a, e, c, d\}$.

If $\pi(r) \in {\pi(a), \pi(e)} \subseteq {c, d}$ or $\pi(r) \in {\pi(c), \pi(d)} \subseteq {a, e}$, then $(xT(S) + (1 - x)I)_{r\pi(r)} = 0$ and $\chi(\pi) \prod_{s=1}^{n} (xT(S) + (1 - x)I)_{s\pi(s)} = 0$.

So, $d_{\chi}(xT(S)+(1-x)I) = \chi(ae)(1-x(1-b))^2(xb)^2 + \chi(id)(1-x(1-b))^2(1-xb)^2 + \chi(cd)(1-xb)^2(x(1-b))^2$. Therefore, the coefficient of the term associated with x^2b^2 of the polynomial $d_{\chi}(xT(S)+(1-x)I)$ is

$$-2\chi(id) + \chi(ae) + \chi(cd).$$

Since the polynomials $d_{\chi}(xS + (1-x)I)$ and $d_{\chi}(xT(S) + (1-x)I)$ are equal then the coefficients of the term associated with x^2b^2 of each polynomial are equal, i.e.,

$$-\chi(id) + \chi(ij) + \chi(il) = -2\chi(id) + \chi(ae) + \chi(cd).$$

Because $\chi(id) \neq 0$, we obtain a contradiction. Consequently, $|\{a, e, c, d\}| = 3$.

Claim 2. Let $i, j, l, a, e, d \in \{1, ..., n\}$ with i, j, l distinct on pairs and a, e, d distinct on pairs. If T(P(ij)) = P(ae) and T(P(il)) = P(ad), then

$$T(P(jl)) = P(ed).$$

Proof of Claim 2. If T(P(jl)) = P(gf), using Claim 1, we conclude that $|\{a, e, g, f\}| = 3$ and $|\{a, d, g, f\}| = 3$.

Let us assume that g = a. Then $f \neq a$, $f \neq e$ and $f \neq d$, and consequently $|\{a, e, d, f\}| = 4$.

Let $S = b_1 P(ij) + b_2 P(il) + (1 - (b_1 + b_2))P(jl)$, with $b_1, b_2 \in [0, 1]$ and $b_1 + b_2 \leq 1$. Since, $d_{\chi}(xS + (1 - x)I) = d_{\chi}(xT(S) + (1 - x)I)$, then the coefficient of the term associated with $x^4b_1b_2$ of both polynomials must be equal.

First we will compute the term associated with $x^4b_1b_2$ of the polynomial

$$d_{\chi}(xS + (1-x)I) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^n (xS + (1-x)I)_{s\pi(s)}.$$

When $\pi \in S_n$,

$$(S)_{s\pi(s)} = (b_1 P(ij) + b_2 P(il) + (1 - (b_1 + b_2))P(jl))_{s\pi(s)}$$

$$= \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{i, j, l\}, \ \pi(s) = s, \\ b_1 & \text{if } (s, \pi(s)) \in \{(l, l), (i, j), (j, i)\}, \\ b_2 & \text{if } (s, \pi(s)) \in \{(j, j), (i, l), (l, i)\}, \\ 1 - (b_1 + b_2) & \text{if } (s, \pi(s)) \in \{(i, i), (j, l), (l, j)\}, \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, when $\pi \in S_n$,

$$(xS + (1-x)I)_{s\pi(s)} = \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{i, j, l\}, \ \pi(s) = s \\ 1 - x(b_1 + b_2) & \text{if } (s, \pi(s)) = (i, i), \\ 1 - x(1 - b_2) & \text{if } (s, \pi(s)) = (j, j), \\ 1 - x(1 - b_1) & \text{if } (s, \pi(s)) = (l, l), \\ xb_1 & \text{if } (s, \pi(s)) \in \{(i, j), (j, i)\}, \\ xb_2 & \text{if } (s, \pi(s)) \in \{(i, l), (l, i)\}, \\ x(1 - (b_1 + b_2)) & \text{if } (s, \pi(s)) \in \{(l, j), (j, l)\}, \\ 0 & \text{otherwise.} \end{cases}$$

So, if $\pi \in S_n$ and there is $h \in \{1, \ldots, n\} \setminus \{i, j, l\}$ with $\pi(h) \neq h$ then $(xS + (1 - x)I)_{h\pi(h)} = 0$ and $\chi(\pi) \prod_{s=1}^n (xS + (1 - x)I)_{s\pi(s)} = 0$. If $\pi \in S_n$ and for all $h \in \{1, \ldots, n\} \setminus \{i, j, l\}, \pi(h) = h$ then $(xS + (1 - x)I)_{h\pi(h)} = 1$. Consequently, the degree of the polynomial $d_{\chi}(xS + (1 - x)I)$ is less than or equal to three. Therefore, the coefficient of the term associated with $x^4b_1b_2$ of the polynomial $d_{\chi}(xS + (1 - x)I)$ is zero.

Now we will compute the term associated with $x^4b_1b_2$ of the polynomial $d_{\chi}(xT(S) + (1-x)I) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^n (xT(S) + (1-x)I)_{s\pi(s)}$. When $\pi \in S_n$,

$$(T(S))_{s\pi(s)} = (b_1 P(ae) + b_2 P(ad) + (1 - (b_1 + b_2))P(af))_{s\pi(s)}$$

$$= \begin{cases}
1 & \text{if } s \in \{1, \dots, n\} \setminus \{a, e, c, d\}, \quad \pi(s) = s, \\
b_1 & \text{if } (s, \pi(s)) \in \{(a, e), (e, a)\}, \\
b_2 & \text{if } (s, \pi(s)) \in \{(a, d), (d, a)\}, \\
1 - (b_1 + b_2) & \text{if } (s, \pi(s)) \in \{(a, f), (f, a)\}, \\
1 - b_1 & \text{if } (s, \pi(s)) = (e, e), \\
1 - b_2 & \text{if } (s, \pi(s)) = (d, d), \\
b_1 + b_2 & \text{if } (s, \pi(s)) = (f, f), \\
0 & \text{otherwise.}
\end{cases}$$

Consequently, when $\pi \in S_n$,

$$(xT(S) + (1-x)I)_{s\pi(s)} = \begin{cases} 1 & \text{if } s \in \{1, \dots, n\} \setminus \{a, e, c, d\}, \ \pi(s) = s, \\ xb_1 & \text{if } (s, \pi(s)) \in \{(a, e), (e, a)\}, \\ xb_2 & \text{if } (s, \pi(s)) \in \{(a, d), (d, a)\}, \\ x(1 - (b_1 + b_2)) & \text{if } (s, \pi(s)) \in \{(a, f), (f, a)\}, \\ 1 - xb_1 & \text{if } (s, \pi(s)) = (e, e), \\ 1 - xb_2 & \text{if } (s, \pi(s)) = (d, d), \\ 1 - x(1 - (b_1 + b_2)) & \text{if } (s, \pi(s)) = (f, f), \\ 1 - x & \text{if } (s, \pi(s)) = (a, a), \\ 0 & \text{otherwise.} \end{cases}$$

If $\pi \notin \{id, (ae), (af), (ad)\}\$ then there is $h \in \{1, \dots, n\}\$ with $(h, \pi(h)) \notin \{(h, h), (a, e), (e, a), (a, f), (f, a), (a, d), (d, a)\}\$. Consequently, $(xT(S) + (1 - x)I)_{h\pi(h)} = 0$. Then $\chi(\pi) \prod_{h=1}^{n} (xT(S) + (1 - x)I)_{h\pi(h)} = 0$. So, $d_{\chi}(xT(S) + (1 - x)I) = \chi(id)(1 - xb_1)(1 - xb_2)(1 - x)(1 - x(1 - (b_1 + b_2))) + \chi(ae)(xb_1)^2(1 - xb_2)(1 - x(1 - (b_1 + b_2))) + \chi(ad)(xb_2)^2(1 - xb_1)(1 - x(1 - (b_1 + b_2))) + \chi(af)x^2(1 - (b_1 + b_2))^2(1 - xb_1)(1 - xb_2) = \chi(id)(1 - x(b_1 + b_2 + 1) + x^2(b_1 + b_2 + b_1b_2) - x^3b_1b_2)(1 - x(1 - (b_1 + b_2))) + \dots + \chi(af)x^2(1 - 2b_1 - 2b_2 + b_1^2 + b_2^2 + 2b_1b_2)(1 - x(b_1 + b_2) + x^2b_1b_2).$

Then the coefficient of the polynomial $d_{\chi}(xT(S) + (1-x)I)$ associated with $x^4b_1b_2$ is $\chi(id) + \chi(af)$.

Since $d_{\chi}(xS + (1-x)I) = d_{\chi}(xT(S) + (1-x)I)$, then the coefficient of the term associated with $x^4b_1b_2$ of both polynomials must be equal, i.e.,

$$0 = \chi(id) + \chi(af).$$

But this is impossible by Remark 2.1 when $\chi \neq [2, 2]$, and because $\chi(id) = 2$, $\chi(af) = 0$, when $\chi = [2, 2]$. Thus, $g \neq a$, and using the same argument, we have that $f \neq a$. Therefore, g = e, so f = d since $|\{a, d, g, f\}| = 3$, and we conclude that T(P(jl)) = P(ed).

For all $i, j \in \{1, ..., n\}$ with $i \neq j$ let us consider $k \in \{1, ..., n\}$, such that $k \neq i, k \neq j$. Let us assume that $\{i, j, k\} = \{1, 2, 3\}$.

Using Lemma 4.6, there are $j_1, j_2, j_3, j_4 \in \{1, \ldots, n\}$ such that $T(P(12)) = P(j_1j_2), T(P(13)) = P(j_3j_4)$. By Claim 1 $|\{j_1, j_2, j_3, j_4\}| = 3$. Let $\alpha(1) = i_1$ where $i_1 \in \{j_1, j_2\} \cap \{j_3, j_4\}$. Let $\alpha(2) = i_2$, where $i_2 \in \{j_1, j_2\} \setminus \{i_1\}$, and $\alpha(3) = i_3$, where $i_3 \in \{j_3, j_4\} \setminus \{i_1\}$.

Using this construction, we can define a function

$$\alpha: \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\},\$$

where $\alpha(r) = i_r$.

89

Using Claim 2 and the injectivity of T, we conclude that $\alpha \in S_n$. \Box

5. Proof of the main result. Let χ be an irreducible character of degree greater than 1 of S_n . In this section, we characterize the semilinear surjective maps T from Ω_n into Ω that preserve d_{χ} (Theorem 1.2).

By the Murnaghan-Nakayama Rule (mentioned in Section 2), if χ is an irreducible character of S_n and p is the number of boundary boxes of the Young Diagram associated with χ , then $\chi(\xi) \neq 0$ whenever ξ is a cycle of length p. On what follows we consider $\alpha \in S_n$ obtained using Proposition 4.7.

PROPOSITION 5.1. Let χ be an irreducible character of S_n of degree greater than one and p be the number of boundary boxes of the Young Diagram associated with χ . Let T be a semilinear unital surjective map from Ω_n into Ω_n that preserves d_{χ} . Let $\xi \in S_n$ be a cycle of length p and $T(P(\xi)) = P(\rho)$. Then

$$\rho = \alpha \circ \xi \circ \alpha^{-1}$$

or

$$\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}.$$

Proof. Let $\xi = (i_1 i_2 \cdots i_p)$. Then, by Corollary 4.5, $c[I, P(\xi)] = c[I, P(\rho)] = n - p$. Let $S = P(i_1 i_2)$. Then

$$S' = T(S) = T(P(i_1i_2)) = P(\alpha(i_1)\alpha(i_2))$$

and, by Corollary 4.5,

$$c[P(\xi), P(i_1i_2)] = n - p + 1 = c[P(\rho), P(\alpha(i_1)\alpha(i_2))]$$

i.e., $\rho^{-1}(\alpha(i_1)) = \alpha(i_2)$, or $\rho^{-1}(\alpha(i_2)) = \alpha(i_1)$, and both cases cannot happen at the same time because ρ is not a transposition.

Repeating the same argument with $S = P(i_t i_{t+1})$, where $t \in \{2, \ldots, p-1\}$, and using the bijectivity of ρ and α , we must have

(1) $\rho^{-1}(\alpha(i_1)) = \alpha(i_2), \ \rho^{-1}(\alpha(i_2)) = \alpha(i_3), \dots \ \rho^{-1}(\alpha(i_p)) = \alpha(i_1), \text{ or}$ (2) $\rho^{-1}(\alpha(i_1)) = \alpha(i_p), \ \rho^{-1}(\alpha(i_p)) = \alpha(i_{p-1}), \dots \ \rho^{-1}(\alpha(i_2)) = \alpha(i_1).$

So by definition of ξ we have that

- (1) $\alpha^{-1} \circ \rho^{-1} \circ \alpha = \xi^{-1}$, or
- (2) $\alpha^{-1} \circ \rho^{-1} \circ \alpha = \xi.$

Then $\rho = \alpha \circ \xi \circ \alpha^{-1}$ or $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$.

In Proposition 5.2, we will prove that if β , $\gamma \in S_n$ are cycles of length p, then we cannot have $T(P(\beta)) = P(\alpha \circ \beta \circ \alpha^{-1})$, and $T(P(\gamma)) = P(\alpha \circ \gamma^{-1} \circ \alpha^{-1})$.

PROPOSITION 5.2. Let χ be an irreducible character of S_n of degree greater than one and p be the number of boundary boxes of the Young Diagram associated with χ . Let T be a semilinear unital surjective map from Ω_n into Ω_n that preserves d_{χ} . Suppose that if p = 4 then $n \neq p$. Let $\xi \in S_n$ be a cycle of length p and $T(P(\xi)) = P(\rho)$.

1) If $\rho = \alpha \circ \xi \circ \alpha^{-1}$ then $T(P(\theta)) = P(\alpha \circ \theta \circ \alpha^{-1})$ whenever $\theta \in S_n$ is a cycle of length p. 2) If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$ then $T(P(\theta)) = P(\alpha \circ \theta^{-1} \circ \alpha^{-1})$ whenever $\theta \in S_n$ is a cycle of length p.

Proof. We will prove part 1). The proof will be divided into two cases:

Case 1. Let $p \neq n$.

Claim 1. If $i, j \in \{1, \ldots, n\}$ with $i \neq j$, verify $\xi(i) = i$ and $\xi(j) \neq j$ then $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1}).$

Proof of Claim 1. Since $(ij) \circ \xi \circ (ij)$ is a cycle of length p, by Proposition 5.1, $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$ or $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi^{-1} \circ (ij) \circ \alpha^{-1})$. Suppose that $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi^{-1} \circ (ij) \circ \alpha^{-1})$.

Let $S = P((ij) \circ \xi \circ (ij))$. By Proposition 4.4, $S_{1\xi^{-1}(1)} + \dots + S_{n\xi^{-1}(n)} = S'_{1\rho^{-1}(1)} + \dots + S'_{n\rho^{-1}(n)}$, where S' = T(S). Since

$$S_{1\xi^{-1}(1)} + \dots + S_{n\xi^{-1}(n)} = |\{a : (ij) \circ \xi^{-1}(a) = \xi^{-1} \circ (ij)(a)\}| = n - 3$$

and

$$S'_{1\rho^{-1}(1)} + \dots + S'_{n\rho^{-1}(n)} = |\{a: (ij) \circ \xi^{-1}(a) = \xi \circ (ij)(a)\}| = n - p - 1,$$

then p = 2 (impossible). So $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$.

Let $\theta = (a \ \theta(a) \ \cdots \ \theta^{p-1}(a))$ be a cycle of length $p, \ \theta \neq \xi$, where $a \in \{1, \dots, n\}$ and

$$\theta^{l}(a) = \begin{cases} a & \text{if } l = 0, \\ \theta(\theta^{l-1}(a)) & \text{if } l > 0. \end{cases}$$

If $\xi(a) = a$, let t be an integer such that $\xi(t) \neq t$. Using Claim 1,

$$TP((at) \circ \xi \circ (at)) = P(\alpha \circ (at) \circ \xi \circ (at) \circ \alpha^{-1})$$

and if $\beta = (at) \circ \xi \circ (at)$ then β is a cycle of length p verifying $\beta(a) \neq a$. So, we can assume that $\xi(a) \neq a$.

Let s be the smallest positive integer that $\theta^s(a) \neq \xi(\theta^{s-1}(a))$. Consequently, s < p and $\theta^u(a) = \xi^u(a)$, for $u = 0, \ldots, s - 1$.

• If $\xi(\theta^s(a)) = \theta^s(a)$, let $\xi(\theta^{s-1}(a)) = r$ (note that we have $\xi(\theta^{s-1}(a)) \neq \theta^{s-1}(a)$ because $\xi(\theta^{s-1}(a)) = \theta^{s-1}(a)$ implies that $\xi(a) = a$). Using Claim 1,

$$TP((\theta^s(a)r) \circ \xi \circ (\theta^s(a)r)) = P(\alpha \circ (\theta^s(a)r) \circ \xi \circ (\theta^s(a)r) \circ \alpha^{-1})$$

and if $\beta_1 = (\theta^s(a)r) \circ \xi \circ (\theta^s(a)r)$ then β_1 is a cycle of length p verifying $\beta_1^u(a) = \theta^u(a)$, for $u = 0, \ldots, s$.

• If $\xi(\theta^s(a)) \neq \theta^s(a)$, let $\xi(\theta^{s-1}(a)) = r$. Since $n \neq p$, let k be an integer such that $\xi(k) = k$. Using Claim 1,

$$TP((\theta^s(a)k) \circ \xi \circ (\theta^s(a)k)) = P(\alpha \circ (\theta^s(a)k) \circ \xi \circ (\theta^s(a)k) \circ \alpha^{-1})$$

and if $\beta_2 = (\theta^s(a)k) \circ \xi \circ (\theta^s(a)k)$ then β_2 is a cycle of length p verifying $\beta_2^u(a) = \theta^u(a)$, for $u = 0, \ldots, s - 1, \beta_2(\theta^s(a)) = \theta^s(a)$ and $\beta_2(\theta^{s-1}(a)) = r$. Using what we proved above, we conclude that there is a cycle of length p, β_3 , such that $\beta_3^u(a) = \theta^u(a)$, for $u = 0, \ldots, s$ and $TP(\beta_3) = P(\alpha\beta_3\alpha^{-1})$.

Repeating this argument, we prove the result.

Case 2. Let $n = p \neq 4$.

 $Claim \ 2. \ \text{If} \ i, j \in \{1, \dots, n\}, \text{ with } i \neq j, \text{ verify } \xi(i) = j, \text{ then } T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1}).$

Proof of Claim 2. Using a similar argument as in Claim 1, suppose that $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi^{-1} \circ (ij) \circ \alpha^{-1}).$

Let $S = P((ij) \circ \xi \circ (ij))$. By Proposition 4.4, $S_{1\xi^{-1}(1)} + \dots + S_{n\xi^{-1}(n)} = S'_{1\rho^{-1}(1)} + \dots + S'_{n\rho^{-1}(n)}$, where S' = T(S). Since

$$S_{1\xi^{-1}(1)} + \dots + S_{n\xi^{-1}(n)} = |\{a: (ij) \circ \xi^{-1}(a) = \xi^{-1} \circ (ij)(a)\}| = n - 3$$

and

$$S'_{1\rho^{-1}(1)} + \dots + S'_{n\rho^{-1}(n)} = |\{a : (ij) \circ \xi^{-1}(a) = \xi \circ (ij)(a)\}| = n, \text{ if } p = 3$$

or

$$S'_{1\rho^{-1}(1)} + \dots + S'_{n\rho^{-1}(n)} = |\{a: (ij) \circ \xi^{-1}(a) = \xi \circ (ij)(a)\}| = n - p + 1, \text{ if } p > 3$$

then p = 4 (impossible). So $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$.

Let $\theta = (a \ \theta(a) \ \cdots \ \theta^{p-1}(a))$ be a cycle of length $p, \ \theta \neq \xi$, where $a \in \{1, \ldots, n\}$ and

$$\theta^l(a) = \begin{cases} a & \text{if } l = 0, \\ \theta(\theta^{l-1}(a)) & \text{if } l > 0. \end{cases}$$

Since n = p then $\xi(a) \neq a$. Let s be the smallest positive integer that $\theta^s(a) \neq \xi(\theta^{s-1}(a))$. Consequently, s < p-1 and $\theta^u(a) = \xi^u(a)$, for $u = 0, \ldots, s-1$. Since n = p, there is an integer k such that $p-1 \geq k > s$ and $\xi^k(a) = \theta^s(a)$. Using Claim 2,

$$TP((\xi^k(a)\xi^{k-1}(a))\circ\xi\circ(\xi^k(a)\xi^{k-1}(a)) = P(\alpha\circ(\xi^k(a)\xi^{k-1}(a))\circ\xi\circ(\xi^k(a)\xi^{k-1}(a))\circ\alpha^{-1}),$$

and if $\beta_4 = (\xi^k(a)\xi^{k-1}(a)) \circ \xi \circ (\xi^k(a)\xi^{k-1}(a))$, then β_4 is a cycle of length p verifying $\beta_4^u(a) = \theta^u(a)$, for $u = 0, \ldots, s - 1$ and $\beta_4^{k-1}(a) = \xi^k(a) = \theta^s(a)$. Using this argument we obtain a cycle of length p, β_5 , such that $\beta_5^u(a) = \theta^u(a)$, for $u = 0, \ldots, s$ and $TP(\beta_5) = P(\alpha\beta_5\alpha^{-1})$.

Repeating this argument, we prove the result.

The proof of part 2) is analogous. \Box

For each $i, j \in \{1, ..., n\}$ let $U_{i,j}$ be the subset of Ω_n such that

$$U_{i,j} = \{P \in \Omega_n : P \text{ is a permutation matrix and } P_{ij} = 1\}.$$

These sets are very important for our study.

PROPOSITION 5.3. Let χ be an irreducible character of S_n of degree greater than one, χ , and p be the number of boundary boxes of the Young Diagram associated with χ . Let T be a unital semilinear surjective map from Ω_n into Ω_n that preserves d_{χ} . Let $i, j \in \{1, ..., n\}$ where $i \neq j$, and P be a permutation matrix, such that $P \in U_{i,j}$. Assume that ξ is a cycle of length p, and $T(P(\xi)) = P(\rho)$. Then one of the following conditions must hold:

- (1) If $\rho = \alpha \circ \xi \circ \alpha^{-1}$, then $T(P) \in U_{\alpha(i),\alpha(j)}$.
- (2) If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, then $T(P) \in U_{\alpha(j),\alpha(i)}$.

Proof. We will prove (1). Let $\pi \in S_n$ such that $\pi(j) = i$. Therefore, $P(\pi) \neq I$ and $P(\pi) \in U_{i,j}$. By hypothesis, $\rho = \alpha \circ \xi \circ \alpha^{-1}$. We will see that $T(P(\pi)) \in U_{\alpha(i),\alpha(j)}$. Let $P(\theta) = T(P(\pi))$. We shall consider several cases:

Case 1. Let $n \ge 5$. If $n \ge 5$, and the number of boundary boxes of the Young diagram associated with χ is p, then $p \ge 4$. Suppose that $T(P(\pi)) = P(\theta) \notin U_{\alpha(i),\alpha(j)}$, i.e.,

$$\alpha^{-1} \circ \theta \circ \alpha(j) \neq i$$

. Let $\theta' = \alpha^{-1} \circ \theta \circ \alpha$, then by Corollary 4.5,

$$c[P(\varsigma), P(\pi)] = c[T(P(\varsigma)), P(\theta)],$$

whenever ς is a cycle of length p.

Since $n \ge 5$, we can choose $a \in \{1, \ldots, n\}$ such that

$$a \neq i, \quad a \neq j, \quad \pi(a) \neq j,$$

and we can choose $b \in \{1, \ldots, n\}$ such that

$$b \neq i$$
, $b \neq j$, $b \neq a$, $\theta'(a) \neq b$, and $\theta'(b) \neq j$.

Let us consider the cycles ξ_1 and η of length p, defined by

$$\xi_1(a) = b, \quad \xi_1(b) = j, \quad \xi_1(j) = i, \quad \eta(a) = j, \quad \eta(j) = b, \quad \eta(b) = i,$$

and $\xi_1(q) = \eta(q)$ for all $q \notin \{a, b, j\}$.

Since $\xi_1(j) = \pi(j)$ and $\eta(q) \neq \pi(q)$ for all $q \in \{a, b, j\}$, then

$$c[P(\xi_1), P(\pi)] > c[P(\eta), P(\pi)],$$

which implies that

93

$$c[T(P(\xi_1)), P(\theta)] > c[T(P(\eta)), P(\theta)]$$

By Proposition 5.2, we have

$$c[P(\alpha \circ \xi_1 \circ \alpha^{-1}), P(\theta)] > c[P(\alpha \circ \eta \circ \alpha^{-1}), P(\theta)].$$

Since $\xi_1(q) \neq \theta'(q)$ for all $q \in \{a, b, j\}$, then

$$c[P(\alpha \circ \xi_1 \circ \alpha^{-1}), P(\theta)] \le c[P(\alpha \circ \eta \circ \alpha^{-1}), P(\theta)]$$

which is a contradiction. So $T(P(\pi)) \in U_{\alpha(i),\alpha(j)}$.

Case 2. Let n = 3 and $\chi = [2, 1]$. Since p = 3, if π is a cycle of length 3, then the result is obtained using Proposition 5.2. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Case 3. Let n = 4 and $\chi = [3, 1]$ or $\chi = [2, 1, 1]$. In this case, we can not use Proposition 5.2 since the number of boundary boxes of the Young Diagram associated with χ is p = 4. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Let $\pi = (ij) \circ (kl)$ with i, j, k, l distinct on pairs, then by Corollary 4.5 (in this case, if σ is a transposition then $\chi(\sigma) = 1$ or -1),

$$c[P(ij), P(\pi)] = 2 = c[P(\alpha(i)\alpha(j)), T(P(\pi))].$$

Since $c[I, P(\pi)] = 0$ then $c[I, T(P(\pi))] = 0$. So, $\theta(\alpha(i)) = \alpha(j)$ and $\theta(\alpha(j)) = \alpha(i)$. Therefore, $P(\theta) \in U_{\alpha(i),\alpha(j)}$.

Let i, j, k distinct on pairs. If $\pi = (jik)$, using Lemma 4.6, T(P(jik)) = P(abc), where a, b, c are distinct on pairs. Since $\chi(ij) \neq 0$ (in this case, $\chi(ij) = 1$ or $\chi(ij) = -1$), by Corollary 4.5 we have $c[P(ij), P(\pi)] = 2 = c[P(\alpha(i)\alpha(j)), T(P(\pi))]$. Since $c[I, P(\pi)] = 1$ then $c[I, T(P(\pi))] = 1$. So,

$$(abc)(\alpha(i)) = \alpha(j)$$
 or $(abc)(\alpha(j)) = \alpha(i)$,

(only one of these conditions because (abc) is not a transposition).

In the same way, using the transposition (ik),

$$(abc)(\alpha(i)) = \alpha(k)$$
 or $(abc)(\alpha(k)) = \alpha(i)$

and using the transposition (kj),

$$(abc)(\alpha(k)) = \alpha(j)$$
 or $(abc)(\alpha(j)) = \alpha(k)$

I L
AS

Consequently,

$$(abc) = (\alpha(i)\alpha(j)\alpha(k))$$
 or $(abc) = (\alpha(j)\alpha(i)\alpha(k)).$

Since ξ is a cycle of length 4, then ξ is one of the following permutations

$$(jikl)$$
 or $(jilk)$ or $(jlik)$ (5.1)

or

$$(jlki)$$
 or $(jkil)$ or $(jkli)$, (5.2)

with $l \in \{1, 2, 3, 4\} \setminus \{j, i, k\}.$

If ξ is equal to a permutation of (5.2), then $c[P(\xi), P(\pi)] = 0$. Using Corollary 4.5 (recall that $\chi(\xi) \neq 0$), $c[P(\alpha \circ \xi \circ \alpha^{-1}), P(abc)] = 0$. Since $\alpha \circ \xi \circ \alpha^{-1}(\alpha(i)) = \alpha(j)$ or $\alpha \circ \xi \circ \alpha^{-1}(\alpha(j)) = \alpha(k)$, we conclude that $(abc) = (\alpha(j)\alpha(i)\alpha(k))$.

If ξ is equal to a permutation of (5.1), then $c[P(\xi), P(\pi)] = 2$. Using Corollary 4.5, $c[P(\alpha \circ \xi \circ \alpha^{-1}), P(abc)] = 2$. Since $(abc)(\alpha(l)) = \alpha(l)$, we conclude that $(abc) = (\alpha(j)\alpha(i)\alpha(k))$. Therefore, $P(\theta) = T(P(jik)) = P(\alpha(j)\alpha(i)\alpha(k)) \in U_{\alpha(i),\alpha(j)}$.

If $\pi = (jikl)$ is a cycle of length 4, with i, j, k, l distinct on pairs, then $c[I, P(\pi)] = 0 = c[I, P(\theta)]$. Considering the transposition (ij) and using Corollary 4.5 we get $c[P(ij), P(\pi)] = 1 = c[P(\alpha \circ (ij) \circ \alpha^{-1}), P(\theta)]$. Then

$$\theta(\alpha(j)) = \alpha(i)$$
 or $\theta(\alpha(i)) = \alpha(j)$.

Suppose that $\theta(\alpha(i)) = \alpha(j)$. Considering the permutation (jik) and using Corollary 4.5, we get $c[P(jik), P(\pi)] = 2 = c[P(\alpha \circ (jik) \circ \alpha^{-1}), P(\theta)]$. Then

$$\theta(\alpha(i)) = \alpha(k)$$
 and $\theta(\alpha(k)) = \alpha(j)$.

So, $\alpha(k) = \theta(\alpha(i)) = \alpha(j)$. Impossible because θ is a permutation. Consequently, $\theta(\alpha(j)) = \alpha(i)$ and $P(\theta) = T(P(jikl)) \in U_{\alpha(i),\alpha(j)}$.

Case 4. Let n = 4 and $\chi = [2, 2]$. Since p = 3, if π is a cycle of length 3, then the result is obtained using Proposition 5.2. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Let i, j, k, l distinct on pairs. Let $\pi = (ij) \circ (kl)$ then

$$c[P(ij), P(\pi)] = 2 = c[P(\alpha(i)\alpha(j)), T(P(\pi))]$$

(in this case, $\chi((ij) \circ (kl)) = 2 \neq 0$). Since $c[I, P(\pi)] = 0$ then $c[I, T(P(\pi))] = 0$. So, $\theta(\alpha(i)) = \alpha(j)$ and $\theta(\alpha(j)) = \alpha(i)$. Therefore, $P(\theta) \in U_{\alpha(i),\alpha(j)}$.

Let $\pi = (jikl)$ with i, j, k, l distinct on pairs, then

$$c[P(jik), P(\pi)] = 2 = c[P(\alpha(j)\alpha(i)\alpha(k)), T(P(\pi))]$$

(in this case, $\chi(jik) = -1 \neq 0$). Since $c[I, P(\pi)] = 0$ then $c[I, T(P(\pi))] = 0$. So, we must have two of these cases, $\theta(\alpha(j)) = \alpha(i)$ or $\theta(\alpha(i)) = \alpha(k)$ or $\theta(\alpha(k)) = \alpha(j)$, (recall that $P(\theta) = T(P(\pi))$). In the

same way, using (jil) we must have two of these cases, $\theta(\alpha(i)) = \alpha(l)$ or $\theta(\alpha(l)) = \alpha(j)$ or $\theta(\alpha(j)) = \alpha(i)$. If $\theta(\alpha(j)) \neq \alpha(i)$ then $\theta(\alpha(i)) = \alpha(k)$, $\theta(\alpha(k)) = \alpha(j)$ and $\theta(\alpha(i)) = \alpha(l)$. Impossible because θ is a permutation. Consequently, $\theta(\alpha(j)) = \alpha(i)$.

Therefore, $P(\theta) = T(P(ijkl)) \in U_{\alpha(i),\alpha(j)}$.

The proof of part 2) is analogous. \Box

Now we are in conditions to prove the main result of this paper.

Proof of Theorem 1.2. If there are $\sigma, \alpha \in S_n$, with $\chi(\sigma) = \chi(id)$, such that

$$T(S) = P(\sigma)P(\alpha)SP(\alpha^{-1}),$$

for all $S \in \Omega_n$, we have that

$$d_{\chi}(T(S)) = \sum_{\pi \in S_n} \chi(\pi) \prod_{j=1}^n T(S)_{j\pi(j)} = \sum_{\rho \in S_n} \chi(\alpha \circ \rho \circ \alpha^{-1} \circ \sigma^{-1}) \prod_{j=1}^n S_{j\rho(j)}.$$

Since $\chi(\sigma) = \chi(id)$ then $\chi(\alpha \circ \rho \circ \alpha^{-1} \circ \sigma^{-1}) = \chi(\alpha \circ \rho \circ \alpha^{-1}) = \chi(\rho)$ (see Remark 2.1). Consequently, $d_{\chi}(T(S)) = \sum_{\rho \in S_n} \chi(\rho) \prod_{j=1}^n S_{j\rho(j)} = d_{\chi}(S)$. Therefore, the map T preserves d_{χ} .

The proof of the case when $T(S) = P(\sigma)P(\alpha)S^TP(\alpha^{-1})$ is similar.

Conversely, suppose that the map T preserves d_{χ} and is unital.

Let p be the number of boundary boxes of the Young Diagram associated with χ and let $\alpha \in S_n$ obtained using Proposition 4.7.

Claim 1. Let P be a permutation matrix, such that $P \in U_{ii}$. Then $T(P) \in U_{\alpha(i)\alpha(i)}$.

Proof of Claim 1. Suppose that $P = P(\pi)$ with $\pi \in S_n$. Let k = c[P, I]. By Corollary 4.5, k = c[T(P), I]. Let i_1, \ldots, i_{n-k} be distinct on pairs, such that $\pi(i_j) \neq i_j$, for all $j \in \{1, \ldots, n-k\}$.

Assume that ξ is a cycle of length p, $T(P(\xi)) = P(\rho)$, with $\rho = \alpha \circ \xi \circ \alpha^{-1}$ (condition 1) of Proposition 5.3). Since $P \in U_{\pi(i_j)i_j}$, then $T(P) \in U_{\alpha(\pi(i_j))\alpha(i_j)}$, for all $j \in \{1, \ldots, n-k\}$. As k = c[T(P), I], then $T(P) \in U_{r_tr_t}$, where $r_t \in \{1, \ldots, n\} \setminus \{\alpha(i_1), \ldots, \alpha(i_{n-k})\}$.

Let us consider p_t , for all $t \in \{1, \ldots, k\}$, such that $\alpha(p_t) = r_t$, then $p_1, \ldots, p_k \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_{n-k}\}$. Since $P \in U_{i,i}$ then $\pi(i) = i$ and there exists $p_j \in \{p_1, \ldots, p_k\}$ such that $p_j = i$. Since $\alpha(i) = \alpha(p_j) = r_j$ then $T(P) \in U_{\alpha(i)\alpha(i)}$.

If we are in the condition 2) of Proposition 5.3, the proof is analogous.

Claim 2. Assume that ξ is a cycle of length p, and $T(P(\xi)) = P(\rho)$. Then one of the following conditions must hold:

- (1) If $\rho = \alpha \circ \xi \circ \alpha^{-1}$, then $T(U_{i,j}) = U_{\alpha(i),\alpha(j)}, \forall i, j$.
- (2) If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, then $T(U_{i,j}) = U_{\alpha(j),\alpha(i)}, \forall i, j$.

Proof of Claim 2. By Propositions 5.3 and Claim 1, we know that

- (1) if $\rho = \alpha \circ \xi \circ \alpha^{-1}$, then $T(U_{i,j}) \subseteq U_{\alpha(i),\alpha(j)}, \forall i, j;$ (2) if $i = \alpha \circ \xi^{-1} \circ \xi^{-1}$, then $T(U_i) \subseteq U_{\alpha(i),\alpha(j)}, \forall i, j;$
- (2) if $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, then $T(U_{i,j}) \subseteq U_{\alpha(j),\alpha(i)}, \forall i, j$.

Since

 $\varphi: U_{i,j} \longrightarrow U_{k,l}$ $P \longmapsto P(ik)PP(jl)$

is a bijective map, then

$$|U_{i,j}| = |U_{k,l}|, \quad \forall i, j, k, l.$$

So,

- (1) if $\rho = \alpha \circ \xi \circ \alpha^{-1}$, then $T(U_{i,j}) = U_{\alpha(i),\alpha(j)}, \forall i, j;$
- (2) if $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, then $T(U_{i,j}) = U_{\alpha(j),\alpha(i)}, \forall i, j. \blacksquare$

Claim 3. Assume that ξ is a cycle of length p, and $T(P(\xi)) = P(\rho)$. Then one of the following conditions must hold:

- (1) If $\rho = \alpha \circ \xi \circ \alpha^{-1}$, then $T(A) = P(\alpha)AP(\alpha^{-1})$, for all $A \in \Omega_n$.
- (2) If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, then $T(A) = P(\alpha)A^T P(\alpha^{-1})$, for all $A \in \Omega_n$.

Proof of Claim 3. Since there exist $\sigma_1, \ldots, \sigma_t \in S_n$ and $\lambda_1, \ldots, \lambda_t \in [0, 1]$ with $\lambda_1 + \cdots + \lambda_t = 1$ such that $A = \lambda_1 P(\sigma_1) + \cdots + \lambda_t P(\sigma_t)$ then

(1) if $\rho = \alpha \circ \xi \circ \alpha^{-1}$, by Claim 2,

$$T(A) = T(\lambda_1 P(\sigma_1) + \dots + \lambda_t P(\sigma_t)) = \lambda_1 T(P(\sigma_1)) + \dots + \lambda_t T(P(\sigma_t))$$

= $\lambda_1 P(\alpha \circ \sigma_1 \circ \alpha^{-1}) + \dots + \lambda_t P(\alpha \circ \sigma_t \circ \alpha^{-1})$
= $P(\alpha)(\lambda_1 P(\sigma_1) + \dots + \lambda_t P(\sigma_t))P(\alpha^{-1})$
= $P(\alpha)AP(\alpha^{-1}).$

(2) If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, by Claim 2,

$$T(A) = T(\lambda_1 P(\sigma_1) + \dots + \lambda_t P(\sigma_t)) = \lambda_1 T(P(\sigma_1)) + \dots + \lambda_t T(P(\sigma_t))$$

= $\lambda_1 P(\alpha \circ \sigma_1^{-1} \circ \alpha^{-1}) + \dots + \lambda_t P(\alpha \circ \sigma_t^{-1} \circ \alpha^{-1})$
= $P(\alpha)(\lambda_1 P(\sigma_1^{-1}) + \dots + \lambda_t P(\sigma_t^{-1}))P(\alpha^{-1})$
= $P(\alpha)(\lambda_1 P(\sigma_1 + \dots + \lambda_t P(\sigma_t))^T P(\alpha^{-1}))$
= $P(\alpha)A^T P(\alpha^{-1})$.

Using Corollary 2.4, we have that if $\chi \neq [2, 2]$, then T(I) = I. By Claim 3 and Corollary 4.2, the map T must have one of the forms (1) or (2).

If the map T is nonunital, then $T(I) \neq I$, and in this case, by Corollary 2.4, we must have $\chi = [2, 2]$. Since $T(I) = P(\sigma)$ with $\chi(\sigma) = \chi(id)$, we can consider the semilinear map Φ defined by $\Phi(S) = T(I)^{-1}T(S)$, since T(I) is invertible. The map Φ is unital, and

$$d_{\chi}(\Phi(S)) = d_{\chi}(T(I)^{-1}T(S)) = d_{\chi}(P(\sigma^{-1})T(S)).$$

Using Remark 2.1 and

97

$$d_{\chi}(P(\sigma^{-1})T(S)) = \sum_{\rho \in S_4} \chi(\rho) \prod_{j=1}^4 (P(\sigma^{-1})T(S))_{j\rho(j)} = \sum_{\pi \in S_4} \chi(\pi \circ \sigma) \prod_{j=1}^4 (T(S))_{j\pi(j)}$$
$$= \sum_{\pi \in S_4} \chi(\pi) \prod_{j=1}^4 (T(S))_{j\pi(j)} = d_{\chi}(T(S)) = d_{\chi}(S),$$

we conclude that Φ preserves d_{χ} .

By Claim 3 and Corollary 4.2, the result follows. \Box

Acknowledgments. We are indebted to a referee for many useful comments and suggestions.

REFERENCES

- [1] H. Boerner. Representation of Groups. Elsevier, New York, 1970.
- [2] R. Brualdi. Combinatorial Matrix Classes. Cambridge University Press, Cambridge, 2006.
- [3] G. James and M. Liebeck. Representations and Character of Groups. Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.
- [4] C.-K. Li, B.-S. Tam, and N.-K. Tsing. Linear maps preserving permutation and stochastic matrices. *Linear Algebra Appl.*, 341:5–22, 2002.
- [5] M. Marcus and M. Newman. On the minimum of the permanent of a doubly stochastic matrix. Duke Math. J., 26:64–72, 1959.
- [6] M. Marcus. Finite Dimensional Multilinear Algebra, Part I. Marcel Dekker, New York, 1973.
- [7] M. Marcus. Finite Dimensional Multilinear Algebra, Part II. Marcel Dekker, New York, 1975.
- [8] R. Merris. Multilinear Algebra, Algebra, Logic and Applications. Gordon and Breach Science Publishers, Amsterdam, 1997.
- B.N. Moyls, M. Marcus, and H. Minc. Permanent preserves on the space of a doubly stochastic matrices. Canad. J. Math., 14:190-194, 1962.
- [10] M. Newman. Matrix Representations of Groups. National Bureau of Standards Applied Mathematics Series, No. 60, 1968.
- [11] G.N. de Oliveira and J.A. Dias da Silva. Equality of decomposable symmetrized tensors and *-matrix groups. Linear Algebra Appl., 49:191–219, 1983.