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SEMILINEAR PRESERVERS OF THE IMMANANTS IN THE SET

OF DOUBLY STOCHASTIC MATRICES∗

M. ANTÓNIA DUFFNER† AND ROSÁRIO FERNANDES‡

Abstract. Let Sn denote the symmetric group of degree n and Mn denote the set of all n-by-n matrices over the complex

field, C. Let χ : Sn → C be an irreducible character of degree greater than 1 of Sn. The immanant dχ : Mn → C associated

with χ is defined by

dχ(X) =
∑
σ∈Sn

χ(σ)

n∏
j=1

Xjσ(j), X = [Xjk] ∈Mn.

Let Ωn be the set of all n-by-n doubly stochastic matrices, that is, matrices with nonnegative real entries and each row and

column sum is one. We say that a map T from Ωn into Ωn

• is semilinear if T (λS1 + (1− λ)S2) = λT (S1) + (1− λ)T (S2) for all S1, S2 ∈ Ωn and for all real number λ such that

0 ≤ λ ≤ 1;

• preserves dχ if dχ(T (S)) = dχ(S) for all S ∈ Ωn.

We characterize the semilinear surjective maps T from Ωn into Ωn that preserve dχ, when the degree of χ is greater than one.
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1. Introduction. Let Mn denote the set of all n-by-n matrices over the complex field, C. We denote

by I the identity in Mn. Let Sn be the symmetric group of degree n. We denote by id the identity in Sn.

Let χ : Sn → C be an irreducible character of Sn with degree greater than 1 (note that if the degree of χ is

one then χ is the sign character or the principal character). The immanant dχ is defined by

dχ(X) =
∑
σ∈Sn

χ(σ)

n∏
j=1

Xjσ(j), X = [Xjk] ∈Mn.

If the degree of the character χ is one, then dχ is the determinant or the permanent. We denote the

permanent by per,

per(X) =
∑
σ∈Sn

n∏
j=1

Xjσ(j), X = [Xjk] ∈Mn.

Let Ωn denote the set of all n-by-n doubly stochastic matrices, that is, matrices with nonnegative real

entries and each row and column sum is one. Ωn is a convex polyhedron in the euclidean n2-space whose

vertices are the n-by-n permutation matrices, [2].

Definition 1.1. Let T be a map from Ωn into Ωn. We say that T
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• is a semilinear map if

T (λS1 + (1− λ)S2) = λT (S1) + (1− λ)T (S2)

for all S1, S2 ∈ Ωn and for all real number λ such that 0 ≤ λ ≤ 1;

• preserves dχ if dχ(T (S)) = dχ(S) for all S ∈ Ωn.

The behavior of the permanent on Ωn has been studied extensively. In [9], the linear maps T from

Ωn into Ωn which preserve the permanent are characterized, and in [4], those that verify T (Ωn) = Ωn. In

this paper, we characterize the semilinear surjective maps T from Ωn into Ωn that preserve dχ, where the

character χ has degree greater than one.

Let α = (α1, . . . , αr) be a partition of n of length r, that is, a sequence of positive integers which are

assumed to be nonincreasing and with sum equal to n, [2, 3]. Each partition α = (α1, . . . , αr) of n is related

to a Young diagram, denoted by [α], which consists of r left justified rows of boxes, where the number of

boxes in the ith row is αi. The irreducible characters of Sn are in a bijective correspondence with the ordered

partitions of n, [1]. We identify the irreducible character χ with the partition that corresponds to χ, or with

the Young diagram [χ] associated with χ.

Denote by P (σ) the permutation matrix associated with σ ∈ Sn, that is,

P (σ)ij =

{
1 if i = σ(j),

0 otherwise.

We denote by ST the transpose of the matrix S. Recall that (P (σ))T = P (σ−1).

The main result of this paper is the following theorem.

Theorem 1.2. Let χ be an irreducible character of Sn of degree greater than one. Let T be a semilinear

surjective map from Ωn into Ωn. The map T preserves dχ if and only if there are σ, α ∈ Sn, with χ(σ) =

χ(id), such that one of the following conditions must hold:

(1) T (S) = P (σ)P (α)SP (α−1) for all S ∈ Ωn.

(2) T (S) = P (σ)P (α)STP (α−1) for all S ∈ Ωn.

Moreover, if χ 6= [2, 2], then P (σ) = I.

In Section 2, we shall present some preliminary definitions and propositions about the immanant of a

matrix S ∈ Ωn. To characterize the semilinear surjective maps T from Ωn into Ωn that preserve dχ, we will

consider several steps. So, in Section 3, we will prove that T must be injective. In Section 4, we will prove

that the image by T of a permutation matrix is a permutation matrix. Finally, in Section 5, we will present

the proof of the main result.

2. Preliminares. Let χ be an irreducible character of Sn. The boundary of the diagram [χ] is the set

of boxes whose right edge, bottom edge, or bottom right vertex belong to the geometric boundary of the

diagram. We will denote by p the number of boundary boxes of [χ]. Note that if χ is an irreducible character

of Sn of degree grater than 1 then p ≥ 3.

A set of successive boundary boxes whose deletion leads to another Young diagram is called a regular

boundary part. The number of vertical steps of a regular boundary part is equal to the number of rows

involved minus one.
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The Murnaghan-Nakayama Rule is important to calculate the value of χ(σ), for σ ∈ Sn. For more

details, see for example [1].

Proposition 2.1. (Murnaghan-Nakayama Rule) Let the disjoint cycles of σ ∈ Sn have lengths a1, . . . , aq
in any order. Determine all ways in which the diagram [χ] can be reduced to 0 by successively omitting regular

boundary parts of lengths a1, . . . , aq. Let the boundary parts occurring in the sth way contain ks vertical steps

altogether. Then χ(σ) =
∑
s(−1)ks .

In what follows, we will use this rule, namely, to state the following facts:

• If σ is a cycle of length equal to p then χ(σ) 6= 0.

• If σ is a cycle of length greater than p then χ(σ) = 0.

• If χ is a single hook, that is, an irreducible character χ = [χ1, . . . , χr] of Sn such that χ2 = · · · =

χr = 1, and σ is the product of disjoint cycles of length greater than one, σ1, . . . , σh, with h ≥ 2,

and there is an integer i, such that 1 ≤ i ≤ h with the length of σi greater than max{χ1 − 1, r− 1}
then χ(σ) = 0.

• If χ is a single hook and σ is the product of two disjoint cycles of length greater than one, σ1, σ2,

with the length of σ1 equal to χ1−1 and the length of σ2 equal to r−1, or vice-versa, then χ(σ) 6= 0.

In [5], M. Marcus and M. Newman proved the following result.

Proposition 2.2. If S ∈ Ωn, then

perS ≤ 1.

Moreover, perS = 1 if and only if S = P (σ), for some σ ∈ Sn.

If π, σ ∈ Sn, we denote by π ◦ σ the composition of these two permutations and we denote by σ(k) the

image of the value k under the map σ. Furthermore, if π ∈ Sn is a cycle, its length is denoted by l(π).

Remark 2.1. Let χ be an irreducible character of Sn. We refer to [1, 6, 7, 8] for a general study in

multilinear algebra.

1. χ(σ) ∈ Z for all σ ∈ Sn, and

∑
σ∈Sn

χ(σ) =

{
0 if χ is not the principal character,

n! otherwise.

2. χ(σ−1) = χ(σ) for all σ ∈ Sn, and χ(π ◦ σ ◦ π−1) = χ(σ) for all π, σ ∈ Sn.

3. | χ(σ) |≤ χ(id) for all σ ∈ Sn.

4. If n > 4 and χ is a character of Sn of degree greater than one, then | χ(σ) |< χ(id) for all σ ∈ Sn\{id},
[10].

5. Using direct computation, if χ is a character of Sn of degree greater than one and σ ∈ Sn \ {id}
verify | χ(σ) |= χ(id) then n = 4, χ = [2, 2] and σ ∈ {(12)(34), (13)(24), (14)(23)}. Moreover, if

χ = [2, 2] and σ ∈ {(12)(34), (13)(24), (14)(23)}, then χ(π ◦ σ) = χ(π), ∀π ∈ S4.

From the following proposition, we can conclude that whenever χ 6= [2, 2] and S ∈ Ωn, the maximum

value of dχ(S) is attained when S = I, and the minimum value is attained when S = P (τ), where χ(τ) ≤
χ(π), for all π ∈ Sn.
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Proposition 2.3. Let χ be an irreducible character of degree greater than 1 of Sn. If S ∈ Ωn then

dχ(S) ≤ χ(id), and the equality holds if and only if

S = P (σ) and χ(σ) = χ(id).

Moreover, dχ(S) ≥ χ(τ), where χ(τ) ≤ χ(π) for all π ∈ Sn, with equality if and only if

S = P (ρ) and χ(ρ) = χ(τ).

Proof. Since

| dχ(S) |=

∣∣∣∣∣∣
∑
σ∈Sn

χ(σ)

n∏
j=1

Sj,σ(j)

∣∣∣∣∣∣ ≤
∑
σ∈Sn

| χ(σ) |
n∏
j=1

Sj,σ(j) ≤
∑
σ∈Sn

χ(id)

n∏
j=1

Sj,σ(j) = χ(id)perS

and since perS ≤ 1, it follows that | dχ(S) |≤ χ(id).

If χ(id) =| dχ(S) |≤ χ(id)perS, then perS ≥ 1. But as perS ≤ 1, for all S ∈ Ωn, then perS = 1. By

Proposition 2.2, we have that S = P (σ) for some σ ∈ Sn. By definition and hypothesis, χ(id) = dχ(S) =

dχ(P (σ)) = χ(σ). Therefore, χ(σ) = χ(id).

Since χ(τ) < 0 if χ(τ) = min{χ(σ) : σ ∈ Sn}, we have that

dχ(S) =
∑
σ∈Sn

χ(σ)

n∏
j=1

Sj,σ(j) ≥
∑
σ∈Sn

χ(τ)

n∏
j=1

Sj,σ(j) = χ(τ)
∑
σ∈Sn

n∏
j=1

Sj,σ(j) = χ(τ)per(S) ≥ χ(τ).

Consequently, dχ(S) ≥ χ(τ). If dχ(S) = χ(τ), then per(S) = 1. By Proposition 2.2, this implies that

S = P (σ), for some σ ∈ Sn. Because χ(τ) = dχ(S) = dχ(P (σ)) = χ(σ) then χ(σ) = χ(τ).

Corollary 2.4. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a map from

Ωn into Ωn that preserves dχ. If χ 6= [2, 2], then T (I) = I. Moreover, when χ = [2, 2], there is σ ∈ S4 such

that T (I) = P (σ) and χ(σ) = χ(id).

Proof. Since T (I) ∈ Ωn and dχ(T (I)) = dχ(I) = χ(id), by last proposition, there is σ ∈ Sn, such that

T (I) = P (σ), with χ(σ) = χ(id). By Remark 2.1, we have that T (I) = I if χ 6= [2, 2].

Remark 2.2.

1. Using last corollary we conclude that T (I) is invertible.

2. Using the main result of [11] (characterization of the subgroup of Mn, S(Sn, χ) = {A ∈Mn; dχ(AX)

= dχ(X), for all X ∈ Mn}) we have that if σ ∈ Sn and χ(σ) = χ(id), then dχ(P (σ)S) = dχ(S) for

all S ∈ Ωn.

To prove the following lemmas, we will use the Murnaghan-Nakayama Rule (see the considerations at

the beginning of this section and [1]).

Lemma 2.5. Let n ≥ 4, and χ be an irreducible character of Sn of degree greater than one. If i, j, k ∈
{1, . . . , n}, are distinct on pairs, then there are σ, τ ∈ Sn such that

σ(i) = j, σ(k) = k, τ = σ ◦ (ik), χ(σ) 6= 0, χ(τ) = 0.
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Proof. Suppose that χ is not a single hook, and let p be the number of boundary boxes of [χ]. Then

p ≤ n− 1.

If σ ∈ Sn is a cycle of length p such that σ(i) = j, σ(k) = k, since τ = σ ◦ (ik) then τ is a cycle of length

p+ 1. Using the Murnaghan-Nakayama Rule we have that χ(σ) 6= 0 and χ(τ) = 0.

Suppose that χ = [χ1, . . . , χv+1] is a single hook, with χ1 = u > 1 and v ≥ 1.

If u− 1 ≥ v, since n = u+ v ≥ 4 then u− 1 + v ≥ 3. So, (note that v ≥ 1 because χ has degree greater

than one, n ≥ 4) u − 1 ≥ 2. Therefore, there exist σ ∈ Sn, and disjoint cycles σ1, σ2, where σ = σ1 ◦ σ2,
l(σ1) = u − 1 and l(σ2) = v, such that σ1(i) = j, σ(k) = k. Consequently, τ = σ ◦ (ik) = τ1 ◦ τ2 with

τ1, τ2 ∈ Sn and l(τ1) = u, l(τ2) = v. Using the Murnaghan-Nakayama Rule we have that χ(σ) 6= 0 and

χ(τ) = 0.

If u − 1 < v, then, there are σ ∈ Sn, disjoint cycles σ1, σ2 , where σ = σ1 ◦ σ2, l(σ1) = u − 1 and

l(σ2) = v, such that σ2(i) = j, and σ(k) = k. Therefore, τ = σ ◦ (ik) = τ1 ◦ τ2 with l(τ2) = v + 1. Using the

Murnaghan-Nakayama Rule we have that χ(σ) 6= 0 and χ(τ) = 0.

Lemma 2.6. Let n ≥ 3, i, j, k ∈ {1, . . . , n}, distinct on pairs and σ, τ ∈ Sn such that

σ(i) = j, σ(k) = k, τ = σ ◦ (ik).

Then for every π ∈ Sn, there are s, l ∈ {1, . . . , n} and l 6= s that verify

σ−1(s) 6= π(s), τ−1(s) 6= π(s), σ−1(l) 6= π(l), τ−1(l) 6= π(l).

Proof. Suppose that there is π ∈ Sn with a unique s ∈ {1, . . . , n} such that

π(s) = t, σ(t) 6= s, τ(t) 6= s.

Consequently,

if l 6= s, then σ−1(l) = π(l) or τ−1(l) = π(l).

Let u and v be elements such that σ−1(u) = t = π(s), τ−1(v) = t = π(s), (note that u 6= s, v 6= s).

If u = v then π(u) = σ−1(u) = t or π(u) = τ−1(v) = t. But π(s) = t, therefore we have a contradiction,

u = s.

Consequently, u 6= v. Since τ = σ ◦ (ik) then (t = i, u = j, v = k) or (t = k, u = k, v = j). We only

prove the case t = i, u = j, v = k, because the proof of the other case is analogous. In the case that we will

prove, σ−1(j) = i = π(s), τ−1(k) = i = π(s).

Since s 6= j, s 6= k then π(j) = σ−1(j) or π(j) = τ−1(j). If π(j) = σ−1(j) then π(j) = σ−1(j) = π(s) and

we can conclude that s = j (impossible). So, π(j) = τ−1(j) = k. Since s 6= k then π(k) = σ−1(k) or π(k) =

τ−1(k). If π(k) = τ−1(k) then π(k) = τ−1(k) = π(s) and we can conclude that s = k (impossible). Therefore,

π(k) = σ−1(k) = k. But this implies that π(j) = π(k) = k which is impossible.
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3. The injectivity of T . Let χ be an irreducible character of Sn of degree greater than 1 and T be a

semilinear map from Ωn into Ωn that preserves dχ. In the main result of this section we will prove that T

must be injective.

Theorem 3.1. Let χ be an irreducible character of Sn of degree greater than 1 and T be a semilinear

map from Ωn into Ωn that preserves dχ. Then T is injective.

Proof. Let S, S′ ∈ Ωn such that T (S) = T (S′). Let B ∈ Ωn and x ∈ [0, 1]. Since

dχ(xS + (1− x)B) = dχ(T (xS + (1− x)B)) = dχ(xT (S) + (1− x)T (B))

= dχ(xT (S′) + (1− x)T (B)) = dχ(T (xS′ + (1− x)B))

= dχ(xS′ + (1− x)B),

it follows that dχ(xS + (1− x)B) = dχ(xS′ + (1− x)B).

Case (i) Let n ≥ 4. If i, j, k ∈ {1, . . . , n} are distinct on pairs, then by Lemma 2.5, there are σ, τ ∈ Sn
such that σ(i) = j, σ(k) = k, τ = σ ◦ (ik), χ(σ) 6= 0, χ(τ) = 0.

For each b ∈ [0, 1], let us consider the matrix

Bb = bP (σ) + (1− b)P (τ).

So, for all p ∈ {1, . . . , n},

(Bb)pπ(p) =


1 if π(p) = σ−1(p) = τ−1(p),

b if π(p) = σ−1(p), π(p) 6= τ−1(p),

1− b if π(p) 6= σ−1(p), π(p) = τ−1(p),

0 otherwise.

Now we will compute the coefficient of the term associated with x of the polynomial

dχ(xS + (1− x)Bb) =
∑
π∈Sn

χ(π)

n∏
l=1

(xS + (1− x)Bb)lπ(l).

If there is s ∈ {1, . . . , n} such that for some π ∈ Sn, π(s) 6= σ−1(s) and π(s) 6= τ−1(s) then

(xS + (1− x)Bb)sπ(s) = xSsπ(s).

To obtain the coefficient of the term associated with x of the polynomial χ(π)
∏n
l=1(xS +(1 − x)Bb)lπ(l)

the other terms of
∏n
l=1,l 6=s(xS + (1 − x)Bb)lπ(l) must verify (Bb)lπ(l) 6= 0. Consequently, if l 6= s then

π(l) = σ−1(l) or π(l) = τ−1(l). But this is impossible by Lemma 2.6. Therefore, if s ∈ {1, . . . , n} and

π ∈ Sn, then π(s) = σ−1(s) or π(s) = τ−1(s). Since τ = σ ◦ (ik) then π(s) = σ−1(s) = τ−1(s), when

s ∈ {1, . . . , n} \ {j, k}. Because π(j) = σ−1(j) or π(j) = τ−1(j), and π(k) = σ−1(k) or π(k) = τ−1(k) then

π(j) = i or π(j) = k, and π(k) = k or π(k) = i. But π is a bijection, so we have two cases:

• If π(j) = i, then π(k) = k and π = σ−1.

• If π(j) = k, then π(k) = i and π = τ−1.

Therefore, the coefficient of the term associated with x of the polynomial dχ(xS + (1 − x)Bb) appears

when π = σ−1 or π = τ−1.
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As χ(τ−1) = 0, it is enough to compute χ(σ−1)
∏n
l=1(xS + (1− x)Bb)lσ−1(l). Since σ(σ−1(l)) = l, for all

l ∈ {1, . . . , n} and τ(σ−1(l)) 6= l when l ∈ {j, k}, then

χ(σ−1)

n∏
l=1

(xS+(1−x)Bb)lσ−1(l) = χ(σ−1)(xSjσ−1(j)+(1−x)b)(xSkσ−1(k)+(1−x)b)
∏
l 6=j,k

(xSlσ−1(l)+(1−x)).

Consequently, the coefficient of the term associated with x in the polynomial dχ(xS + (1− x)Bb) is

χ(σ−1)((Sjσ−1(j) − b)b+ (Skσ−1(k) − b)b+ b2
∑
l 6=j,k

(Slσ−1(l) − 1)).

Since σ−1(j) = i and σ−1(k) = k then the coefficient of the term associated with x in the polynomial

dχ(xS + (1− x)Bb) is χ(σ−1)((Sji − b)b+ (Skk − b)b+ b2
∑
l 6=j,k(Slσ−1(l) − 1)).

Using the fact that

dχ(xS + (1− x)Bb) = dχ(xS′ + (1− x)Bb)

for all b ∈ [0, 1], we have that

χ(σ−1)((Sji− b)b+(Skk− b)b+ b2
∑
l 6=j,k

(Slσ−1(l)−1)) = χ(σ−1)((S′ji− b)b+(S′kk− b)b+ b2
∑
l 6=j,k

(S′lσ−1(l)−1)),

for all b ∈ [0, 1]. Consequently,

(Sji + Skk)b+ b2

∑
l 6=j,k

(Slσ−1(l) − 1)− 2

 = (S′ji + S′kk)b+ b2

∑
l 6=j,k

(S′lσ−1(l) − 1)− 2


for all b ∈ [0, 1].

Then the coefficient of the term associated with b of the last polynomials are equal, i.e.,

Sji + Skk = S′ji + S′kk (3.1)

for all i, j, k ∈ {1, . . . , n}, distinct on pairs. Since n ≥ 4, there is p /∈ {i, j, k} such that

Sji + Spp = S′ji + S′pp, (3.2)

and subtracting the equalities (3.1) and (3.2), we obtain that

Skk − S′kk = Spp − S′pp

for all k, p ∈ {1, . . . , n}.

If c is the constant defined by c = Skk − S′kk, then Skk = S′kk + c, and by (3.1), we obtain Sji = S′ji − c,
for all i, j ∈ {1, . . . , n}, i 6= j.

As S, S′ ∈ Ωn, we have Sjj +
∑n
j=1,j 6=i Sji = 1 and S′jj + c +

∑n
j=1,j 6=i(S

′
ji − c) = 1, which implies

that
∑n
j=1 S

′
ji + (2 − n)c = 1. Since n 6= 2 then c = 0, which means that Skk = S′kk and Sji = S′ji, for all

k, i, j ∈ {1, . . . , n}. Therefore, S = S′, and T is injective.
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Case (ii) Let n = 3 and χ = [2, 1]. Let us consider σ = (ij) and τ = (ijk) for {i, j, k} = {1, 2, 3}.
Then χ(σ) = 0 and χ(τ) 6= 0. For each b ∈ [0, 1], consider the matrix Bb = bP (σ) + (1− b)P (τ). So, for all

p ∈ {1, 2, 3} and π ∈ S3,

(Bb)pπ(p) =


1 if π(p) = σ−1(p) = τ−1(p),

b if π(p) = σ−1(p), π(p) 6= τ−1(p),

1− b if π(p) 6= σ−1(p), π(p) = τ−1(p),

0 otherwise.

Then

dχ(xS + (1− x)Bb) =
∑
π∈S3

χ(π)

3∏
l=1

(xS + (1− x)Bb)lπ(l)

= χ(τ)(xSiτ(i) + (1− x)b)(xSjτ(j))(xSkτ(k)) + χ(τ−1)(xSiτ−1(i) + (1− x)(1− b))
·(xSjτ−1(j) + (1− x))(xSkτ−1(k) + (1− x)(1− b)) + χ(id)(xSii)(xSjj)(xSkk + (1− x)b).

Since τ−1(i) = k, τ−1(j) = i and τ−1(k) = j, the coefficient of the term associated with x of the polynomial

dχ(xS + (1− x)Bb) is χ(τ−1)((1− b)((Sik + Sji + Skj − 3) + b(−Sji + 3))) for all b ∈ [0, 1].

Using the fact that

dχ(xS + (1− x)Bb) = dχ(xS′ + (1− x)Bb),

we have that

χ(τ−1)((1− b)((Sij + Sji + Skj − 3) + b(−Sji + 3))) = χ(τ−1)((1− b)((S′ij + S′ji + S′kj − 3) + b(−S′ji + 3)))

for all b ∈ [0, 1]. So, the coefficient of the term associated with b2 of last polynomials are equal and this

implies that

Sji = S′ji

for all i 6= j. Since Sii + Sji + Ski = 1 = S′ii + S′ji + S′ki, then Sii = S′ii, for all i ∈ {1, 2, 3}. Consequently,

S = S′. So, T is injective.

4. The image of a permutation matrix by T . Let C ⊆ Ωn be a convex polyhedron. An element

S ∈ C is a vertex of C, if S satisfies:

∀S1, S2 ∈ C : S = αS1 + (1− α)S2, with α ∈]0, 1[, it follows S1 = S2 = S.

Let T be a semilinear map from Ωn into Ωn that preserves dχ. Since Ωn and T (Ωn) are convex poly-

hedrons, and the permutation matrices are the vertices of Ωn (see [2]), in the next step we will see that if

σ ∈ Sn then T (P (σ)) is a vertex of T (Ωn).

Proposition 4.1. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a semilinear

map from Ωn into Ωn that preserves dχ. If σ ∈ Sn then T (P (σ)) is a vertex of the convex polyhedron T (Ωn).

Proof. Let S1, S2 ∈ Ωn and σ ∈ Sn such that T (P (σ)) = αT (S1)+(1−α)T (S2), for some α ∈]0, 1[. Then

by semilinearity of T we have T (P (σ)) = T (αS1 + (1−α)S2). Using Theorem 3.1, P (σ) = αS1 + (1−α)S2,
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with α ∈]0, 1[. As P (σ) is a vertex of Ωn, then S1 = S2 = P (σ), which means that T (S1) = T (S2) = T (P (σ)),

and T (P (σ)) is a vertex of T (Ωn).

In what follows, we consider that the semilinear map T from Ωn into Ωn is surjective. Since T preserves

dχ, we have that T is bijective and T (Ωn) = Ωn.

Corollary 4.2. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a semilinear

surjective map from Ωn into Ωn that preserves dχ. Then for each σ ∈ Sn there is a π ∈ Sn, such that

T (P (σ)) = P (π), where χ(σ) = χ(π).

Definition 4.3. We say that two matrices S1 and S2 are equal to one in the position (i, j), if (S1)ij =

(S2)ij = 1.

We denote by c[S1, S2] the number of positions where S1 and S2 are equal to one. Consequently, if P is

a permutation matrix and S ∈ Ωn, then c[P, S] is equal to the number of ones of the matrix xP + (1− x)S,

for all x ∈]0, 1[. In particular c[I, S] is equal to the number of ones in the main diagonal of S.

Proposition 4.4. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a semilinear

surjective map from Ωn into Ωn that preserves dχ. Let σ ∈ Sn such that χ(σ) 6= 0 and S ∈ Ωn. If

T (P (σ)) = P (π) and T (S) = S′, then

n∑
j=1

Sjσ−1(j) =

n∑
j=1

S′jπ−1(j).

Proof. Let x ∈ [0, 1]. First we will compute the coefficient of the term associated with x of the polynomial

dχ(xS + (1− x)P (σ)) =
∑
τ∈Sn

χ(τ)
∏n
j=1(xS + (1− x)P (σ))jτ(j). If τ 6= σ−1, then there is s ∈ {1, . . . , n}

such that (xS + (1 − x)P (σ))sτ(s) = xSsτ(s). Since τ and σ are bijections, there are, at least two integers

s, h ∈ {1, . . . , n} with s 6= h and (xS + (1 − x)P (σ))sτ(s) = xSsτ(s), (xS + (1 − x)P (σ))hτ(h) = xShτ(h).

Consequently,
∏n
j=1(xS + (1 − x)P (σ))jτ(j) is a polynomial with the coefficient associated with x equal to

zero. So, the coefficient of the term associated with x of the polynomial dχ(xS + (1 − x)P (σ)) is obtained

when τ = σ−1 and is equal to

χ(σ−1)

n∑
j=1

(Sjσ−1(j) − 1).

As dχ(xS + (1− x)P (σ)) = dχ(xS′ + (1− x)P (π)) we have that

χ(σ−1)

n∑
j=1

(S′jσ−1(j) − 1) = χ(π−1)

n∑
j=1

(Sjπ−1(j) − 1).

Consequently, we get the desired conclusion using Corollary 4.2 and the fact that χ(σ) 6= 0.

Corollary 4.5. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a semilinear

surjective map from Ωn into Ωn that preserves dχ. Let σ ∈ Sn such that χ(σ) 6= 0 and ρ ∈ Sn. If

T (P (σ)) = P (π), then

c[P (σ), P (ρ)] = c[P (π), T (P (ρ))].
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Proof. By Proposition 4.4,

n∑
j=1

P (ρ)jσ−1(j) =

n∑
j=1

T (P (ρ))jπ−1(j).

So we get the desired conclusion.

Lemma 4.6. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a semilinear

surjective map from Ωn into Ωn that preserves dχ. Let ρ, θ ∈ Sn such that T (P (ρ)) = P (θ). If ρ is a

transposition then θ is a transposition, and if ρ is a cycle of length three then θ is a cycle of length three.

Proof. Let ρ be a cycle of length 2 ≤ l ≤ 3, such that T (P (ρ)) = P (θ), then by Corollary 4.5,

c[I, P (ρ)] = n− l = c[I, P (θ)].

If l = 2, then there are i, j ∈ {1, . . . , n} such that i 6= j, P (θ)ii = P (θ)jj = 0, P (θ)kk = 1, for all k 6= i, j,

and consequently, P (θ)ij = P (θ)ji = 1.

The case l = 3 can be proved using the same arguments.

A semilinear map T is called unital if T (I) = I. When T is a semilinear map from Ωn into Ωn the

case of a nonunital map can be reduced to the unital case by considering the semilinear map Φ defined by

Φ(S) = T (I)−1T (S), since T (I) is invertible. Recall that by Corollary 2.4, if the irreducible character of

degree greater than one, χ, verifies χ 6= [2, 2] and T preserves dχ then T (I) = I.

Proposition 4.7. Let χ be an irreducible character of degree greater than 1 of Sn. Let T be a semilinear

unital surjective map from Ωn into Ωn that preserves dχ. Then there is α ∈ Sn such that for all i, j ∈
{1, . . . , n}, i 6= j,

T (P (ij)) = P (α(i)α(j)).

Proof. First we will prove two claims.

If X is a set, we denote by |X| the cardinality of X.

Claim 1. Let i, j, l, a, e, c, d ∈ {1, . . . , n} with i, j, l distinct on pairs. If T (P (ij)) = P (ae) and T (P (il)) =

P (cd) then |{a, e, c, d}| = 3.

Proof of Claim 1. Using Lemma 4.6, since T is injective, |{a, e, c, d}| 6= 2.

Suppose that |{a, e, c, d}| = 4, which does not happen if n = 3. Let S = bP (ij) + (1 − b)P (il), with

b ∈ [0, 1]. Since, T (S) = bP (ae)+(1−b)P (cd), where b ∈ [0, 1], and dχ(xS+(1−x)I) = dχ(xT (S)+(1−x)I),

then the coefficient of the term associated with x2b2 of both polynomials must be equal.

First we will compute the term associated with x2b2 of the polynomial

dχ(xS + (1− x)I) =
∑
π∈Sn

χ(π)

n∏
s=1

(xS + (1− x)I)sπ(s).
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When π ∈ Sn,

(S)sπ(s) = (bP (ij) + (1− b)P (il))sπ(s) =


1 if s ∈ {1, . . . , n} \ {i, j, l}, π(s) = s,

b if (s, π(s)) ∈ {(l, l), (i, j), (j, i)},
1− b if (s, π(s)) ∈ {(l, i), (i, l), (j, j)},
0 otherwise.

Consequently, when π ∈ Sn,

(xS + (1− x)I)sπ(s) =



1 if s ∈ {1, . . . , n} \ {i, j, l}, π(s) = s,

1− x if (s, π(s)) = (i, i),

1− xb if (s, π(s)) = (j, j),

1− x(1− b) if (s, π(s)) = (l, l),

xb if (s, π(s)) ∈ {(i, j), (j, i)},
x(1− b) if (s, π(s)) ∈ {(l, i), (i, l)},
0 otherwise.

So, if π 6∈ {id, (ij), (il)} and there is h ∈ {1, . . . , n} \ {i, j, l} with π(h) 6= h then (xS + (1 − x)I)hπ(h) = 0

and χ(π)
∏n
s=1(xS + (1− x)I)sπ(s) = 0. Consequently, if χ(π)

∏n
s=1(xS + (1− x)I)sπ(s) 6= 0 then π(h) = h,

for all h ∈ {1, . . . , n} \ {i, j, l} and π ∈ {id, (ij), (il), (jl), (ijl), (ilj)}.

If π = (jl) or π = (ijl) then (xS + (1− x)I)jπ(j) = 0 and χ(π)
∏n
s=1(xS + (1− x)I)sπ(s) = 0.

If π = (ilj) then (xS + (1− x)I)lπ(l) = 0 and χ(π)
∏n
s=1(xS + (1− x)I)sπ(s) = 0.

So, dχ(xS+(1−x)I) = χ(ij)(1−x(1−b))(xb)(xb)+χ(id)(1−x(1−b))(1−xb)(1−x)+χ(il)(1−xb)(x(1−b))2.

Therefore, the coefficient of the term associated with x2b2 of the polynomial dχ(xS + (1− x)I) is

−χ(id) + χ(ij) + χ(il).

Now we will compute the term associated with x2b2 of the polynomial

dχ(xT (S) + (1− x)I) =
∑
π∈Sn

χ(π)

n∏
s=1

(xT (S) + (1− x)I)sπ(s).

When π ∈ Sn,

(T (S))sπ(s) = (bP (ae) + (1− b)P (cd))sπ(s) =


1 if s ∈ {1, . . . , n} \ {a, e, c, d}, π(s) = s,

b if (s, π(s)) ∈ {(a, e), (e, a), (c, c), (d, d)},
1− b if (s, π(s)) ∈ {(c, d), (d, c), (a, a), (e, e)},
0 otherwise.

Consequently, when π ∈ Sn,

(xT (S) + (1− x)I)sπ(s) =



1 if s ∈ {1, . . . , n} \ {a, e, c, d}, π(s) = s

1− xb if (s, π(s)) ∈ {(a, a), (e, e)},
1− x(1− b) if (s, π(s)) ∈ {(d, d), (c, c)},
xb if (s, π(s)) ∈ {(a, e), (e, a)},
x(1− b) if (s, π(s)) ∈ {(c, d), (d, c)},
0 otherwise.
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So, if π 6∈ {id, (ae), (cd)} and there is h ∈ {1, . . . , n}\{a, e, c, d} with π(h) 6= h then (xT (S)+(1−x)I)hπ(h) = 0

and χ(π)
∏n
s=1(xT (S) + (1 − x)I)sπ(s) = 0. Consequently, if χ(π)

∏n
s=1(xT (S) + (1 − x)I)sπ(s) 6= 0 then

π(h) = h, for all h ∈ {1, . . . , n} \ {a, e, c, d}.

If π(r) ∈ {π(a), π(e)} ⊆ {c, d} or π(r) ∈ {π(c), π(d)} ⊆ {a, e}, then (xT (S) + (1 − x)I)rπ(r) = 0 and

χ(π)
∏n
s=1(xT (S) + (1− x)I)sπ(s) = 0.

So, dχ(xT (S)+(1−x)I) = χ(ae)(1−x(1−b))2(xb)2+χ(id)(1−x(1−b))2(1−xb)2+χ(cd)(1−xb)2(x(1−b))2.

Therefore, the coefficient of the term associated with x2b2 of the polynomial dχ(xT (S) + (1− x)I) is

−2χ(id) + χ(ae) + χ(cd).

Since the polynomials dχ(xS + (1− x)I) and dχ(xT (S) + (1− x)I) are equal then the coefficients of the

term associated with x2b2 of each polynomial are equal, i.e.,

−χ(id) + χ(ij) + χ(il) = −2χ(id) + χ(ae) + χ(cd).

Because χ(id) 6= 0, we obtain a contradiction. Consequently, |{a, e, c, d}| = 3.

Claim 2. Let i, j, l, a, e, d ∈ {1, . . . , n} with i, j, l distinct on pairs and a, e, d distinct on pairs. If

T (P (ij)) = P (ae) and T (P (il)) = P (ad), then

T (P (jl)) = P (ed).

Proof of Claim 2. If T (P (jl)) = P (gf), using Claim 1, we conclude that |{a, e, g, f}| = 3 and |{a, d, g, f}|
= 3.

Let us assume that g = a. Then f 6= a, f 6= e and f 6= d, and consequently |{a, e, d, f}| = 4.

Let S = b1P (ij) + b2P (il) + (1− (b1 + b2))P (jl), with b1, b2 ∈ [0, 1] and b1 + b2 ≤ 1. Since, dχ(xS+ (1−
x)I) = dχ(xT (S) + (1 − x)I), then the coefficient of the term associated with x4b1b2 of both polynomials

must be equal.

First we will compute the term associated with x4b1b2 of the polynomial

dχ(xS + (1− x)I) =
∑
π∈Sn

χ(π)

n∏
s=1

(xS + (1− x)I)sπ(s).

When π ∈ Sn,

(S)sπ(s) = (b1P (ij) + b2P (il) + (1− (b1 + b2))P (jl))sπ(s)

=



1 if s ∈ {1, . . . , n} \ {i, j, l}, π(s) = s,

b1 if (s, π(s)) ∈ {(l, l), (i, j), (j, i)},
b2 if (s, π(s)) ∈ {(j, j), (i, l), (l, i)},
1− (b1 + b2) if (s, π(s)) ∈ {(i, i), (j, l), (l, j)},
0 otherwise.
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Consequently, when π ∈ Sn,

(xS + (1− x)I)sπ(s) =



1 if s ∈ {1, . . . , n} \ {i, j, l}, π(s) = s,

1− x(b1 + b2) if (s, π(s)) = (i, i),

1− x(1− b2) if (s, π(s)) = (j, j),

1− x(1− b1) if (s, π(s)) = (l, l),

xb1 if (s, π(s)) ∈ {(i, j), (j, i)},
xb2 if (s, π(s)) ∈ {(i, l), (l, i)},
x(1− (b1 + b2)) if (s, π(s)) ∈ {(l, j), (j, l)},
0 otherwise.

So, if π ∈ Sn and there is h ∈ {1, . . . , n} \ {i, j, l} with π(h) 6= h then (xS + (1 − x)I)hπ(h) = 0 and

χ(π)
∏n
s=1(xS + (1− x)I)sπ(s) = 0. If π ∈ Sn and for all h ∈ {1, . . . , n} \ {i, j, l}, π(h) = h then (xS + (1−

x)I)hπ(h) = 1. Consequently, the degree of the polynomial dχ(xS + (1− x)I) is less than or equal to three.

Therefore, the coefficient of the term associated with x4b1b2 of the polynomial dχ(xS + (1− x)I) is zero.

Now we will compute the term associated with x4b1b2 of the polynomial dχ(xT (S) +(1 − x)I) =∑
π∈Sn

χ(π)
∏n
s=1(xT (S) + (1− x)I)sπ(s). When π ∈ Sn,

(T (S))sπ(s) = (b1P (ae) + b2P (ad) + (1− (b1 + b2))P (af))sπ(s)

=



1 if s ∈ {1, . . . , n} \ {a, e, c, d}, π(s) = s,

b1 if (s, π(s)) ∈ {(a, e), (e, a)},
b2 if (s, π(s)) ∈ {(a, d), (d, a)},
1− (b1 + b2) if (s, π(s)) ∈ {(a, f), (f, a)},
1− b1 if (s, π(s)) = (e, e),

1− b2 if (s, π(s)) = (d, d),

b1 + b2 if (s, π(s)) = (f, f),

0 otherwise.

Consequently, when π ∈ Sn,

(xT (S) + (1− x)I)sπ(s) =



1 if s ∈ {1, . . . , n} \ {a, e, c, d}, π(s) = s,

xb1 if (s, π(s)) ∈ {(a, e), (e, a)},
xb2 if (s, π(s)) ∈ {(a, d), (d, a)},
x(1− (b1 + b2)) if (s, π(s)) ∈ {(a, f), (f, a)},
1− xb1 if (s, π(s)) = (e, e),

1− xb2 if (s, π(s)) = (d, d),

1− x(1− (b1 + b2)) if (s, π(s)) = (f, f),

1− x if (s, π(s)) = (a, a),

0 otherwise.

If π 6∈ {id, (ae), (af), (ad)} then there is h ∈ {1, . . . , n} with (h, π(h)) 6∈ {(h, h), (a, e), (e, a), (a, f), (f, a),

(a, d), (d, a)}. Consequently, (xT (S) + (1 − x)I)hπ(h) = 0. Then χ(π)
∏n
h=1(xT (S) + (1 − x)I)hπ(h) = 0.

So, dχ(xT (S) + (1− x)I) = χ(id)(1− xb1)(1− xb2)(1− x)(1− x(1− (b1 + b2))) + χ(ae)(xb1)2(1− xb2)(1−
x(1− (b1 + b2))) + χ(ad)(xb2)2(1− xb1)(1− x(1− (b1 + b2))) + χ(af)x2(1− (b1 + b2))2(1− xb1)(1− xb2) =

χ(id)(1− x(b1 + b2 + 1) + x2(b1 + b2 + b1b2)− x3b1b2)(1− x(1− (b1 + b2))) + · · ·+ χ(af)x2(1− 2b1 − 2b2 +

b21 + b22 + 2b1b2)(1− x(b1 + b2) + x2b1b2).
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Then the coefficient of the polynomial dχ(xT (S) + (1− x)I) associated with x4b1b2 is χ(id) + χ(af).

Since dχ(xS + (1− x)I) = dχ(xT (S) + (1− x)I), then the coefficient of the term associated with x4b1b2
of both polynomials must be equal, i.e.,

0 = χ(id) + χ(af).

But this is impossible by Remark 2.1 when χ 6= [2, 2], and because χ(id) = 2, χ(af) = 0, when χ = [2, 2].

Thus, g 6= a, and using the same argument, we have that f 6= a. Therefore, g = e, so f = d since

|{a, d, g, f}| = 3, and we conclude that T (P (jl)) = P (ed).

For all i, j ∈ {1, . . . , n} with i 6= j let us consider k ∈ {1, . . . , n}, such that k 6= i, k 6= j. Let us assume

that {i, j, k} = {1, 2, 3}.

Using Lemma 4.6, there are j1, j2, j3, j4 ∈ {1, . . . , n} such that T (P (12)) = P (j1j2), T (P (13)) = P (j3j4).

By Claim 1 |{j1, j2, j3, j4}| = 3. Let α(1) = i1 where i1 ∈ {j1, j2} ∩ {j3, j4}. Let α(2) = i2, where

i2 ∈ {j1, j2} \ {i1}, and α(3) = i3, where i3 ∈ {j3, j4} \ {i1}.

Using this construction, we can define a function

α : {1, . . . , n} −→ {1, . . . , n},

where α(r) = ir.

Using Claim 2 and the injectivity of T , we conclude that α ∈ Sn.

5. Proof of the main result. Let χ be an irreducible character of degree greater than 1 of Sn. In this

section, we characterize the semilinear surjective maps T from Ωn into Ω that preserve dχ (Theorem 1.2).

By the Murnaghan-Nakayama Rule (mentioned in Section 2), if χ is an irreducible character of Sn and

p is the number of boundary boxes of the Young Diagram associated with χ, then χ(ξ) 6= 0 whenever ξ is a

cycle of length p. On what follows we consider α ∈ Sn obtained using Proposition 4.7.

Proposition 5.1. Let χ be an irreducible character of Sn of degree greater than one and p be the

number of boundary boxes of the Young Diagram associated with χ. Let T be a semilinear unital surjective

map from Ωn into Ωn that preserves dχ. Let ξ ∈ Sn be a cycle of length p and T (P (ξ)) = P (ρ). Then

ρ = α ◦ ξ ◦ α−1

or

ρ = α ◦ ξ−1 ◦ α−1.

Proof. Let ξ = (i1i2 · · · ip). Then, by Corollary 4.5, c[I, P (ξ)] = c[I, P (ρ)] = n − p. Let S = P (i1i2).

Then

S′ = T (S) = T (P (i1i2)) = P (α(i1)α(i2))

and, by Corollary 4.5,

c[P (ξ), P (i1i2)] = n− p+ 1 = c[P (ρ), P (α(i1)α(i2))],
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i.e., ρ−1(α(i1)) = α(i2), or ρ−1(α(i2)) = α(i1), and both cases cannot happen at the same time because ρ is

not a transposition.

Repeating the same argument with S = P (itit+1), where t ∈ {2, . . . , p− 1}, and using the bijectivity of

ρ and α, we must have

(1) ρ−1(α(i1)) = α(i2), ρ−1(α(i2)) = α(i3), . . . ρ−1(α(ip)) = α(i1), or

(2) ρ−1(α(i1)) = α(ip), ρ
−1(α(ip)) = α(ip−1), . . . ρ−1(α(i2)) = α(i1).

So by definition of ξ we have that

(1) α−1 ◦ ρ−1 ◦ α = ξ−1, or

(2) α−1 ◦ ρ−1 ◦ α = ξ.

Then ρ = α ◦ ξ ◦ α−1 or ρ = α ◦ ξ−1 ◦ α−1.

In Proposition 5.2, we will prove that if β, γ ∈ Sn are cycles of length p, then we cannot have T (P (β)) =

P (α ◦ β ◦ α−1), and T (P (γ)) = P (α ◦ γ−1 ◦ α−1).

Proposition 5.2. Let χ be an irreducible character of Sn of degree greater than one and p be the

number of boundary boxes of the Young Diagram associated with χ. Let T be a semilinear unital surjective

map from Ωn into Ωn that preserves dχ. Suppose that if p = 4 then n 6= p. Let ξ ∈ Sn be a cycle of length p

and T (P (ξ)) = P (ρ).

1) If ρ = α ◦ ξ ◦ α−1 then T (P (θ)) = P (α ◦ θ ◦ α−1) whenever θ ∈ Sn is a cycle of length p.

2) If ρ = α ◦ ξ−1 ◦ α−1 then T (P (θ)) = P (α ◦ θ−1 ◦ α−1) whenever θ ∈ Sn is a cycle of length p.

Proof. We will prove part 1). The proof will be divided into two cases:

Case 1. Let p 6= n.

Claim 1. If i, j ∈ {1, . . . , n} with i 6= j, verify ξ(i) = i and ξ(j) 6= j then T (P ((ij) ◦ ξ ◦ (ij))) =

P (α ◦ (ij) ◦ ξ ◦ (ij) ◦ α−1).

Proof of Claim 1. Since (ij) ◦ ξ ◦ (ij) is a cycle of length p, by Proposition 5.1, T (P ((ij) ◦ ξ ◦ (ij))) =

P (α◦(ij)◦ξ◦(ij)◦α−1) or T (P ((ij)◦ξ◦(ij))) = P (α◦(ij)◦ξ−1◦(ij)◦α−1). Suppose that T (P ((ij)◦ξ◦(ij))) =

P (α ◦ (ij) ◦ ξ−1 ◦ (ij) ◦ α−1).

Let S = P ((ij)◦ ξ ◦ (ij)). By Proposition 4.4, S1ξ−1(1) + · · ·+Snξ−1(n) = S′1ρ−1(1) + · · ·+S′nρ−1(n), where

S′ = T (S). Since

S1ξ−1(1) + · · ·+ Snξ−1(n) = |{a : (ij) ◦ ξ−1(a) = ξ−1 ◦ (ij)(a)}| = n− 3

and

S′1ρ−1(1) + · · ·+ S′nρ−1(n) = |{a : (ij) ◦ ξ−1(a) = ξ ◦ (ij)(a)}| = n− p− 1,

then p = 2 (impossible). So T (P ((ij) ◦ ξ ◦ (ij))) = P (α ◦ (ij) ◦ ξ ◦ (ij) ◦ α−1).

Let θ = (a θ(a) · · · θp−1(a)) be a cycle of length p, θ 6= ξ, where a ∈ {1, . . . , n} and

θl(a) =

{
a if l = 0,

θ(θl−1(a)) if l > 0.
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If ξ(a) = a, let t be an integer such that ξ(t) 6= t. Using Claim 1,

TP ((at) ◦ ξ ◦ (at)) = P (α ◦ (at) ◦ ξ ◦ (at) ◦ α−1)

and if β = (at) ◦ ξ ◦ (at) then β is a cycle of length p verifying β(a) 6= a. So, we can assume that ξ(a) 6= a.

Let s be the smallest positive integer that θs(a) 6= ξ(θs−1(a)). Consequently, s < p and θu(a) = ξu(a),

for u = 0, . . . , s− 1.

• If ξ(θs(a)) = θs(a), let ξ(θs−1(a)) = r (note that we have ξ(θs−1(a)) 6= θs−1(a) because ξ(θs−1(a)) =

θs−1(a) implies that ξ(a) = a). Using Claim 1,

TP ((θs(a)r) ◦ ξ ◦ (θs(a)r)) = P (α ◦ (θs(a)r) ◦ ξ ◦ (θs(a)r) ◦ α−1)

and if β1 = (θs(a)r) ◦ ξ ◦ (θs(a)r) then β1 is a cycle of length p verifying βu1 (a) = θu(a), for

u = 0, . . . , s.

• If ξ(θs(a)) 6= θs(a), let ξ(θs−1(a)) = r. Since n 6= p, let k be an integer such that ξ(k) = k. Using

Claim 1,

TP ((θs(a)k) ◦ ξ ◦ (θs(a)k)) = P (α ◦ (θs(a)k) ◦ ξ ◦ (θs(a)k) ◦ α−1)

and if β2 = (θs(a)k) ◦ ξ ◦ (θs(a)k) then β2 is a cycle of length p verifying βu2 (a) = θu(a), for u =

0, . . . , s− 1, β2(θs(a)) = θs(a) and β2(θs−1(a)) = r. Using what we proved above, we conclude that

there is a cycle of length p, β3, such that βu3 (a) = θu(a), for u = 0, . . . , s and TP (β3) = P (αβ3α
−1).

Repeating this argument, we prove the result.

Case 2. Let n = p 6= 4.

Claim 2. If i, j ∈ {1, . . . , n}, with i 6= j, verify ξ(i) = j, then T (P ((ij)◦ξ◦(ij))) = P (α◦(ij)◦ξ◦(ij)◦α−1).

Proof of Claim 2. Using a similar argument as in Claim 1, suppose that T (P ((ij) ◦ ξ ◦ (ij))) = P (α ◦
(ij) ◦ ξ−1 ◦ (ij) ◦ α−1).

Let S = P ((ij)◦ ξ ◦ (ij)). By Proposition 4.4, S1ξ−1(1) + · · ·+Snξ−1(n) = S′1ρ−1(1) + · · ·+S′nρ−1(n), where

S′ = T (S). Since

S1ξ−1(1) + · · ·+ Snξ−1(n) = |{a : (ij) ◦ ξ−1(a) = ξ−1 ◦ (ij)(a)}| = n− 3

and

S′1ρ−1(1) + · · ·+ S′nρ−1(n) = |{a : (ij) ◦ ξ−1(a) = ξ ◦ (ij)(a)}| = n, if p = 3

or

S′1ρ−1(1) + · · ·+ S′nρ−1(n) = |{a : (ij) ◦ ξ−1(a) = ξ ◦ (ij)(a)}| = n− p+ 1, if p > 3

then p = 4 (impossible). So T (P ((ij) ◦ ξ ◦ (ij))) = P (α ◦ (ij) ◦ ξ ◦ (ij) ◦ α−1).

Let θ = (a θ(a) · · · θp−1(a)) be a cycle of length p, θ 6= ξ, where a ∈ {1, . . . , n} and

θl(a) =

{
a if l = 0,

θ(θl−1(a)) if l > 0.
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Since n = p then ξ(a) 6= a. Let s be the smallest positive integer that θs(a) 6= ξ(θs−1(a)). Consequently,

s < p− 1 and θu(a) = ξu(a), for u = 0, . . . , s− 1. Since n = p, there is an integer k such that p− 1 ≥ k > s

and ξk(a) = θs(a). Using Claim 2,

TP ((ξk(a)ξk−1(a)) ◦ ξ ◦ (ξk(a)ξk−1(a)) = P (α ◦ (ξk(a)ξk−1(a)) ◦ ξ ◦ (ξk(a)ξk−1(a)) ◦ α−1),

and if β4 = (ξk(a)ξk−1(a)) ◦ ξ ◦ (ξk(a)ξk−1(a)), then β4 is a cycle of length p verifying βu4 (a) = θu(a), for

u = 0, . . . , s − 1 and βk−14 (a) = ξk(a) = θs(a). Using this argument we obtain a cycle of length p, β5, such

that βu5 (a) = θu(a), for u = 0, . . . , s and TP (β5) = P (αβ5α
−1).

Repeating this argument, we prove the result.

The proof of part 2) is analogous.

For each i, j ∈ {1, . . . , n} let Ui,j be the subset of Ωn such that

Ui,j = {P ∈ Ωn : P is a permutation matrix and Pij = 1}.

These sets are very important for our study.

Proposition 5.3. Let χ be an irreducible character of Sn of degree greater than one, χ, and p be the

number of boundary boxes of the Young Diagram associated with χ. Let T be a unital semilinear surjective

map from Ωn into Ωn that preserves dχ. Let i, j ∈ {1, . . . , n} where i 6= j, and P be a permutation matrix,

such that P ∈ Ui,j . Assume that ξ is a cycle of length p, and T (P (ξ)) = P (ρ). Then one of the following

conditions must hold:

(1) If ρ = α ◦ ξ ◦ α−1, then T (P ) ∈ Uα(i),α(j).
(2) If ρ = α ◦ ξ−1 ◦ α−1, then T (P ) ∈ Uα(j),α(i).

Proof. We will prove (1). Let π ∈ Sn such that π(j) = i. Therefore, P (π) 6= I and P (π) ∈ Ui,j . By

hypothesis, ρ = α ◦ ξ ◦ α−1. We will see that T (P (π)) ∈ Uα(i),α(j). Let P (θ) = T (P (π)). We shall consider

several cases:

Case 1. Let n ≥ 5. If n ≥ 5, and the number of boundary boxes of the Young diagram associated with

χ is p, then p ≥ 4. Suppose that T (P (π)) = P (θ) 6∈ Uα(i),α(j), i.e.,

α−1 ◦ θ ◦ α(j) 6= i

. Let θ′ = α−1 ◦ θ ◦ α, then by Corollary 4.5,

c[P (ς), P (π)] = c[T (P (ς)), P (θ)],

whenever ς is a cycle of length p.

Since n ≥ 5, we can choose a ∈ {1, . . . , n} such that

a 6= i, a 6= j, π(a) 6= j,

and we can choose b ∈ {1, . . . , n} such that

b 6= i, b 6= j, b 6= a, θ′(a) 6= b, and θ′(b) 6= j.
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Let us consider the cycles ξ1 and η of length p, defined by

ξ1(a) = b, ξ1(b) = j, ξ1(j) = i, η(a) = j, η(j) = b, η(b) = i,

and ξ1(q) = η(q) for all q /∈ {a, b, j}.

Since ξ1(j) = π(j) and η(q) 6= π(q) for all q ∈ {a, b, j}, then

c[P (ξ1), P (π)] > c[P (η), P (π)],

which implies that

c[T (P (ξ1)), P (θ)] > c[T (P (η)), P (θ)].

By Proposition 5.2, we have

c[P (α ◦ ξ1 ◦ α−1), P (θ)] > c[P (α ◦ η ◦ α−1), P (θ)].

Since ξ1(q) 6= θ′(q) for all q ∈ {a, b, j}, then

c[P (α ◦ ξ1 ◦ α−1), P (θ)] ≤ c[P (α ◦ η ◦ α−1), P (θ)],

which is a contradiction. So T (P (π)) ∈ Uα(i),α(j).

Case 2. Let n = 3 and χ = [2, 1]. Since p = 3, if π is a cycle of length 3, then the result is obtained

using Proposition 5.2. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Case 3. Let n = 4 and χ = [3, 1] or χ = [2, 1, 1]. In this case, we can not use Proposition 5.2 since the

number of boundary boxes of the Young Diagram associated with χ is p = 4. If π is a cycle of length 2, then

the result is obtained using Proposition 4.7.

Let π = (ij)◦(kl) with i, j, k, l distinct on pairs, then by Corollary 4.5 (in this case, if σ is a transposition

then χ(σ) = 1 or −1),

c[P (ij), P (π)] = 2 = c[P (α(i)α(j)), T (P (π))].

Since c[I, P (π)] = 0 then c[I, T (P (π))] = 0. So, θ(α(i)) = α(j) and θ(α(j)) = α(i). Therefore, P (θ) ∈
Uα(i),α(j).

Let i, j, k distinct on pairs. If π = (jik), using Lemma 4.6, T (P (jik)) = P (abc), where a, b, c are

distinct on pairs. Since χ(ij) 6= 0 (in this case, χ(ij) = 1 or χ(ij) = −1), by Corollary 4.5 we have

c[P (ij), P (π)] = 2 = c[P (α(i)α(j)), T (P (π))]. Since c[I, P (π)] = 1 then c[I, T (P (π))] = 1. So,

(abc)(α(i)) = α(j) or (abc)(α(j)) = α(i),

(only one of these conditions because (abc) is not a transposition).

In the same way, using the transposition (ik),

(abc)(α(i)) = α(k) or (abc)(α(k)) = α(i)

and using the transposition (kj),

(abc)(α(k)) = α(j) or (abc)(α(j)) = α(k).
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Consequently,

(abc) = (α(i)α(j)α(k)) or (abc) = (α(j)α(i)α(k)).

Since ξ is a cycle of length 4, then ξ is one of the following permutations

(jikl) or (jilk) or (jlik) (5.1)

or

(jlki) or (jkil) or (jkli), (5.2)

with l ∈ {1, 2, 3, 4} \ {j, i, k}.

If ξ is equal to a permutation of (5.2), then c[P (ξ), P (π)] = 0. Using Corollary 4.5 (recall that χ(ξ) 6= 0),

c[P (α ◦ ξ ◦ α−1), P (abc)] = 0. Since α ◦ ξ ◦ α−1(α(i)) = α(j) or α ◦ ξ ◦ α−1(α(j)) = α(k), we conclude that

(abc) = (α(j)α(i)α(k)).

If ξ is equal to a permutation of (5.1), then c[P (ξ), P (π)] = 2. Using Corollary 4.5, c[P (α◦ξ◦α−1), P (abc)]

= 2. Since (abc)(α(l)) = α(l), we conclude that (abc) = (α(j)α(i)α(k)). Therefore, P (θ) = T (P (jik)) =

P (α(j)α(i)α(k)) ∈ Uα(i),α(j).

If π = (jikl) is a cycle of length 4, with i, j, k, l distinct on pairs, then c[I, P (π)] = 0 = c[I, P (θ)].

Considering the transposition (ij) and using Corollary 4.5 we get c[P (ij), P (π)] = 1 = c[P (α ◦ (ij) ◦
α−1), P (θ)]. Then

θ(α(j)) = α(i) or θ(α(i)) = α(j).

Suppose that θ(α(i)) = α(j). Considering the permutation (jik) and using Corollary 4.5, we get c[P (jik),

P (π)] = 2 = c[P (α ◦ (jik) ◦ α−1), P (θ)]. Then

θ(α(i)) = α(k) and θ(α(k)) = α(j).

So, α(k) = θ(α(i)) = α(j). Impossible because θ is a permutation. Consequently, θ(α(j)) = α(i) and

P (θ) = T (P (jikl)) ∈ Uα(i),α(j).

Case 4. Let n = 4 and χ = [2, 2]. Since p = 3, if π is a cycle of length 3, then the result is obtained

using Proposition 5.2. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Let i, j, k, l distinct on pairs. Let π = (ij) ◦ (kl) then

c[P (ij), P (π)] = 2 = c[P (α(i)α(j)), T (P (π))]

(in this case, χ((ij) ◦ (kl)) = 2 6= 0). Since c[I, P (π)] = 0 then c[I, T (P (π))] = 0. So, θ(α(i)) =

α(j) and θ(α(j)) = α(i). Therefore, P (θ) ∈ Uα(i),α(j).

Let π = (jikl) with i, j, k, l distinct on pairs, then

c[P (jik), P (π)] = 2 = c[P (α(j)α(i)α(k)), T (P (π))]

(in this case, χ(jik) = −1 6= 0). Since c[I, P (π)] = 0 then c[I, T (P (π))] = 0. So, we must have two of

these cases, θ(α(j)) = α(i) or θ(α(i)) = α(k) or θ(α(k)) = α(j), (recall that P (θ) = T (P (π))). In the
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same way, using (jil) we must have two of these cases, θ(α(i)) = α(l) or θ(α(l)) = α(j) or θ(α(j)) = α(i).

If θ(α(j)) 6= α(i) then θ(α(i)) = α(k), θ(α(k)) = α(j) and θ(α(i)) = α(l). Impossible because θ is a

permutation. Consequently, θ(α(j)) = α(i).

Therefore, P (θ) = T (P (ijkl)) ∈ Uα(i),α(j).

The proof of part 2) is analogous.

Now we are in conditions to prove the main result of this paper.

Proof of Theorem 1.2. If there are σ, α ∈ Sn, with χ(σ) = χ(id), such that

T (S) = P (σ)P (α)SP (α−1),

for all S ∈ Ωn, we have that

dχ(T (S)) =
∑
π∈Sn

χ(π)

n∏
j=1

T (S)jπ(j) =
∑
ρ∈Sn

χ(α ◦ ρ ◦ α−1 ◦ σ−1)

n∏
j=1

Sjρ(j).

Since χ(σ) = χ(id) then χ(α ◦ ρ ◦ α−1 ◦ σ−1) = χ(α ◦ ρ ◦ α−1) = χ(ρ) (see Remark 2.1). Consequently,

dχ(T (S)) =
∑
ρ∈Sn

χ(ρ)
∏n
j=1 Sjρ(j) = dχ(S). Therefore, the map T preserves dχ.

The proof of the case when T (S) = P (σ)P (α)STP (α−1) is similar.

Conversely, suppose that the map T preserves dχ and is unital.

Let p be the number of boundary boxes of the Young Diagram associated with χ and let α ∈ Sn obtained

using Proposition 4.7.

Claim 1. Let P be a permutation matrix, such that P ∈ Uii. Then T (P ) ∈ Uα(i)α(i).

Proof of Claim 1. Suppose that P = P (π) with π ∈ Sn. Let k = c[P, I]. By Corollary 4.5, k = c[T (P ), I].

Let i1, . . . , in−k be distinct on pairs, such that π(ij) 6= ij , for all j ∈ {1, . . . , n− k}.

Assume that ξ is a cycle of length p, T (P (ξ)) = P (ρ), with ρ = α ◦ ξ ◦ α−1 (condition 1) of Proposition

5.3). Since P ∈ Uπ(ij)ij , then T (P ) ∈ Uα(π(ij))α(ij), for all j ∈ {1, . . . , n − k}. As k = c[T (P ), I], then

T (P ) ∈ Urtrt , where rt ∈ {1, . . . , n} \ {α(i1), . . . , α(in−k)}.

Let us consider pt, for all t ∈ {1, . . . , k}, such that α(pt) = rt, then p1, . . . , pk ∈ {1, . . . , n}\{i1, . . . , in−k}.
Since P ∈ Ui,i then π(i) = i and there exists pj ∈ {p1, . . . , pk} such that pj = i. Since α(i) = α(pj) = rj
then T (P ) ∈ Uα(i)α(i).

If we are in the condition 2) of Proposition 5.3, the proof is analogous.

Claim 2. Assume that ξ is a cycle of length p, and T (P (ξ)) = P (ρ). Then one of the following conditions

must hold:

(1) If ρ = α ◦ ξ ◦ α−1, then T (Ui,j) = Uα(i),α(j), ∀i, j.
(2) If ρ = α ◦ ξ−1 ◦ α−1, then T (Ui,j) = Uα(j),α(i), ∀i, j.

Proof of Claim 2. By Propositions 5.3 and Claim 1, we know that

(1) if ρ = α ◦ ξ ◦ α−1, then T (Ui,j) ⊆ Uα(i),α(j), ∀i, j;
(2) if ρ = α ◦ ξ−1 ◦ α−1, then T (Ui,j) ⊆ Uα(j),α(i), ∀i, j.
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Since

ϕ : Ui,j −→ Uk,l

P 7−→ P (ik)PP (jl)

is a bijective map, then

|Ui,j | = |Uk,l|, ∀i, j, k, l.

So,

(1) if ρ = α ◦ ξ ◦ α−1, then T (Ui,j) = Uα(i),α(j), ∀i, j;
(2) if ρ = α ◦ ξ−1 ◦ α−1, then T (Ui,j) = Uα(j),α(i), ∀i, j.

Claim 3. Assume that ξ is a cycle of length p, and T (P (ξ)) = P (ρ). Then one of the following conditions

must hold:

(1) If ρ = α ◦ ξ ◦ α−1, then T (A) = P (α)AP (α−1), for all A ∈ Ωn.

(2) If ρ = α ◦ ξ−1 ◦ α−1, then T (A) = P (α)ATP (α−1), for all A ∈ Ωn.

Proof of Claim 3. Since there exist σ1, . . . , σt ∈ Sn and λ1, . . . , λt ∈ [0, 1] with λ1 + · · · + λt = 1 such

that A = λ1P (σ1) + · · ·+ λtP (σt) then

(1) if ρ = α ◦ ξ ◦ α−1, by Claim 2,

T (A) = T (λ1P (σ1) + · · ·+ λtP (σt)) = λ1T (P (σ1)) + · · ·+ λtT (P (σt))

= λ1P (α ◦ σ1 ◦ α−1) + · · ·+ λtP (α ◦ σt ◦ α−1)

= P (α)(λ1P (σ1) + · · ·+ λtP (σt))P (α−1)

= P (α)AP (α−1).

(2) If ρ = α ◦ ξ−1 ◦ α−1, by Claim 2,

T (A) = T (λ1P (σ1) + · · ·+ λtP (σt)) = λ1T (P (σ1)) + · · ·+ λtT (P (σt))

= λ1P (α ◦ σ−11 ◦ α−1) + · · ·+ λtP (α ◦ σ−1t ◦ α−1)

= P (α)(λ1P (σ−11 ) + · · ·+ λtP (σ−1t ))P (α−1)

= P (α)(λ1P (σ1 + · · ·+ λtP (σt))
TP (α−1)

= P (α)ATP (α−1).

Using Corollary 2.4, we have that if χ 6= [2, 2], then T (I) = I. By Claim 3 and Corollary 4.2, the map

T must have one of the forms (1) or (2).

If the map T is nonunital, then T (I) 6= I, and in this case, by Corollary 2.4, we must have χ = [2, 2].

Since T (I) = P (σ) with χ(σ) = χ(id), we can consider the semilinear map Φ defined by Φ(S) = T (I)−1T (S),

since T (I) is invertible. The map Φ is unital, and

dχ(Φ(S)) = dχ(T (I)−1T (S)) = dχ(P (σ−1)T (S)).
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Using Remark 2.1 and

dχ(P (σ−1)T (S)) =
∑
ρ∈S4

χ(ρ)

4∏
j=1

(P (σ−1)T (S))jρ(j) =
∑
π∈S4

χ(π ◦ σ)

4∏
j=1

(T (S))jπ(j)

=
∑
π∈S4

χ(π)

4∏
j=1

(T (S))jπ(j) = dχ(T (S)) = dχ(S),

we conclude that Φ preserves dχ.

By Claim 3 and Corollary 4.2, the result follows.
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