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THE ENHANCED PRINCIPAL RANK CHARACTERISTIC SEQUENCE
FOR HERMITIAN MATRICES∗

STEVE BUTLER†, MINERVA CATRAL‡, H. TRACY HALL§, LESLIE HOGBEN¶, XAVIER MARTÍNEZ-RIVERA†, BRYAN SHADER‖,

AND PAULINE VAN DEN DRIESSCHE∗∗

Abstract. The enhanced principal rank characteristic sequence (epr-sequence) of an n×n matrix is a sequence `1`2 · · ·`n, where each `k is A, S,
or N according as all, some, or none of its principal minors of order k are nonzero. There has been substantial work on epr-sequences of symmetric
matrices (especially real symmetric matrices) and real skew-symmetric matrices, and incidental remarks have been made about results extending
(or not extending) to (complex) Hermitian matrices. A systematic study of epr-sequences of Hermitian matrices is undertaken; the differences with
the case of symmetric matrices are quite striking. Various results are established regarding the attainability by Hermitian matrices of epr-sequences
that contain two Ns with a gap in between. Hermitian adjacency matrices of mixed graphs that begin with NAN are characterized. All attainable
epr-sequences of Hermitian matrices of orders 2, 3, 4, and 5, are listed with justifications.

Key words. Principal rank characteristic sequence, Enhanced principal rank characteristic sequence, Mixed graph, Hermitian adjacency matrix,
Minor.

AMS subject classifications. 15B57, 15A15, 15A03, 05C50.

1. Introduction. For a given real symmetric n×n matrix and a fixed k ∈ {1, . . . ,n}, the existence of at least one
(respectively, the nonexistence of any) nonsingular principal k× k submatrix was recorded with a 1 (respectively, 0)
in position k in the principal rank characteristic sequence defined by Brualdi et al. [3]. They studied what sequences
of 0s and 1s are attained by real symmetric (and in some cases complex symmetric or Hermitian) matrices. Barrett et
al. [2] extended this study to matrices over other fields, especially those of characteristic 2. The enhanced principal
rank characteristic sequence is a refinement of the principal rank sequence and was introduced in Butler et al. [4] to
illuminate further the existence of singular as well as full rank principal submatrices of given dimension.

Throughout this paper, Rn (respectively, Cn, Hn, Kn) denotes the set of n×n real symmetric (respectively, com-
plex symmetric, Hermitian, skew-Hermitian) matrices and Fn denotes one of Rn,Cn,Hn,Kn.

The following definition is equivalent to [3, Definition 1.1].

DEFINITION 1.1. [3] The principal rank characteristic sequence of B∈ Fn is the sequence (pr-sequence) pr(B) =
r0]r1r2 · · ·rn, where for k = 1, . . . ,n,

rk =

{
1 if B has a nonzero order-k principal minor;
0 otherwise,

and r0 = 1 if and only if B has a 0 diagonal entry.
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DEFINITION 1.2. [4, Definition 1.1] The enhanced principal rank characteristic sequence of B ∈ Fn is the
sequence (epr-sequence) epr(B) = `1`2 · · ·`n, where

`k =


A if all order-k principal minors are nonzero;
S if some but not all order-k principal minors are nonzero;
N if none of the order-k principal minors is nonzero, i.e., all are zero.

A (pr- or epr-) sequence is attainable over Fn if there exists a matrix B ∈ Fn that realizes the sequence, and is
forbidden over Fn if no such matrix exists. The set of all epr-sequences attainable by matrices in Fn is denoted by
attain(Fn).

The principal rank characteristic sequence was introduced in [3], where the focus was on pr-sequences of real
symmetric matrices, with a simplification of the principal minor assignment problem [8] as a motivation. The study
was continued in [2], where results over Rn were extended and where the problem was investigated over various fields.
The enhanced principal rank characteristic sequence was introduced in [4], where results over symmetric matrices,
including constructions of attainable epr-sequences and forbidden subsequences over various fields, were presented.
In [6], Fallat et al. considered the problem over skew-symmetric matrices and gave a complete characterization of
the attainable epr-sequences for real skew-symmetric matrices. Further results on attainable pr- and epr-sequences,
including classifications of some families of attainable sequences, were given by Martı́nez-Rivera in [10].

In this paper, we focus our study on the epr-sequences of Hermitian matrices. In Section 2, we identify certain
subsequences forbidden over Hn. In Section 3, we establish results regarding sequences in attain(Hn) that contain two
Ns with a gap in between, and in particular those that have the subsequence NAN. Section 4 discusses epr-sequences
attainable by Hermitian adjacency matrices. Probabilistic techniques are used in Section 5 to construct Hermitian
matrices attaining a family of epr-sequences. In Section 6, we identify all epr-sequences attainable over Hn but not
over Rn for n≤ 5. Finally, in Section 7, we discuss relationships between sets of epr-sequences attained by the various
classes of matrices that we consider.

We denote {1,2, . . . ,n} by [n]. For B ∈ Fn, α,β⊆ [n], the submatrix of B lying in rows indexed by α and columns
indexed by β is denoted by B[α,β]. Further, the complementary submatrix obtained from B by deleting the rows
indexed by α and columns indexed by β is denoted by B(α,β). If α = β, then the principal submatrix B[α,α] is
abbreviated to B[α], while the complementary principal submatrix is denoted by B(α). The all-ones vector of size n is
denoted by 1n and the n×n all-ones matrix is denoted by Jn. Following the notation in [2], we let `i · · ·` j indicate that
the (complete) sequence may be repeated as many times as desired (or may be omitted entirely).

1.1. Results used. The purpose of this section is to list results from the literature that we cite frequently and
simple extensions to Hermitian matrices of results for real symmetric matrices. In many cases we give the results
names. Note that some of the results cited are true more generally, e.g., for symmetric matrices over other fields, but
here we specialize to the complex Hermitian case.

OBSERVATION 1.3. [4, Observation 2.2] An epr-sequence of a complex Hermitian matrix B must end in N or A.
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THEOREM 1.4. [4, Theorem 2.3] (NN Theorem) Suppose B ∈Hn, epr(B) = `1 · · ·`n, and `k = `k+1 = N for some
k. Then `i = N for all i≥ k.

THEOREM 1.5. [4, Theorem 2.4] (Inverse Theorem) If B ∈ Hn and epr(B) = `1`2 · · ·`n−1A, then epr(B−1) =

`n−1`n−2 · · ·`1A.

PROPOSITION 1.6. [4, Proposition 2.5] The epr-sequence SN · · ·A · · · is unattainable by Hermitian matrices.

COROLLARY 1.7. [4, Corollary 2.7] (NSA Theorem) No Hermitian matrix can have NSA in its epr-sequence.
Further, no Hermitian matrix can have the epr-sequence · · ·ASN · · ·A · · · .

THEOREM 1.8. [4, Theorem 2.6] (Inheritance Theorem) Suppose that B ∈Hn, m≤ n, and 1≤ j ≤ m.

1. If [epr(B)] j = N, then [epr(C)] j = N for all m×m principal submatrices C.
2. If [epr(B)] j = A, then [epr(C)] j = A for all m×m principal submatrices C.
3. If [epr(B)]m = S, then there exist m×m principal submatrices CA and CN of B such that [epr(CA)]m = A and

[epr(CN)]m = N.
4. If j < m and [epr(B)] j = S, then there exists an m×m principal submatrix CS such that [epr(CS)] j = S.

THEOREM 1.9. (Real Skew Theorem) [6, Theorem 3.3] An epr-sequence `1`2 · · ·`n is attainable by a real skew-
symmetric matrix if and only if the following conditions hold.

1. `k = N for k odd;
2. If `k = `k+1 = N, then ` j = N for all j ≥ k;
3. `n 6= S.

The next result is stated in [4] for symmetric matrices over a field of characteristic not two, but the proof remains
valid for Hermitian matrices.

THEOREM 1.10. [4, Proposition 2.13] (Schur Complement Theorem) Suppose B ∈Hn with rankB = m. Let B[α]
be a nonsingular principal submatrix of B with |α| = k ≤ m and let C = B/B[α] be the Schur complement of B[α] in
B. Then the following results hold.

1. C ∈Hn−k.
2. Assuming the indexing of C is inherited from B, any principal minor of C is given by

detC[γ] = detB[γ∪α]/detB[α].

3. rankC = m− k.
4. Any nonsingular principal submatrix of B of order at most m is contained in a nonsingular principal subma-

trix of order m.

We state next an immediate consequence of the Schur Complement Theorem that we use for subsequent results:

COROLLARY 1.11. Suppose B ∈ Hn, epr(B) = `1 · · ·`n, and let B[α] be a nonsingular principal submatrix of
B with |α| = k ≤ rankB. Let C = B/B[α] be the Schur complement of B[α] in B and let epr(C) = `′1 · · ·`′n−k. Then
`′j = ` j+k for ` j+k ∈ {A,N} and j = 1, . . . ,n− k.

It was established in [3, Proposition 8.1] and [4, Theorem 5.1] that, for real symmetric matrices, any attainable
epr-sequence starting with AN · · · is attainable by a real symmetric matrix with every entry equal to 1 or −1. In
Theorem 3.3, we demonstrate that the epr-sequence ANAAN is attainable by a Hermitian matrix; however, this sequence
is not attainable by a real symmetric matrix (see [4, Table 1]), revealing that the result of [4, Theorem 5.1] does not
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apply as stated to Hermitian matrices; there is, however, a natural extension, which we now present.

PROPOSITION 1.12. Over Hn, any attainable epr-sequence starting with AN · · · is attainable by a Hermitian
matrix with each entry having modulus 1 and all entries in the first row, first column and diagonal equal to 1.

Proof. Let B = [b jk] be a Hermitian matrix with epr(B) = `1`2 · · ·`n. Suppose `1`2 = AN. Observe that each entry

of B is nonzero. Without loss of generality, assume that b11 = 1. Let D = diag
(

1, 1
b12

, . . . , 1
b1n

)
. Then D∗BD is a

Hermitian matrix with the same epr-sequence as B and with all entries in the first row (and hence, first column) equal
to 1. Since each principal submatrix of D∗BD of order 2 including the (1,1)-entry is singular, each diagonal entry of
D∗BD is 1. Since each principal submatrix of D∗BD of order 2 is singular, and because each diagonal entry is 1, each
entry of D∗BD has modulus 1.

2. Forbidden (sub)sequences. In this section, we establish that epr-sequences of matrices in Hn cannot include
certain subsequences, or cannot include them in certain positions.

PROPOSITION 2.1. No Hermitian matrix has an epr-sequence that begins ANAN · · · or ANAS · · · .

Proof. Suppose to the contrary that there exists a Hermitian matrix B with epr-sequence starting with ANAN · · ·
or ANAS · · · . By the Inheritance Theorem, there exists a 4×4 principal submatrix C of B with epr-sequence ANAN; by
Proposition 1.12, we may assume that

C =


1 1 1 1
1 1 a b̄
1 ā 1 c
1 b c̄ 1

 ,
where a, b and c have modulus 1. Subtracting the first row of C from rows 2, 3 and 4, we see that

detC = det

 0 a−1 b̄−1
ā−1 0 c−1
b−1 c̄−1 0


= (a−1)(b−1)(c−1)+(ā−1)(b̄−1)(c̄−1)

= (a−1)(b−1)(c−1)+
1
a
(1−a)

1
b
(1−b)

1
c
(1− c)

= (a−1)(b−1)(c−1)
(

1− 1
abc

)
,

with the third equality coming from the fact that each of a, b and c has modulus 1. Since C is singular, we conclude
that either a = 1, b = 1, c = 1 or abc = 1. This contradicts the fact that 0 6= detC({4}) = a+ ā−2, 0 6= detC({3}) =
b+ b̄−2, 0 6= detC({2}) = c+ c̄−2, and 0 6= detC({1}) = abc+ āb̄c̄−2.

COROLLARY 2.2. If the sequence `k`k+1NAN occurs as a subsequence of the epr-sequence of a Hermitian matrix,
then `k = N and `k+1 6= N. In particular, the subsequences A`k+1NAN and S`k+1NAN are forbidden for `k+1 ∈ {A,S,N}.

Proof. Suppose B ∈ Hn has an epr-sequence containing `k`k+1NAN. By the NN Theorem, `k+1 6= N. To obtain
a contradiction, suppose `k ∈ {A,S}. Let B[α] be a k× k nonsingular principal submatrix of B. By Corollary 1.11,
B/B[α] has epr-sequence `′1NAN · · · , where `′1 ∈ {A,S,N}. By the NN Theorem, `′1 6= N. By Proposition 2.1, `′1 6= A. By
Proposition 1.6, SN · · ·A · · · is prohibited, so `′1 6= S, and we have a contradiction.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 58-75, February 2017.

S. Butler et al. 62

According to [4, Corollary 2.10], the sequence SANA is prohibited in the epr-sequence of a symmetric matrix over
a field of characteristic not 2. For Hermitian matrices, however, we demonstrate in Section 6 that ASANA is attainable,
revealing that SANA is not prohibited in an attainable sequence. However, there is a necessary condition given in the
next result.

PROPOSITION 2.3. In the epr-sequence of a Hermitian matrix, the sequence SANA can occur only as the terminal
subsequence.

Proof. Let B ∈ Hn and epr(B) = `1`2 · · ·`n. Suppose `k · · ·`k+3 = SANA. For the sake of contradiction, suppose
n > k + 3. By Corollary 2.2, SANAN is prohibited, implying that `k+4 6= N. Now, suppose that `k+4 = A. By the
Inheritance Theorem and the Inverse Theorem, B has a (k+ 4)× (k+ 4) principal submatrix whose inverse has epr-
sequence ANAS · · ·A, a contradiction to Proposition 2.1. Hence, SANAA cannot occur in the epr-sequence of a Hermitian
matrix.

Finally, suppose `k+4 = S. By the Inheritance Theorem, B has a (k+ 4)× (k+ 4) principal submatrix with epr-
sequence · · ·SANA`′k+4, where `′k+4 is A or N, contradicting the assertions above.

The next result also restricts the location of a subsequence in attainable epr-sequences.

PROPOSITION 2.4. No Hermitian matrix can have an epr-sequence starting with NSSNA · · · .

Proof. Suppose B ∈Hn has epr-sequence NSSNA · · · . By the Inheritance Theorem, B has an appropriate principal
submatrix C with epr(C)= NS`′3NA, where `′3 ∈{A,S,N}. By the NN and NSA Theorems, `′3 = S, so that epr(C)= NSSNA.
By the Inverse Theorem, epr(C−1) = NSSNA. Since C has a zero minor of order 2, we assume, without loss of
generality, that C[{1,2}] is singular; as each diagonal entry of C is zero, C[{1,2}] = O2×2. From this and the fact that
CC−1 = I5,

O2×3 = (CC−1)[{1,2},{3,4,5}] =C[{1,2},{3,4,5}]C−1[{3,4,5}].

As C is nonsingular, C[{1,2},{3,4,5}] has full rank, i.e., it has rank 2; thus, the null space of C[{1,2}, {3,4,5}] has di-
mension 1. Since the column space of C−1[{3,4,5}] is contained in the null space of C[{1,2},{3,4,5}], C−1[{3,4,5}]
has at most one linearly independent column; then, as every diagonal entry of C−1[{3,4,5}] is zero, the fact that
C−1[{3,4,5}] is Hermitian implies that C−1[{3,4,5}] = O3×3. It follows that C−1 is singular, a contradiction.

3. Gaps between two Ns. Consider the following problem raised in [3, Question 6.6]: Fix some s ≥ 1. Is it the
case that for any n× n real symmetric matrix B with pr(B) = r0]r1 · · ·rn, if rk = rk+s = 0, then ri = 0 for all i with
k+ s ≤ i ≤ n? As noted in [3], the 00 theorem (the pr-sequence form of the NN Theorem) implies the answer to the
question is yes when s = 1. It was also shown there that the answer is yes for s = 3 but is no for s even and s = 5 in
[3, Theorem 6.5, Lemmas 3.3, 3.6, and Example 6.7]. The positive answer for s = 3 is used in [10] to determine all
attainable pr-sequences that have a 0 in each subsequence of length 3 and all attainable epr-sequences that have an N

in each subsequence of length 3. We translate the question to the language of epr-sequences.

QUESTION 3.1. Let s ≥ 1 be a fixed integer and let B be a Hermitian matrix. Does epr(B) = `1`2 · · ·`n with
`k = `k+s = N imply that `q = N for all q≥ k+ s?

Because of the NN Theorem, we know the answer is affirmative when s = 1. Section 3.1 answers this question
negatively for s ≥ 2, showing that Hermitian matrices behave differently from real symmetric matrices. Section 3.2
discusses in more detail the form of sequences containing a NAN subsequence (which has `k = `k+2 = N).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 58-75, February 2017.

63 The Enhanced Principal Rank Characteristic Sequence for Hermitian Matrices

3.1. Answer to Question 3.1. Before answering Question 3.1 negatively for all s≥ 2 in Theorem 3.3 below, we
need the following lemma.

LEMMA 3.2. For t 6= 0, let Tn be the n×n matrix with 0s on the main diagonal, t in every entry above the main
diagonal, and (1/t) in every entry below the main diagonal. Then, for n≥ 1,

detTn =
(−1)n+1

tn−2

n−2

∑
j=0

t2 j.

Thus, detTn = 0 if and only if ∑
n−2
j=0 t2 j = 0.

Proof. We proceed by induction. For the case n = 1, we have detT1 = 0, while the right-hand side is an empty
sum (which by convention is 0). For the case n = 2, we have

det
[

0 t
1/t 0

]
=−1 =

(−1)3

t0

0

∑
j=0

t2 j.

Now assume the result holds up through some value of k, and consider what happens for the case k+1. We have that

det(Tk+1) = det



0 t t · · · t t
1/t 0 t · · · t t
1/t 1/t 0 · · · t t

...
...

...
. . .

...
...

1/t 1/t 1/t · · · 0 t
1/t 1/t 1/t · · · 1/t 0



= det



0 t t · · · t t
1/t −t 0 · · · 0 0
0 1/t −t · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −t 0
0 0 0 · · · 1/t −t


= (−1)k+2t (1/t)k− t det(Tk).

The second equality is obtained by starting with the last row and subtracting the previous row, and then repeating this
process going up a row at a time. The third equality is obtained by expanding the determinant along the last column.

We can now conclude

(−1)k+2tk−1 detTk+1 = (−1)k+2tk−1((−1)k+2/tk−1− t detTk
)

= 1+(−1)k+1tk detTk

= 1+ t2
k−2

∑
j=0

t2 j =
k−1

∑
j=0

t2 j.

This establishes the formula for the determinant of Tk+1.

THEOREM 3.3. Let s≥ 2 and 1≤ k ≤ s−1. Then the epr-sequence of order n having ` j = N for j ≡ k (mod s)
and As in all other positions is attainable by a Hermitian matrix.

Proof. It will suffice to establish this for k = 1. To see this, suppose 2 ≤ k ≤ s− 1, choose n′ with n′ > n and
n′ ≡ k+ 1 (mod s), and consider the matrix B realizing the epr-sequence of order n′ where there are Ns in positions
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congruent to 1 (mod s) and As in all other positions. By assumption, the last letter will be A (since n′ 6≡ 1 (mod s)).
Thus, the matrix B is invertible, and the epr-sequence of B−1 will have Ns in positions congruent to k (mod s) and
As in all other locations by the Inverse Theorem. Finally, any principal submatrix of B−1 of order n gives the desired
realization by the Inheritance Theorem.

For the case k = 1, we claim that the matrix Tn with t = eπi/s from Lemma 3.2 is a realization. In particular,
since a principal submatrix of order m for such a matrix is Tm, with t = eπi/s, it will suffice to show that Tm has zero
determinant if and only if m≡ 1 (mod s). By Lemma 3.2, we have

detTm = 0 ⇔
m−2

∑
j=0

(
e2πi/s) j

= 0.

The sum of all s of the s-th roots of unity is 0 and the sum of any q consecutive sth roots of unity is nonzero for
q < s, so the sum is nonzero if and only if the number of terms in the sum (i.e., m−1) is not a multiple of s. That is,
detTm 6= 0 if and only if m 6≡ 1 (mod s).

This naturally raises the question of what happens when we want the Ns to occur in the positions congruent to s
(mod s) and all other values equal to A. This leads to the following question, which has an affirmative answer when
s = 2 (see Proposition 2.1).

QUESTION 3.4. For s ≥ 2, is the sequence of order 2s with Ns in positions s and 2s, and with As in all other
positions, unattainable by a Hermitian matrix?

3.2. NAN and real skew-like sequences. The next remark relates the epr-sequences of Hermitian matrices and
skew-Hermitian matrices.

REMARK 3.5. If K is a skew-Hermitian matrix, then iK is Hermitian, and if H is a Hermitian matrix then iH is
skew-Hermitian. Thus, attain(Hn) = attain(Kn), so by Theorem 1.9 every epr-sequence `1 · · ·`n that has `k = N for
every odd k, obeys the NN Theorem, and has `n 6= S is attained by a Hermitian matrix.

Motivated by Theorem 1.9, we make the following definition.

DEFINITION 3.6. The sequence `1`2 · · ·`n is real skew-like if `1`2 · · ·`n ∈ attain(Hn) and ` j = N for every odd j
with 1≤ j ≤ n. For an odd integer p, a subsequence `p · · ·`q of an attainable epr-sequence `1`2 · · ·`n is real skew-like
if ` j = N for every odd j with p≤ j ≤ q.

Observe that an epr-sequence is real skew-like if and only if it is attainable by a real skew-symmetric matrix; this
follows from Theorem 1.9 and the fact that the set of epr-sequences attainable by real skew-symmetric matrices is
contained in attain(Hn).

PROPOSITION 3.7. Over Hn, an epr-sequence starting with NAN · · · is attainable if and only if it is attained by a
real skew-symmetric matrix, if and only if it is real skew-like. In particular, if B ∈Hn and epr(B) = NAN`3 · · ·`n, then

there is a diagonal matrix D with |d j j|=
∣∣∣ 1

b1 j

∣∣∣ for j = 2, . . . ,n, such that D∗BD = iK and K is a real skew-symmetric
matrix.

Proof. We establish the second statement, which implies the first, since conjugation by a nonsingular diagonal
matrix does not change the epr-sequence. Let B ∈ Hn and epr(B) = NAN`3 · · ·`n. Since B has zero diagonal, the
condition `2 = A implies that every off-diagonal entry of B is nonzero. Let D1 = diag

(
1, 1

b12
, . . . , 1

b1n

)
, B′ = D∗1BD1

and B′ = [b′k j]. Now, observe that
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B′ =
[

0 1T

1 B′({1})

]
.

Since epr(B′) = epr(B), and because `3 = N,

0 = detB′[{1,k, j}] = det

0 1 1
1 0 x
1 x 0

= x+ x = 2Re(x),

for some x. Thus, B′({1})= iK′, where K′ is an (n−1)×(n−1) real skew-symmetric matrix. Let D2 = diag(1, i, . . . , i),
B′′ = D∗2B′D2 and B′′ = [b′′k j]. For k, j > 1, observe that b′′k j = b′k j, b′′1 j = i and b′′j1 = −i. Thus, iK′′ = B′′ = D∗BD,
where K′′ is real and skew-symmetric and D = D1D2.

A result reminiscent of the NN Theorem is now established:

COROLLARY 3.8. Let B ∈ Hn and epr(B) = `1`2 · · ·`n. Suppose `k`k+1`k+2 = NAN. Then `k+2 j = N for j with
k ≤ k+2 j ≤ n.

Proof. Since the case with k = 1 is covered by Proposition 3.7, assume k ≥ 2. Suppose to the contrary that
`k+2 j 6= N for some j ≥ 2. By the Inheritance Theorem, B has a (k + 2 j)× (k + 2 j) principal submatrix B′ with
epr(B′) = `′1`

′
2 · · ·`′k+2 j having `′k`

′
k+1`

′
k+2 = NAN and `′k+2 j = A. By the NN Theorem, `′k−1 6= N, implying that B′

has a nonsingular (k− 1)× (k− 1) principal submatrix, say B′[α]. It follows from Corollary 1.11 that B′/B′[α] is a
(Hermitian) matrix of order (k+2 j)− (k−1) = 2 j+1, with epr(B′/B′[α]) = NAN · · ·A; since epr(B′/B′[α]) does not
contain N in the odd position 2 j+1, epr(B′/B′[α]) is not real skew-like, a contradiction to Proposition 3.7.

Corollary 3.8 raises the question of what can be said about the remainder of an epr-sequence after the occurrence
of NAN when the number of As in A is a fixed integer k ≥ 2. When k = 2, [10, Proposition 2.4] provides an answer if
the question is restricted to real symmetric matrices, namely that there must be Ns from that point forward; however,
this does not hold for Hermitian matrices, since NAANA is attainable by a Hermitian matrix (see Theorem 3.3).

Unlike for symmetric matrices over a field of characteristic not 2 (see [4, Theorem 2.14]), it is shown in Theorem
5.1 and Example 6.1 that the sequence NAS is not prohibited in the epr-sequence of a Hermitian matrix; however, NAS
is prohibited if it occurs in the subsequence ANAS.

PROPOSITION 3.9. The sequence ANAS cannot occur as a subsequence of the epr-sequence of a Hermitian
matrix.

Proof. Let B ∈ Hn and epr(B) = `1`2 · · ·`n. Suppose `k · · ·`k+3 = ANAS. By Proposition 2.1, k ≥ 2. Then, by
Proposition 2.3 and Corollary 3.8, `k−1 = A. By the Inheritance Theorem, B has a (k+3)×(k+3) principal submatrix
C with epr-sequence · · ·AANAN. By Corollary 1.11, the epr-sequence of the Schur complement in C of a (necessarily
nonsingular) (k−1)× (k−1) principal submatrix, has epr-sequence ANAN, contradicting Proposition 2.1.

Another result reminiscent of the NN Theorem is stated next.

PROPOSITION 3.10. Let B ∈ Hn and epr(B) = `1`2 · · ·`n. Suppose `k`k+1`k+2 = NAN, where k is even. Then
` j = N for all j ≥ k+2.

Proof. By the NN Theorem, it suffices to show that `k+3 = N. Suppose to the contrary that `k+3 6= N. By the
Inheritance Theorem and the Inverse Theorem, B has a nonsingular (k+3)×(k+3) principal submatrix whose inverse
has epr-sequence NAN · · ·A. This contradicts Proposition 3.7, since k+3 is odd.

The next result provides an affirmative answer to a special case of Conjecture 3.13 below.
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THEOREM 3.11. Over Hn, every attainable epr-sequence containing NANA is real skew-like.

Proof. Let B ∈ Hn with epr(B) = `1`2 · · ·`n. Suppose `k`k+1`k+2`k+3 = NANA. By Proposition 3.10, k is odd.
By Corollary 3.8, `k · · ·`n is real skew-like. To conclude, we show that `1 · · ·`k−1 is real skew-like. For the sake of
contradiction, suppose ` j 6= N for some odd j with 1 ≤ j ≤ k− 1. By the Inheritance Theorem, B has a nonsingular
(k+ 3)× (k+ 3) principal submatrix B′ whose epr-sequence `′1`

′
2 · · ·`′k+3 has `′k · · ·`′k+3 = NANA and `′j 6= N. By the

Inverse Theorem, epr((B′)−1) = NAN · · · does not have N in position (k+3)− j, contradicting Proposition 3.7, because
(k+3)− j is odd.

Now we consider another special case of Conjecture 3.13, which may be helpful towards settling this conjecture.

COROLLARY 3.12. Let B ∈Hn and epr(B) = `1`2 · · ·`n. Suppose
`k`k+1`k+2`k+3 = NANS, where n > k+3. Then the following hold.

1. k is odd.
2. `k · · ·`n is real skew-like.
3. ` j 6= A for odd j.

Proof. (1): By Proposition 3.10, k is odd.

(2): The assertion that `k · · ·`n is real skew-like follows from Corollary 3.8.

(3): The conclusion is already established in (2) for odd j ≥ k. Now, suppose to the contrary that ` j = A for some
odd j≤ k−2. By the Inheritance Theorem, B has a (k+3)×(k+3) principal submatrix B′ with epr(B′)= · · ·A · · ·NANA
having A in the odd position j, implying that epr(B′) is not real skew-like, a contradiction to Theorem 3.11.

CONJECTURE 3.13. Over Hn, every attainable epr-sequence containing NAN is real skew-like.

If Conjecture 3.13 is true, then every attainable epr-sequence that contains the subsequence NAN is attained by a
real skew-symmetric matrix. We have established that Conjecture 3.13 is true in certain cases: when NAN occurs at the
start of the sequence (Proposition 3.7), or NAN is immediately followed by A (Theorem 3.11).

4. Hermitian adjacency matrices of mixed graphs. Introduced by Liu and Li in [9], and independently by
Guo and Mohar in [7], the Hermitian adjacency matrix associates a Hermitian matrix with a (simple) mixed graph
or (simple) digraph. The term simple means that loops and duplicate edges (directed or undirected) are not allowed;
since all our graphs and digraphs are simple we omit the term ‘simple’ and define graphs and digraphs to prohibit
loops and multiple edges. Technically, a mixed graph may have both undirected edges and directed edges but may not
have more than one edge of any kind between a given pair of vertices, whereas in a digraph all edges are directed and
it is permitted to have both directed edges (u,v) and (v,u) but more than one copy of any directed edge is prohibited.
There is a one-to-one correspondence between mixed graphs and digraphs, by associating an undirected edge {u,v}
with the pair of directed edges (u,v) and (v,u). We use the the term mixed graph, since that was the original term in
[9] and more naturally generalizes the adjacency matrix of an (undirected) graph. We will use uv to denote an edge
between u and v, either directed or undirected (i.e., any one of (u,v), (v,u), or {u,v}). The underlying graph GΓ of a
mixed graph Γ is the graph obtained from Γ by replacing every directed edge (u,v) by the undirected edge {u,v}.

Let Γ be a mixed graph on n vertices. The Hermitian adjacency matrix H (Γ) = [hk j] is the n× n matrix with
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entries over the complex field given by

hk j =


1 if Γ has an undirected edge from k to j;
i if Γ has an directed edge from k to j;
−i if Γ has an directed edge from j to k;

0 otherwise.

This generalizes the usual real symmetric adjacency matrix for an undirected graph.

EXAMPLE 4.1. The 6×6 Hermitian adjacency matrix corresponding to the mixed graph shown in Figure 4.1 is

MNSNASA =



0 0 i −i 1 0
0 0 0 1 1 −i
−i 0 0 0 1 1
i 1 0 0 0 1
1 1 1 0 0 0
0 i 1 1 0 0


,

which has epr-sequence NSNASA.

1

3 5

4

6 2

FIGURE 4.1. The mixed graph for Example 4.1.

We now consider the epr-sequences attainable by Hermitian adjacency matrices, which must start with N. There
are additional restrictions on any Hermitian adjacency matrix with epr-sequence starting with NA.

PROPOSITION 4.2. Suppose Γ is a mixed graph of order n, let H (Γ) = H = [hk j], and epr(H) = `1 · · ·`n. Then:

1. `1 = N.
2. For n≥ 2, `2 = A if and only if GΓ is a complete graph.
3. For n≥ 4, `2 = A implies `4 = A.

Proof. The first two statements are clear. For the third, let H ′ = [h′k j] be an arbitrary 4×4 principal submatrix of
H. By the Inheritance Theorem, epr(H ′) starts with NA, which implies that every off-diagonal entry of H ′ is nonzero.
With D = diag

(
1, 1

h′12
, 1

h′13
, 1

h′14

)
,

D∗H ′D =


0 1 1 1
1 0 a b
1 a 0 c
1 b c 0

 ,
for some a,b,c ∈ {±1,±i}. It follows that

det(D∗H ′D) = |a|2 + |b|2 + |c|2−2Re(ab+ac+bc) = 3−2Re(ab+ac+bc) 6= 0.
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Thus, D∗H ′D, and therefore H ′, is nonsingular.

Theorem 4.3 below characterizes Hermitian adjacency matrices that begin with NAN, strengthening Proposition
3.7 for such matrices. A tournament is an oriented complete graph, i.e., every edge is directed. Thus, the Hermitian
adjacency matrix of a tournament has a 0 diagonal and±i off-diagonal entries signed such that the matrix is Hermitian.

THEOREM 4.3. Suppose H is the Hermitian adjacency matrix of a mixed graph Γ of order n. The following are
equivalent.

1. epr(H) = NAN · · · .
2. GΓ is complete and each triangle in Γ contains an odd number of directed edges.
3. GΓ is complete and either

(a) Γ is a tournament, or
(b) every vertex is incident with an undirected edge and the subgraph of undirected edges is a complete

bipartite graph.

If these conditions hold, then epr(H) = NANAN if n is odd, and epr(H) = NANANA if n is even.

Proof. For u,s, t ∈ V (Γ), H[{u,s, t}] =

0 a c
a 0 b
c b 0

 with a,b,c ∈ {1,±i}, and detH[{u,s, t}] = abc + abc =

2Re(abc) = 0 if and only if abc is purely imaginary.

(1) ⇒ (2): Since every 2× 2 principal submatrix is nonsingular, every off-diagonal entry is nonzero, and GΓ is
complete. Since every 3× 3 principal submatrix is singular, abc is purely imaginary. Since a,b,c ∈ {1,±i}, exactly
one or three of a,b,c are purely imaginary, i.e., one or three of the pairs of vertices taken from u,s, t are directed.

(2)⇒ (3): If Γ has no undirected edges, then Γ is a tournament, because the underlying graph of Γ is complete.
So suppose Γ has an undirected edge and v is a vertex incident with an undirected edge. Partition the vertices of Γ as
follows: V1 is v together with the set of vertices x adjacent to v by a directed edge (either (v,x) or (x,v)) and V2 is the
set of vertices adjacent to v by an undirected edge. Since the underlying graph is complete, every vertex is in one of
these sets and the sets are clearly disjoint. Let G be the subgraph of Γ having V (G) = V (Γ) and E(G) is the set of
undirected edges in Γ. We show G is a complete bipartite graph with partite sets V1 and V2. Suppose that x,y ∈V1 and
w,z ∈V2. By definition of V1, vx and vy are directed edges. Since Γ[{v,x,y}] does not have exactly two directed edges,
xy is directed. By definition of V2, vw and vz are undirected. Since Γ[{v,w,z}] must have at least one directed edge,
zw is directed. Thus, all edges of G (undirected edges of Γ) are between V1 and V2, so G is bipartite. By definition
of V1 and V2, vx is directed and vw is undirected. Since Γ[{v,x,w}] does not have exactly two directed edges, xw is
undirected. Thus, G is the complete bipartite graph with partite sets V1 and V2.

(3) ⇒ (1): If Γ is a tournament, then Γ has no undirected edges and the values a,b, and c in H[{u,s, t}] are all
purely imaginary, so abc is purely imaginary and H[{u,s, t}] is singular. So assume every vertex is incident with an
undirected edge and the subgraph of undirected edges is complete bipartite. If u,s and t are all in the same partite set,
then they form a triangle with 3 directed edges, and as before H[{u,s, t}] is singular. If two are in one partite set and
one in the other, then without loss of generality a = 1,b = 1 and c =±i, so abc =±i and H[{u,s, t}] is singular. This
completes the proof of the equivalence of the three conditions.

Now assume n≥ 4 and epr(H) = NAN`4 · · ·`n. By Proposition 3.7, D∗HD = iK where K is a real skew-symmetric
matrix and D is diagonal with |d j j|=

∣∣∣ 1
h1 j

∣∣∣. Since every off-diagonal entry of H has modulus 1, every off-diagonal entry
of K has modulus 1, i.e., is equal to 1 or −1. Every principal submatrix of K is also such a skew-symmetric matrix.
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The determinant of such a skew-symmetric matrix is zero for all odd orders, and is nonzero for all even orders [11,
Proposition 1]. Thus, epr(D∗HD) = NANAN if n is odd, epr(D∗HD) = NANANA if n is even, and epr(H) = epr(D∗HD).

Note that the epr-sequence NAN is not attainable by any real symmetric matrix [4, Theorem 2.14], but, by Theorem
4.3, it is attainable by the Hermitian adjacency matrix of a tournament of order 3. The next result gives another
restriction for epr-sequences of real symmetric adjacency matrices.

PROPOSITION 4.4. Let n ≥ 5 and B be a real symmetric adjacency matrix with epr(B) = N`2`3A`5 · · ·`n. Then
`5 = A.

Proof. Suppose to the contrary that `5 6= A. By the Inheritance Theorem, B has a 5× 5 principal submatrix
B′ = [b′k j] having epr(B′) = N`′2`

′
3AN. By the NN Theorem, `′2 6= N. We claim that `′2 = S: Otherwise, `′2 = A, and

therefore each off-diagonal entry of B′ must be nonzero. This would imply that B′ = J5− I5, which is impossible since
J5− I5 is nonsingular. Thus, `′2 = S.

Therefore B′ must have a singular 2× 2 principal submatrix, which must be O2×2. We may assume, without
loss of generality, that B′[{1,2}] = O2×2. Since every 4× 4 principal submatrix of B′ is nonsingular, each row (and
column) of B′ must contain at least two nonzero entries (otherwise B′ would have a 4×4 principal submatrix with a row
consisting of only zeros); without loss of generality, we may assume that b′13 = b′14 = 1. Similarly, the second row (and
column) must contain at least two nonzero entries, implying that at least one of b′23 and b′24 must be nonzero; we may
assume that b′23 = 1. Since B′[{1,2}] = O2×2, and because every 4×4 principal submatrix of B′ is nonsingular, every
2×2 submatrix of B′[{1,2},{3,4,5}] must be nonsingular, implying that b′24 = 0, and consequently that b′25 = 1 and
b′15 = 0. It follows that 0 = det(B′) = 2(b′45−b′34−b′35); thus, b′45−b′34−b′35 = 0. Now we have b′34

2 = (b′45−b′35)
2 =

detB′[{1,3,4,5}] 6= 0 and b′35
2 = (b′45−b′34)

2 = detB′[{2,3,4,5}] 6= 0, implying that b′34 = b′35 = 1, and therefore that
b′45 = 2, a contradiction, since B′ is a real symmetric adjacency matrix.

Using Propositions 4.2 and 4.4, we can deduce that an epr-sequence of order n = 2,3,4, or 5 is attainable by a real
symmetric adjacency matrix if and only if the realization provided in [4, Tables 2–5] is a real symmetric adjacency
matrix (that is, the listed matrix is given as an adjacency matrix, a matrix of the form (Js− Is)⊕0n−s, or a zero matrix).

REMARK 4.5. It follows from Proposition 4.4 that the epr-sequences NAAAN and NSSAN cannot be realized by a
real symmetric adjacency matrix; however, they are attainable by real symmetric matrices (see [4, Example 5.6]) and,
as the next example shows, by Hermitian adjacency matrices.

EXAMPLE 4.6. The Hermitian adjacency matrices MNAAAN and MNSSAN below have epr-sequences NAAAN and
NSSAN, respectively:

MNAAAN =


0 1 1 i i
1 0 1 i −i
1 1 0 −i −i
−i −i i 0 1
−i i i 1 0

 and MNSSAN =


0 0 i 0 −i
0 0 0 1 1
−i 0 0 0 1
0 1 0 0 1
i 1 1 1 0

 .

5. Probabilistic techniques for constructing attainable sequences. In this section, we use probabilistic meth-
ods to establish that any epr-sequence that begins with an N, followed by zero or more As, Ss, and Ns in that order, can
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be realized by a Hermitian matrix.

THEOREM 5.1. Every epr-sequence of the form NASN that does not end in S is attained by a Hermitian matrix.

Proof. First we introduce notation for some parameters that specify which epr-sequence of the form NASN is
desired. If there is at least one A, let a denote the position of the last A; otherwise set a = 1. If there is at least one S,
let s denote the position of the last S; otherwise set s = a. As usual, let n denote the order of the matrix. In general,
1 ≤ a ≤ s ≤ n. The zero matrix of order n satisfies the case s = 1, so henceforth we assume s ≥ 2. The fact that the
sequence does not end in S is equivalent to requiring that s > a implies n > s.

Let D be the s× s diagonal matrix whose first s− 1 diagonal entries are 1, followed by a single −1. We give a
construction of an s× n matrix T in such a way that, with probability 1, the n× n matrix B = T ∗DT has the desired
epr-sequence (in particular, some matrix T works). We divide T into two blocks: Its first s−1 rows will be called U ,
and its last row will have every entry equal to 1. The block U is further divided into blocks consisting of an identity
matrix of width s−1, a vector z (obviously of width 1), and a matrix R of width n− s, as follows:

T =

[
U
1T

n

]
and U =

[
Is−1 z R

]
.

The columns of R are chosen randomly and independently from the set of unit vectors in Cs−1. (To be concrete, their
real and imaginary parts are chosen from the standard measure on the unit sphere of dimension 2s− 3 embedded in
R2s−2.) In the extreme case of s = 2, for example, the columns of R are scalars chosen from the unit circle in the
complex plane, which generically means that no two of them are equal and none is equal to 1.

The vector z is constructed in a way that depends on the values of a and s, according to these three cases:

1. For s = a, z is a random unit vector in Cs−1, chosen in the same way as the columns of R.
2. For 1 = a < s, z is a repetition of the first column of Is−1.
3. For 1 < a < s, z = [z j] is given by

z1 =
1
a
+ i

√
a−1

2a
,

z2 =
1
a
− i

√
a−1

2a
,

z3 = · · · = za =
1
a
,

za+1 = · · · = zs−1 = 0.

In all cases, z is a unit vector in Cs−1. Whenever a < s, that is, whenever the desired epr-sequence contains at least
one S, z is designed in such a way that the sum of its entries is 1 and it has nonzero entries in exactly the first a rows.

Let epr(B) = `1 · · ·`n. To complete the proof, we show the four necessary conclusions:

(A) `k = N for k = 1,
(B) `k = A for 1 < k ≤ a,
(C) `k = S for a < k ≤ s, and
(D) `k = N for s < k ≤ n,

which must hold with probability 1 in all cases. Given α ⊆ [n], we let Tα and Uα denote respectively the matrices
T [[s],α] and U [[s−1],α] that select the subset α of columns. Since B[α] = T ∗α DTα , the rank of B[α] is at most the rank
of D, namely s, which establishes Conclusion (D).
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We define the matrix H =U∗U . Since every column of U is a unit vector, H is a complex correlation matrix. We
observe that for every α⊆ [n], letting k = |α|,

B[α] = T ∗α DTα =U∗αUα−1k1
T
k = H[α]− Jk. (5.1)

For k = 1, so α = { j}, this becomes

B[{ j}] =U∗{ j}U{ j}−1 = H[{ j}]− J1 = 0,

which establishes Conclusion (A).

When s > a, define the subset β = [a]∪{s} of cardinality a+ 1. Since only the first a entries of z are nonzero,
and these sum to 1, the last row of Tβ is the sum of its first a rows, and all of its other rows are zero. It follows
that the columns of Tβ form a linearly dependent set. Thus, for any α containing β as a subset, and in particular for
α = [k−1]∪{s} in the range a < k ≤ s, the columns of Tα are also linearly dependent and B[α] = T ∗α DTα is singular.
This shows the existence of a singular k× k principal submatrix a < k ≤ s, which gives part of Conclusion (C) (it
remains to show the existence of a nonsingular k× k principal submatrix).

Let α ⊆ [n] with |α| = k. We have shown that B[α] is singular when k = 1, when k > s, or when s > a (so β is
defined) and β⊆ α. In fact we will show that these are, with probability 1, the only conditions giving rise to singular
B[α], which will allow us to establish Conclusion (B) and the remainder of Conclusion (C), thereby completing the
proof. To that end we will establish the following three claims under the assumptions that 1 < k ≤ s and either a = s,
or a < s and β 6⊆ α:

(i) If k ≤ s−1, then the columns of Uα are linearly independent with probability 1.
(ii) If k = s, then the columns of Tα are linearly independent with probability 1.

(iii) B[α] is nonsingular.

Before establishing the claims, we show that they are sufficient to complete the proof. When 1 < k ≤ a, either
a = s (and β is not defined) or β 6⊆ α because |β| = a+ 1. Thus, B[α] is nonsingular, and Conclusion (B) is true.
When a = s, Conclusion (C) is vacuous. When a < s, we have n > s and in particular that the index s+1 exists. The
nonsingularity of B[α] for the sets α = [k−1]∪{s+1} in the range a < k ≤ s completes the proof of Conclusion (C),
thus completing the proof (once the claims have been established).

We now establish the claims, and thus, assume 1 < k≤ s and either a = s, or a < s and β 6⊆ α. Claim (i) is verified
by induction on k, where 1 < k ≤ s−1. For k = 1 the fact that the columns of U are nonzero suffices. Suppose then
that α = {α1, . . . ,αk} with α j ≤ α j+1 for j = 1, . . . ,k− 1, and that the columns of U indexed by {α1, . . . ,αk−1} are
linearly independent. If αk < s, then Uα is a linearly independent subset of the columns of Is−1. If αk = s and s > a,
then the kth column of Uα is z and β 6⊆ α means that one of the nonzero entries (i.e., the first a entries) of z is the
only nonzero entry in its row of Uα. Therefore the kth column of Uα is not in the span of the first k−1 columns. The
remaining possibilities are αk = s = a or αk > s; in either case, the kth column of Uα is a randomly chosen unit vector.
The first k−1 columns of Uα span a subspace of dimension k−1 < s−1 in which a randomly chosen unit vector will
not lie, giving with probability 1 a linearly independent set of columns for Uα.

For Claim (ii), k = s and either a = s or a < s and β 6⊆ α imply that the last column t of Tα must be of the form

t =
[

u
1

]
, with u one of the columns of U that were chosen at random. The independence of the first s−1 columns of

Uα (established in Claim (i)) implies the independence of the first s−1 columns of Tα. Let Vs−1 be the complex span
of the first s−1 columns of Tα, and let Vs be the complex span of the first s columns of Tα. Let Ws−1 and Ws be the real
vector spaces consisting of the interleaved real and imaginary parts of entries of vectors in Vs−1 and Vs, respectively,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 58-75, February 2017.

S. Butler et al. 72

whose dimensions as real vector spaces are twice the dimensions of their complex counterparts. In particular, Ws−1 has
dimension exactly 2s−2, and Claim (ii) is equivalent to the statement that Ws includes Ws−1 properly with probability
1. Suppose then that Ws = Ws−1 has dimension 2s− 2. Since t has a last entry whose real and imaginary parts are
(1,0) and the complex span of t belongs to Vs, for every pair of real numbers (x,y) there is a vector in Ws whose last
two entries are x and y. Consider then the set X of all vectors in Ws whose last two entries are 1 and 0. Since this
imposes independent constraints on x and y, X is an affine subspace of R2s and a real manifold of dimension 2s− 4.
The projection of X that ignores the last two entries of every vector is an affine subspace of R2s−2, still of dimension
2s−4, and the intersection S of this projection with the entire unit sphere in R2s−2 is either empty, a single point, or
a spherical manifold of dimension 2s−5. The set S is completely specified by the first s−1 columns of U under the
assumption that Ws = Ws−1, but S also contains the vector representing the real and imaginary parts of u, which was
chosen at random from the unit sphere of dimension 2s−3 in R2s−2. Since such a choice would have happened with
probability 0, Claim (ii) follows: With probability 1 the columns of Tα are linearly independent.

For Claim (iii), first assume 1 < k≤ s−1, so Claim (i) establishes with probability 1 that H[α] is positive definite.
We denote the eigenvalues of a k×k Hermitian matrix M by λ1(M)≥ ·· · ≥ λk(M). From the definition of H and (5.1),
B[α] = H[α]−Jk is a nonzero Hermitian matrix with zeros on the diagonal, implying that its least eigenvalue λk(B[α])
is negative. Since λk−1(−J) = 0, by one of Weyl’s Inequalities (see, for example, [1, Fact 9.2.3]), for j ≤ k−1,

0<λ j+1(H[α])=λ j+1(H[α])+λk−1(−Jk)≤λ( j+1)+(k−1)−k(H[α]− Jk)=λ j(H[α]− Jk).

Thus, B[α] is nonsingular. For k = s, Claim (ii) establishes that Tα is an invertible s× s matrix, and so B[α] = T ∗α DTα

is also nonsingular.

6. Epr-sequences attainable by Hermitian matrices but not by real symmetric matrices. This section is
devoted to classifying all the epr-sequences of order n ≤ 5 that are attainable by Hermitian matrices but not by
real symmetric matrices. For n ≤ 5, all sequences attainable over Rn are listed in [4, Tables 2–5]. Note that
attain(H1) = attain(R1) and attain(H2) = attain(R2). The only epr-sequences of order 3 that are not attainable over
Rn are NAN, NNA, NSA, and SNA. Since NNA, NSA, and SNA are prohibited by the NN Theorem, the NSA Theorem, and
Proposition 1.6, NAN is the only epr-sequence of order 3 that could be attained by a Hermitian matrix but not by a real
symmetric matrix. In fact, NAN is attained by the Hermitian adjacency matrix of a tournament (see Theorem 4.3).

We list all attainable sequences over Hn that are not attainable over Rn for n = 4 and 5 in Tables 6.1 and 6.2 below.
By the Inverse Theorem, the attainability of `1`2 · · ·`n−1A implies the attainability of `n−1`n−2 · · ·`1A, and vice versa;
thus, for the sake of brevity, we say that `n−1`n−2 · · ·`1A is the “inverse of `1`2 · · ·`n−1A.” Again, for brevity, when the
attainability of a sequence is established with a realization that is a tournament, we simply say “tournament,” instead
of providing a matrix. Hermitian adjacency matrices (that are not tournaments) are also identified in the table. If no
matrix realization is provided for a sequence, then a result is cited.

To complete the classification, we need some more matrix examples.

EXAMPLE 6.1. Matrices for Tables 6.1 and 6.2:

MAANSN =


1 0 1 1 1
0 1 −1 i i
1 −1 2 1− i 0
1 −i 1+ i 2 1− i
1 −i 0 1+ i 2

, MNASAA =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 i
1 1 1 −i 0

,

MNASAN =


0 1 1 1 1
1 0 i 1 1
1 −i 0 1 1
1 1 1 0 i
1 1 1 −i 0

, MNASSA=


0 1 1 1 1
1 0 i 1 1− i
1 −i 0 1− i −1
1 1 1+ i 0 2+ i
1 1+ i −1 2− i 0

,
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MNSNAN =


0 0 i 1 0
0 0 0 1 1
−i 0 0 0 1
1 1 0 0 0
0 1 1 0 0

, MSANSN =


−1 1− i i −1−2i 1+ i

1+ i 0 −1− i 1+ i 2−2i
−i −1+ i 1 i 1+ i

−1+2i 1− i −i −1 1+ i
1− i 2+2i 1− i 1− i 0

.

For n = 4, there are 54 epr-sequences that end in N or A. Of these sequences, 39 are attained by matrices in Hn.
This is seen in that 5 are listed in Table 6.1, while the remaining 34 are attainable over the reals [4, Table 4]. Of
the remaining 15 sequences, 7 are not attainable by the NN Theorem and 5 more are forbidden by the NSA Theorem.
The remaining 3 sequences are forbidden by Proposition 1.6 or Proposition 2.1. For each unattainable sequence, the
specific reason that it is forbidden is listed in [5], and similarly for order 5.

TABLE 6.1
All epr-sequences of order 4 attainable by Hermitian matrices but not by real symmetric matrices.

epr-sequence Hermitian matrix Result
NANA tournament Theorem 4.3
NANN Remark 3.5
NASA MNASAA({1}) (Hermitian adjacency matrix) Example 6.1
NASN Theorem 5.1
SANA inverse of NASA

For n = 5, there are 162 epr-sequences ending in A or N. Of these 162 sequences, we discard the 33 sequences
containing the prohibited subsequences NNA and NNS (NN Theorem). Of the 129 sequences remaining, 16 contain NSA,
and so they may be discarded (NSA Theorem). Among the 113 sequences remaining, 5 are of the form · · ·ASN · · ·A,
which is forbidden (NSA Theorem); that leaves 108 sequences. Discarding the 6 sequences having one of the prohibited
initial subsequences ANAN, ANAS and SANA (see Propositions 2.1 and 2.3) leaves 102 sequences.

The epr-sequences AANAN, SSNAN, NANAA and NSSNA are each unattainable (see Corollary 2.2 and Propositions
3.7 and 2.4), and thus are discarded. Among the remaining 98 sequences, 8 have the unattainable form SN · · ·A · · ·
(see Proposition 1.6). That leaves 90 sequences, which we claim are all attainable. Of these 90 sequences, 75 are the
sequences attainable by real symmetric matrices (see [4, Table 5]). The remaining 15 sequences, appearing in Table
6.2, are those attainable by Hermitian matrices but not by real symmetric matrices.

A natural question now arises: Are all the sequences starting with N in the tables above attainable by Hermitian
adjacency matrices? Observe that each sequence starting with N whose attainability was not established with a Her-
mitian adjacency matrix starts with NA and does not have A in the 4th position. For a Hermitian adjacency matrix,
this pattern is not allowed by Proposition 4.2, implying that any sequence starting with N listed in Table 6.1 or 6.2
is attainable by a Hermitian adjacency matrix if and only if the realization provided in these tables is a Hermitian
adjacency matrix.

We conclude by noting that, for n = 2,3,4,5, the set of epr-sequences attainable by an n×n Hermitian adjacency
matrix but not by a real symmetric adjacency matrix consists of NAAAN, NSSAN (see Remark 4.5), NAN, and each
sequence in Tables 6.1 and 6.2 whose corresponding realization is a Hermitian adjacency matrix.

7. Relationships for attainability of epr-sequences. Here we summarize the relationships regarding attainabil-
ity of epr-sequences over the various classes of matrices that we consider. In addition to the notation Rn,Cn and Hn

already defined, we denote the n× n real symmetric adjacency matrices by Gn, and the n× n Hermitian adjacency
matrices of mixed graphs by Dn.
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TABLE 6.2
All epr-sequences of order 5 attainable by Hermitian matrices but not by real symmetric matrices.

epr-sequence Hermitian matrix Result
AANSN MAANSN Example 6.1
ANAAN Theorem 3.3
ASANA inverse of NASAA
NAANA Theorem 3.3
NANAN tournament Theorem 4.3
NANNN Remark 3.5
NANSN Remark 3.5
NASAA MNASAA (Hermitian adjacency matrix) Example 6.1
NASAN MNASAN (Hermitian adjacency matrix) Example 6.1
NASNN Theorem 5.1
NASSA MNASSA Example 6.1
NASSN Theorem 5.1
NSNAN MNSNAN (Hermitian adjacency matrix) Example 6.1
SANSN MSANSN Example 6.1
SSANA inverse of NASSA

Clearly, attain(Rn)⊆ attain(Cn), attain(Rn)⊆ attain(Hn), attain(Gn)⊆ attain(Dn), attain(Gn)⊆ attain(Rn), and
attain(Dn) ⊆ attain(Hn). All five classes attain(Rn),attain(Cn), attain(Hn),attain(Gn), and attain(Dn) are distinct
(examples are cited below). The epr-sequence NAN shows attain(Hn) 6⊆ attain(Cn) [4, Proposition 2.8 and Example
2.9]. For attain(Cn) 6⊆ attain(Rn) see [3, Example 6.8] (when containment fails for pr-sequences it necessarily also
fails for epr-sequences). An obvious open question is the epr-version of a question raised in [2, p. 235].

QUESTION 7.1. Is attain(Cn)⊂ attain(Hn)?

For real symmetric adjacency matrices, Hermitian mixed graph adjacency matrices, real symmetric matrices, and
(complex) Hermitian matrices, the relationships among attainable epr-sequences are known, and in the next table we
summarize these relationships. If there is an example of an epr-sequence attainable in one class and not in another, an
example is given; otherwise, a dash denotes an impossible combination. There are many possible examples, but we
have selected small and/or meaningful ones (e.g., for a sequence not attainable by the adjacency matrix of a graph or
mixed graph, we have selected an example beginning with N).

TABLE 7.1
Attainability of epr-sequences by various classes of matrices.

∈ attain(Gn) ∈ attain(Dn) ∈ attain(Rn) ∈ attain(Hn)

6∈ attain(Gn) – NAN NAAN NAAN

6∈ attain(Dn) – – NAAN NAAN

6∈ attain(Rn) – NAN – NAN

6∈ attain(Hn) – – – –
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