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SELF-INTERLACING POLYNOMIALS II: MATRICES WITH
SELF-INTERLACING SPECTRUM*

MIKHAIL TYAGLOV'

Abstract. An n x n matrix is said to have a self-interlacing spectrum if its eigenvalues Ay, k = 1,...,n, are distributed as follows:
M>—Dd>A>--> (=), >0.

A method for constructing sign definite matrices with self-interlacing spectrum from totally nonnegative ones is presented. This method is applied
to bidiagonal and tridiagonal matrices. In particular, a result by O. Holtz on the spectrum of real symmetric anti-bidiagonal matrices with positive
nonzero entries is generalized.
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1. Introduction. In [7], there were introduced the so-called self-interlacing polynomials. A polynomial p(z) is
called self-interlacing if all its roots are real, simple and interlacing the roots of the polynomial p(—z). It is easy to

see that if A, k = 1,...,n, are the roots of a self-interlacing polynomial, then they are distributed as follows
M>DM>h>-->(=1D)"1A >0, (1.1)
or
A >A > A3 > > (—=1)"A, > 0. (1.2)

The polynomials whose roots are distributed as in (I.T)) (resp., in (T.2))) are called self-interlacing of kind 7 (resp.,
of kind II). Tt is clear that a polynomial p(z) is self-interlacing of kind 7 if and only if the polynomial p(—z) is
self-interlacing of kind /1. Thus, it is enough to study self-interlacing polynomials of kind I, since all the results for
self-interlacing polynomials of kind /7 will be obtained automatically.

DEFINITION 1.1. An n X n matrix is said to possess a self-interlacing spectrum if its eigenvalues Ag, k = 1,...,n,
are real, simple, and distributed as in (L.1).

In [7]], it was proved that a polynomial

n
p(z) = aoz" + a1z"_1 +azz"_2 + asz”_3 +--+a, = Z akz”_k (1.3)
k=0

is self-interlacing of kind [ if, and only if, the polynomial
n(n+1) 1 k(k+1) X

_a2Zn72+a3Zn*3_~_...+(_1)Tan = Z(—l) 2 ClkZ'H
k=0

1

p(z) = ao" —aiZ" (1.4)
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is Hurwitz stable, that is, has all its roots in the open left half-plane of the complex plane. Thus, there is a one-to-one
correspondence between the self-interlacing polynomials of kind 7 and the Hurwitz stable polynomials. Now since
the set of all polynomials with positive roots is isomorphic to a subset of the set of Hurwitz stable polynomials (to
the set of all polynomials with negative roots), we conclude that this set is isomorphic to a subset of the set of all
self-interlacing polynomials of kind /. Consequently, it is worth to relate some classes of positive definite and totally
nonnegative matrices to matrices with self-interlacing spectrum.

In this work, we consider some classes of real matrices with self-interlacing spectrum and develop a method of
constructing such kind of matrices from a given totally positive matrix. Namely, we show how and under what con-
ditions it is possible to relate a totally nonnegative matrix with a matrix with self-interlacing spectrum (Theorem [2.9).
We apply this theorem to totally nonnegative bidiagonal and tridiagonal matrices (generalizing a result by O. Holtz)
and explain how our technique can be extended for other classes of structured matrices. A part of this work was
appeared first in the technical report [6].

2. Matrices with self-interlacing spectrum. At first, we recall some definitions and statements from the
book [3} Chapter V].

DEFINITION 2.1 ([3]). A square matrix A = ||a;;|| is called sign definite of class n if for any k < n, all the
non-zero minors of order k have the same sign €. The sequence {€;,¢5,...,€,} is called the signature sequence of the
matrix A.

A sign definite matrix of class n is called strictly sign definite of class n if all its minors are different from zero.

REMARK 2.2. Let us recall that sign definite matrices of class n are also called n X n sign regular matrices and
that strictly sign definite matrices of class n are also called n x n strictly sign regular matrices (see [} [5]).

DEFINITION 2.3 ([3]]). A square sign definite matrix A = ||a;;|| of class n is called the matrix of class n™ if some
its power is a strictly sign definite matrix of class n.

Note that a sign definite (strictly sign definite) matrix of class n with the signature sequence €] =€, =---=¢, =1
is totally nonnegative (strictly totally positive). Also a sign definite matrix of class n™ with the signature sequence
of the form €| =&, = --- = ¢, = 1 is an oscillatory (oscillation) matrix (see [3]), that is, a totally nonnegative matrix
whose certain power is strictly totally positive. It is clear from the Binet-Cauchy formula [2]] that the square of a sign
definite matrix is totally nonnegative.

In 3} Chapter V], the following theorem was established.

THEOREM 2.4. Let the matrix A = ||a;;|| be totally nonnegative. Then the matrices B = ||a,—i11 ||} and C =
lain—j+1||] are sign definite of class n. Moreover, the signature sequence of the matrices B and C has the form:

Kk(k—1)

g=(-1)"7, k=12,...n 2.1)

Note that the matrices B and C can be represented as follows

B=JA and C=AJ,
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where
00 0 1
00 1 0
J=| @2
0 1 0 0
1 0 0 0

It is easy to see that the matrix J is sign definite of class n (but not of class n') with the signature sequence of the
form (2.1). So by the Binet-Cauchy formula we obtain the following statement.

THEOREM 2.5. The matrix A = ||a;;||} is totally nonnegative if and only if the matrix JA (or the matrix AJ) is sign
definite of class n with the signature sequence (2.1) where the matrix J is defined in (2.2).

Obviously, the converse statement is also true.

THEOREM 2.6. The matrix A = ||a;;||} is a sign definite matrix of class n with the signature sequence if and
only if the matrix JA (or the matrix AJ) is totally nonnegative.

In the sequel, we need the following two theorems established in the book [3 Chapter V].

THEOREM 2.7. Let the matrix A = ||a;;||1 be a sign definite of class n* with the signature sequence €, k =

1,2,...,n. Then all the eigenvalues A, k = 1,2, ...,n, of the matrix A are nonzero real and simple, and if
M| > (A2 > > [Aa] >0, (2.3)
then
. €
signhy = ——, k=1,2,....n, gg=1. 2.4)
€r—1

THEOREM 2.8. A totally nonnegative matrix A = ||a;;||1 is oscillatory if, and only if, A is nonsingular, and the
Jfollowing inequalities hold

ajj+1>0 and ajy >0, j=12,....n—1.

Now we are in a position to complement Theorem [2.4]

THEOREM 2.9. Let all the entries of a nonsingular matrix A = ||a;;||| be nonnegative, and suppose that for each

i,i=1,2,...,n—1, there exist numbers ry and ry, 1 < r1,ry < n, depending on i, such that
An—ir) " Ontl—ry,i > 0, Ant1—iry * Ant-l—ryi+1 > 0 (2.5)
(Or int1—r) " Aryn—i > 0, Ait1nt1—ry *Qryntl—i > O) (2.6)

The matrix A is totally nonnegative if, and only if, the matrix B = JA = ||an—i+1,j||| (o1, respectively, the matrix
C =AJ = ||ajn—j1||]) is sign definite of class n* with the signature sequence defined in . Moreover; the matrix B
(or;, respectively, the matrix C) possesses a self-interlacing spectrum.
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Proof. We prove the theorem in the case when the condition (2.5) holds. The case of the condition (2.6) can be
established analogously.

Let A be a nonsingular totally nonnegative matrix, and let the condition hold. From Theorem [2.5]it follows
that the matrix B = JA is sign definite of class n with the signature sequence (2.1). In order for the matrix to be sign
definite of class n it is necessary and sufficient that a certain power of this matrix B be strictly sign definite of class 7.
Since the entries of the matrix J have the form

1, i=n+l-—j,
(J)’-’{ 0, ifn+i—j,

the entries of the matrix B can be represented as follows:

n
bij = Z(J)ikakj = dpt1-i,j-

Consider the totally nonnegative matrix B, Its entries have the form

n n

(B*)ij = Y bibi; =Y ani1—ikans1—.;-
k=1 =1

From these formule® and from it follows that all the entries of the matrix B> above and under the main diagonal
are positive, that is, (Bz)mrl > 0 and (BZ)HL,' >0,i=1,2,....n—1. By Theorem B? is an oscillatory matrix.
According to the definition of oscillatory matrices, a certain power of B? is strictly totally positive. Thus, we proved
that a certain power of the matrix B is strictly sign definite, so B is a sign definite matrix of class n™ with the signature
sequence according to Theorem[2.4] By Theorem[2.7} all eigenvalues of the matrix B are nonzero real and simple.
Moreover, if we enumerate the eigenvalues in order of decreasing absolute values as in (2.3), then from (2.4) and @.1)
we obtain that the spectrum of B is of the form (T.1).

The converse assertion of the theorem follows from Theorem |

REMARK 2.10. If the matrix —A is totally nonnegative and the conditions (2.5) (or the conditions (2.6)) hold,
then the matrix B = JA (or, respectively, C = AJ) has a spectrum of the form (1.2).

REMARK 2.11. One can obtain other types of totally nonnegative matrices which result in matrices with self-
interlacing spectra after multiplication by the matrix J. To do this we need to change the conditions (2.5)—(2.6) by
other ones such that, for instance, the matrix B* (or BO, or B3 etc) becomes oscillatory.

Theorem [2.9]implies the following corollary.

COROLLARY 2.12. A nonsingular matrix A with positive entries is totally nonnegative if, and only if, the matrix
B = JA (or the matrix C = AJ) is sign definite of class n™ with the signature sequence . Moreover, the matrix B
possesses a self-interlacing spectrum.

Consider a partial case of conditions @ Suppose that all diagonal entries of the matrix A are positive: a;; > 0,
j=1,2,...,n. It is easy to see that in this case, the conditions hold if a; jy1 >0, j=1,2,...,n—1. If all
remaining entries of the matrix A are nonnegative, then by Theorem the matrices B = JA and C = AJ have self-
interlacing spectra whenever A is totally nonnegative.

If all other entries of the matrix A (that is, all entries except a;; and a; j+1, which are positive) equal zero, then
A is a bidiagonal matrix with positive entries on and above the main diagonal. Clearly, A is totally nonnegative.
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Then by Theorem 2.9 the matrix B = JA possesses a self-interlacing spectrum. Note that the matrix B in this case is
anti-bidiagonal with positive entries, that is, it has the form

0 0 0 0 0 by
0 0 0 0  busz buo
0 0 0 by—4 by_g4 O
B= , bj>0,¢;>0, a>0, 2.7
0 0 s 0 0 0
0 Cpn—4 Cp—4 0 0 0
L Ch—1 Cn-3 0 0 0 0 |

where all the entries b;, j =1,2,...,n— 1, lie above the main diagonal, all the entries ¢, j =1,2,...,n— 1, lie under
the main diagonal and the only entry on the main diagonal is a.

Thus, we proved the following fact.

THEOREM 2.13. Any anti-bidiagonal matrix with positive entries as in (2.7) possesses a self-interlacing spec-
trum.

In [4], the same theorem was established under the additional assumption that b; =c;, j=1,...,n—1. In the
same manner as in the work [4]], it also can be shown that the spectrum of the matrix (2.7)) coincides with the spectrum
of the following tridiagonal matrix

[a b 0O .- 0 0 ]
C1 0 bz 0 0
0 ¢ 0 - 0 0
T, =
0o 0 0 - 0 by
| 0 0 0 c... ¢y 0 |

Indeed, let us denote the matrix B defined in (2.7)) by B, in order to stress the dependence of the matrix B on n, and let
us denote by p,(z) the monic characteristic polynomial of the matrix B,:

Pn(z) = det(zl, — Bn),

where 1, is the n x n identity matrix. Then it is easy to see that the characteristic polynomials of matrices B, with
different sizes satisfy the following three-term recurrence relations:

Pu(z) = z2pn—1(2) —bu—1cn—1pn-—2(z), n>2

9

pO(Z):l, pl(Z):Z—a.

At the same time, the characteristic polynomials ¢, (z) of the matrices T, with different sizes satisfy the same recurrence
relations with the same initial polynomials: ¢go(z) = 1 and g (z) = z — a. Therefore, p,(z) = gn(z) for any n € N, and
the spectra of matrices B, and 7, coincide for each n.

It is well-known [3] that the spectrum of the matrix 7, does not depend on the entries b; and c; separately. It
depends on products bjc;, j=1,2,...,n—1. So in order for the matrices (2.7) and 7, to have a self-interlacing
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spectra, it is sufficient the inequalities @ > 0 and bc; >0, j =1,2,...,n—1, to hold. However, the inverse spectral
problem cannot be solved here uniquely unless b; = c;, j =1,...,n—1 (the case of the work [4]).

Finally, consider a tridiagonal matrix

aq b] 0 0 0
c1 ap b2 0 0
0 ¢ az - 0 0
My=1| . . . : ; (2.8)
0 0 0 an—1 bn,1
| 0 0 0 - ¢ an |

where ay, by, cy € R and cxby # 0. In [3]], the following fact was proved.

THEOREM 2.14. Let the matrix M; defined in (2.8)) be nonnegative. Then M is oscillatory if, and only if, all the
entries by and cy are positive and all the leading principal minors of My are also positive:

a by 0 --- 0 0
1 a b2 0 0
0 ¢ az - 0 0
det| . . . ) i >0, k=1,...,n. (2.9)
0 0 0 e Ag—1 bk71
L 0 0 0 ot Ck—1 Ay 1

This theorem together with Theorem [2.9]implies the following statement.

THEOREM 2.15. The anti-tridiagonal matrix

0 0 0 s 0 b1 aj
0 0 0 s b2 ay C1
0 0 0 -« a3 ¢ 0
A= Z R )
0 bn_z ap_2 - 0 0 0
by-1 ap-1 cu—2 - 0 0 0
| a4 ¢-1 0 -~ 0 0 0 |
where aj,bj,c; >0 for j=1,2,...,n—1, is sign definite of class n* and possesses a self-interlacing spectrum if, and
only if; the following inequalities hold.:
I 0 0 0 v 0 b] aq i
0 0 0 b2 a) C1
0 0 0 e Az ¢ 0
k(k=1)
(=1)" 7 det >0, (2.10)
0 bk_z ag_p - 0 0 0
b1 ar1 k2 0 0 O
| dk Ck—1 0 ce 0 0 0 1
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for k=1,2,...,n.

Proof. 1f the matrix Ay is sign definite of class n™ and has a self-interlacing spectrum of the form (1.1), then
according to Theorem the signs of its nonzero minors can be calculated by the formula (2:I). This implies the

inequalities (2.10).

Conversely, let the inequalities (2.10) hold. Then we have that the inequalities (2.9) hold for the matrix M; = JA;.
By Theorem the matrix M, is oscillatory and, in particular, totally nonnegative [3]]. Now notice that (M;); > 0,
i=1,...,n,and (Mj)ip+1 >0, k=1,...,n—1, so M satisfies the condition of Theorem [2.9] Therefore, the
matrix Ay is sign definite of class n* and has a self-interlacing spectrum of the form . a

3. Conclusion. Theorem [2.9)and Corollary 2.12]provide a method of constructing matrices with self-interlacing
spectrum from given totally nonnegative and oscillatory matrices. We gave two examples of application of this method
for bidiagonal and tridiagonal matrices. One can use Remark [2.11]to generalize Theorem 2.9]and to apply the gener-
alization for other types of structured matrices.
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