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GENERALIZED LEFT AND RIGHT WEYL SPECTRA OF
UPPER TRIANGULAR OPERATOR MATRICES∗

GUOJUN HAI† AND DRAGANA S. CVETKOVIĆ-ILIĆ‡

Abstract. In this paper, for given operators A ∈ B(H ) and B ∈ B(K ), the sets of all C ∈ B(K ,H ) such that MC =

(
A C
0 B

)
is generalized

Weyl and generalized left (right) Weyl, are completely described. Furthermore, the following intersections and unions of the generalized left Weyl
spectra ⋃

C∈B(K ,H )

σ
g
lw(MC) and

⋂
C∈B(K ,H )

σ
g
lw(MC)

are also described, and necessary and sufficient conditions which two operators A ∈ B(H ) and B ∈ B(K ) have to satisfy in order for MC to be a
generalized left Weyl operator for each C ∈ B(K ,H ), are presented.
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1. Introduction. Let H ,K be infinite dimensional complex separable Hilbert spaces, and let B(H ,K ) denote
the set of all bounded linear operators from H to K . For simplicity, we also write B(H ,H ) as B(H ). By F (H ,K ) we
denote the set of all operators from B(H ,K ) with a finite dimensional range. For a given A ∈ B(H ,K ), the symbols
N (A) and R (A) denote the null space and the range of A, respectively. Let n(A) = dimN (A), β(A) = codimR (A),
and d(A) = dimR (A)⊥.

If A ∈ B(H ,K ) is such that R (A) is closed and n(A)< ∞, then A is said to be a upper semi-Fredholm operator.
If β(A) < ∞, then A is called a lower semi-Fredholm operator. A semi-Fredholm operator is one which is either
upper semi-Fredholm or lower semi-Fredholm. An operator A ∈ B(H ,K ) is called Fredholm if it is both lower
semi-Fredholm and upper semi-Fredholm. The subset of B(H ,K ) consisting of all Fredholm operators is denoted
by Φ(H ,K ). By Φ+(H ,K ) (Φ−(H ,K )) we denote the set of all upper (lower) semi-Fredholm operators from
B(H ,K ).

If A ∈ B(H ,K ) is such that R (A) is closed and n(A) ≤ d(A), then A is a generalized left Weyl operator. If
A ∈ B(H ,K ) is such that R (A) is closed and d(A)≤ n(A), then A is a generalized right Weyl operator. Notice that in
the cases of generalized left (right) Weyl operators, n(A) and d(A) are allowed to be infinity. An operator A∈B(H ,K )

is a generalized Weyl operator if it is both generalized right Weyl and generalized left Weyl. The set of all generalized
Weyl operators from B(H ,K ) is denoted by W g(H ,K ).

Let Wgl(H ,K ) (Wgr(H ,K )) denote the subset of B(H ,K ) consisting of all generalized left (right) Weyl opera-
tors. For an operator C ∈ B(H ), the generalized left (right) Weyl spectrum σ

g
lw(C) (σg

rw(C)) is defined by

σ
g
lw(C)(σg

rw(C)) = {λ ∈ C : C−λI is not generalized left (right) Weyl}.
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The generalized Weyl spectrum is defined by

σ
g
w(C) = {λ ∈ C : C−λI is not generalized Weyl}.

In this paper, we address the question for which operators A ∈ B(H ) and B ∈ B(K ), there exists an operator C ∈
B(K ,H ) such that an upper-triangular operator matrix

MC =

(
A C
0 B

)
:
(

H
K

)
→
(

H
K

)
,

is generalized left (right) Weyl. There are many papers which consider some types of invertibility, regularity and some
other properties of an upper-triangular operator matrix MC (see [1]–[17] and references therein) as well as various
types of spectra of MC. This paper is a continuation of the work presented in [10], where the sets

⋃
C∈B(K ,H ) σ

g
w(MC)

and
⋂

C∈B(K ,H ) σ
g
w(MC) are described and some necessary and sufficient conditions for the existence of C ∈ B(K ,H )

such that MC is generalized Weyl are given, but the set of all such operators C is not described. As a corollary of our
main results we obtain a description of all C ∈ B(K ,H ) such that MC is generalized Weyl, and we denote this set by
SGW (A,B). The sets

⋃
C∈B(K ,H ) σ

g
lw(MC) and

⋂
C∈B(K ,H ) σ

g
lw(MC) are described for given A ∈ B(H ) and B ∈ B(K )

as well as the set of all C ∈ B(K ,H ) such that MC is generalized left Weyl which is denoted by SGLW (A,B). In an
analogous way, similar results can be provided for

⋃
C∈B(K ,H ) σ

g
rw(MC) and

⋂
C∈B(K ,H ) σ

g
rw(MC).

2. Results. In this section, by H ,K we denote complex separable Hilbert spaces. For given operators A∈B(H )

and B ∈ B(K ), by MC we denote

MC =

(
A C
0 B

)
:
(

H
K

)
→
(

H
K

)
,

where C ∈ B(K ,H ). Evidently, for given A ∈ B(H ) and B ∈ B(K ), arbitrary C ∈ B(K ,H ) can be represented by

C =

(
C1 C2

C3 C4

)
:
(

N (B)
N (B)⊥

)
→

(
R (A)

R (A)⊥

)
. (2.1)

First, we will state some auxiliary lemmas which will be used in the proof of the main result.

LEMMA 2.1. If A ∈ B(H ) and D ∈ F (H ), then R (A+D) is closed if and only if R (A) is closed.

LEMMA 2.2. Let S ∈ B(H ), T ∈ B(K ,H ) and R ∈ B(H ,K ) be given operators.

(i) If R (S) is non-closed and R (
(

S T
)
) is closed, then n(

(
S T

)
) = ∞.

(ii) If R (S) is non-closed and R (

(
S
R

)
) is closed, then d(

(
S
R

)
) = ∞.

Proof. (i) Suppose that R (S) is non-closed, R (
(

S T
)
) is closed and n(

(
S T

)
) < ∞. Then(

S T
)

is a left Fredholm operator which implies that there exists an operator
(

X
Y

)
: H →

(
H
K

)
such that

(
X
Y

)(
S T

)
= I +K,

for some compact operator K ∈ B(H ⊕K ). Hence, XS = IH +K1, for some compact operator K1 ∈ B(H ) which
implies that S is left Fredholm and so R (S) is closed, which is a contradiction.
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(ii) The proof follows by taking adjoints in (i).

In the following theorem, for given operators A ∈ B(H ) and B ∈ B(K ), we present necessary and sufficient
conditions for the existence of C ∈ B(K ,H ) such that MC is a generalized left Weyl operator, and we completely
describe the set of all such C ∈ B(K ,H ).

THEOREM 2.3. Let A ∈ B(H ) and B ∈ B(K ). There exists C ∈ B(K ,H ) such that MC is generalized left Weyl
if and only if one of the following conditions is satisfied:

(i) R (A) and R (B) are closed and n(A)+n(B)≤ d(A)+d(B). In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : C is given by (2.1),C3 has closed range,

n(A)+n(C3)≤ d(C3)+d(B)
}
.

(ii) R (A) is closed, R (B) is non-closed and d(A) = ∞. In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : R (B∗)+R(C∗PR (A)⊥) is closed
}
.

(iii) R (A) is non-closed, R (B) is closed and n(B) = d(A)+d(B) = ∞. In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : R (A)+R (CPN (B)) is closed,

d(B)+ codim(R (A)+R (CPN (B))) = ∞

}
.

(iv) R (A) and R (B) are non-closed and n(B) = d(A) = ∞. In this case,

SGLW (A,B) = {C ∈ B(K ,H ) : R (MC) is closed}.

For simplicity, we will divide the statement of this theorem into four propositions and prove each of them sepa-
rately.

PROPOSITION 2.4. Let A ∈ B(H ) and B ∈ B(K ) be such that R (A) and R (B) are closed. There exists C ∈
B(K ,H ) such that MC is generalized left Weyl if and only if n(A)+n(B)≤ d(A)+d(B). In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : C is given by (2.1),C3 has closed range,

n(A)+n(C3)≤ d(C3)+d(B)
}
.

Proof. If n(A)+n(B)≤ d(A)+d(B), then M0 is a generalized left Weyl operator. Conversely, suppose that there
exists C ∈ B(K ,H ) such that MC is a generalized left Weyl operator and that C is given by (2.1). Then MC has a
matrix representation

MC =

 A1 C1 C2

0 C3 C4

0 0 B1

 :

 H
N (B)

N (B)⊥

−→
 R (A)

R (A)⊥

K

 ,

where A1 : H −→ R (A) is right invertible and B1 : N (B)⊥ −→ K is left invertible. Evidently, there exists invertible
U,V ∈ B(H ⊕K ) such that

UMCV =

 A1 0 0
0 C3 0
0 0 B1

 :

 H
N (B)

N (B)⊥

−→
 R (A)

R (A)⊥

K

 . (2.2)
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Hence, UMCV is a generalized left Weyl which implies that

n(A1)+n(C3)≤ d(C3)+d(B1). (2.3)

Since,

n(A1) = n(A), n(B) = n(C3)+dimN (C3)
⊥,

d(B1) = d(B) and d(A) = d(C3)+dimR (C3),

having in mind that dimN (C3)
⊥ = dimR (C3) and (2.3), we get

n(A)+n(B)≤ d(A)+d(B).

To describe the set of all C ∈ B(K ,H ) such that MC is a generalized left Weyl, notice that for arbitrary C given by
(2.1), there exists invertible U,V ∈ B(H ⊕K ) such that UMCV is given by (2.10). Hence, MC is a generalized left
Weyl if and only if UMCV is a generalized left Weyl which is equivalent with the fact that R (C3) is closed and that
(2.3) holds.

PROPOSITION 2.5. Let A ∈ B(H ) and B ∈ B(K ) be such that R (A) is closed and R (B) is non-closed. There
exists C ∈ B(K ,H ) such that MC is generalized left Weyl if and only if d(A) = ∞. In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : R (B∗)+R (C∗PR (A)⊥) is closed
}
.

Proof. Suppose that d(A) = ∞. Then MC0 is a generalized left Weyl operator for C0 given by

C0 =

(
0
J

)
: K −→ R (A)⊕R (A)⊥,

where J : K −→ R (A)⊥ is unitary. Evidently, MC0 is represented by

MC0 =

 A1 0
0 J
0 B

 : H ⊕K −→ R (A)⊕R (A)⊥⊕K ,

where A1 : H −→ R (A) is right invertible. Since J is invertible, there exists an invertible operator U ∈ B(H ⊕K )

such that

UMC0 =

 A1 0
0 J
0 0

 : H ⊕K −→ R (A)⊕R (A)⊥⊕K .

Now, it is clear that UMC0 is a generalized left Weyl operator, and so MC0 is a generalized left Weyl operator.

Conversely, suppose that there exists C ∈ B(K ,H ) such that MC is generalized left Weyl. Then MC has a matrix
representation

MC =

 A1 C1

0 C2

0 B

 : H ⊕K −→ R (A)⊕R (A)⊥⊕K , (2.4)
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where A1 : H −→ R (A) is right invertible. Thus, there exists an invertible operator V ∈ B(H ⊕K ) such that

MCV =

 A1 0
0 C2

0 B

 : H ⊕K −→ R (A)⊕R (A)⊥⊕K . (2.5)

Now we will show that d(A) = ∞: Indeed, if d(A)< ∞, then R (C∗2) is finite dimensional. Since R (MCV ) is closed, we

have that R
((

C2

B

))
is closed, which implies that R (B∗)+R (C∗2) is closed. This, together with dimR (C∗2)< ∞,

implies that R (B) is closed. This is a contradiction. Hence, d(A) = ∞.

In order to describe the set SGLW (A,B), notice that for arbitrary C ∈ B(K ,H ), MC has a form (2.4) and that there
exists an invertible operator V ∈ B(H ⊕K ) such that MCV is given by (2.5). Hence, MC is generalized left Weyl if

and only if C is such that R
((

C2

B

))
is closed and that

n(A1)+n
(
(

(
C2

B

)
)

)
≤ d(A1)+d

(
(

(
C2

B

)
)

)
. (2.6)

Notice that by Lemma 2.2, we have that for each C2 ∈B(K ,R (A)⊥) such that R
((

C2

B

))
is closed, it follows that

d
((

C2

B

))
= ∞. Thus,

SGLW (A,B) =
{

C ∈ B(K ,H ) : R (B∗)+R (C∗PR (A)⊥) is closed
}
.

PROPOSITION 2.6. Let A ∈ B(H ) and B ∈ B(K ) be such that R (A) is non-closed and R (B) is closed. There
exists C ∈ B(K ,H ) such that MC is generalized left Weyl if and only if n(B) = d(A)+d(B) = ∞. In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : R (A)+R(CPN (B)) is closed,

d(B)+ codim(R (A)+R (CPN (B))) = ∞

}
.

Proof. Suppose that n(B) = d(A)+d(B) = ∞. Then there exists a left invertible operator C1 : N (B)−→H such
that R (C1) = R (A). We will prove that MC is a generalized left Weyl operator for C given by

C =
(

C1 0
)

: N (B)⊕N (B)⊥ −→H .

Evidently, MC is represented by

MC =

(
A C1 0
0 0 B1

)
: H ⊕N (B)⊕N (B)⊥ −→H ⊕K ,

where B1 : N (B)⊥ −→K is left invertible and

R (MC) = (R (A)+R (C1))⊕R (B1) = R (A)⊕R (B).

Thus, R (MC) is closed and

d(MC) = d(A)+d(B) = ∞,
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i.e., MC is a generalized left Weyl operator.

Conversely, suppose that there exists C ∈ B(K ,H ) such that MC is generalized left Weyl. It follows that MC has
a matrix representation

MC =

(
A C1 C2

0 0 B1

)
: H ⊕N (B)⊕N (B)⊥ −→H ⊕K , (2.7)

where B1 : N (B)⊥ −→ K is left invertible and there exists an invertible operator U ∈ B(H ⊕K ) such that

UMC =

(
A C1 0
0 0 B1

)
: H ⊕N (B)⊕N (B)⊥ −→H ⊕K . (2.8)

Since UMC has a closed range, by Lemma 2.1 and the fact that R (A) is non-closed, we have that n(B) = ∞. Also,
applying Lemma 2.2, we get that n(

(
A C1

)
) = ∞ which implies that d(UMC) = d(B)+d(

(
A C1

)
) = ∞. Since

d(
(

A C1
)
)≤ d(A), it follows that d(A)+d(B) = ∞.

In order to describe the set SGLW (A,B), notice that for arbitrary C ∈ B(K ,H ), MC has a form (2.7) and that there
exists an invertible operator V ∈ B(H ⊕K ) such that UMC is given by (2.8). Hence, MC is generalized left Weyl if
and only if C is such that R

((
A C1

))
is closed and that

n
((

A C1
))

+n(B1)≤ d
((

A C1
))

+d(B1). (2.9)

Notice that if R
((

A C1
))

is closed, then by Lemma 2.2, we have that n
((

A C1
))

= ∞. Hence, MC is a
generalized left Weyl operator for C ∈B(K ,H ) if and only if R

((
A C1

))
is closed and d

((
A C1

))
+d(B1) =

∞. Obviously, d(B1) = d(B).

PROPOSITION 2.7. Let A ∈ B(H ) and B ∈ B(K ) be such that R (A) and R (B) are non-closed. There exists
C ∈ B(K ,H ) such that MC is generalized left Weyl if and only if n(B) = d(A) = ∞. In this case,

SGLW (A,B) =
{

C ∈ B(K ,H ) : R(MC) is closed
}
.

Proof. Since R (A) and R (B) are non-closed, by Lemma 2.2, we conclude that if C ∈ B(K ,H ) is such that
R (MC) is closed, then n(MC) = d(MC) = ∞. Hence, MC is generalized left Weyl if and only if R(MC) is closed. Now,
the proof directly follows by Theorem 2.6 of [4].

REMARK 1. It is interesting to notice that the condition d(B)+codim(R (A)+R (CPN (B))) =∞ from Proposition
2.6, appearing also in item (iii) of Theorem 2.3, can be replaced by the condition d(C3)+d(B) = ∞, where C3 is the
block-operator defined by (2.1). So, if A∈B(H ) and B∈B(K ) are such that R (A) is non-closed and R (B) is closed,
then

MC =

 A1 C1 C2

0 C3 C4

0 0 B1

 :

 H
N (B)

N (B)⊥

−→
 R (A)

R (A)⊥

K

 ,

where A1 : H −→ R (A) is with a dense range and B1 : N (B)⊥ −→ K is left invertible. There exists an invertible
U ∈ B(H ⊕K ) such that

UMC =

 A1 C1 0
0 C3 0
0 0 B1

 :

 H
N (B)

N (B)⊥

−→
 R (A)

R (A)⊥

K

 . (2.10)
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Now, it is evident that R (MC) is closed if and only if
(

A1 C1

0 C3

)
is closed which is equivalent with the fact that

R (A)+R(CPN (B)) is closed. Also,

d
((

A1 C1

0 C3

))
= n

((
A∗1 0
C∗1 C∗3

))
= n(C∗3) = d(C3),

since A∗1 is injective (R (A1) = R (A)). Hence, in this case, the set SGLW can also be described by

SGLW (A,B) =
{

C ∈ B(K ,H ) : C is given by (2.1), R (A)+R(CPN (B))

is closed, d(C3)+d(B) = ∞
}
.

As a corollary of the previous theorem, we get the description of the set
⋂

C∈B(K ,H ) σ
g
lw(MC):

COROLLARY 2.8. Let A ∈ B(H ) and B ∈ B(K ) be given operators. Then⋂
C∈B(K ,H )

σ
g
lw(MC) =

{
λ ∈ C : R (A−λI) is not closed, n(B−λI)< ∞

}
∪
{

λ ∈ C : R (B−λI) is not closed, d(A−λI)< ∞
}

∪
{

λ ∈ C : R (A−λI) is not closed, R (B−λI) is closed,

d(A−λI)+d(B−λI)< ∞
}

∪
{

λ ∈ C : R (A−λI),R (B−λI) are closed,

n(A−λI)+n(B−λI)> d(A−λI)+d(B−λI)
}
.

Using Theorem 2.3, Remark 1 and the fact that A is generalized left Weyl if and only if A∗ is generalized right Weyl,
we can give the description of the set SGW (A,B) which consists of all C ∈ B(K ,H ) such that MC is generalized Weyl.
Notice that necessary and sufficient conditions for the existence of C ∈B(K ,H ) such that MC is generalized Weyl are
given in [10].

THEOREM 2.9. Let A ∈ B(H ) and B ∈ B(K ) be given operators. There exists C ∈ B(K ,H ) such that MC is
generalized Weyl if and only if one of the following conditions is satisfied:

(i) R (A) and R (B) are closed and n(A)+n(B) = d(A)+d(B). In this case,

SGW (A,B) =
{

C ∈ B(K ,H ) : C is given by (2.1),C3 has closed range,

n(A)+n(C3) = d(C3)+d(B)
}
.

(ii) R (A) is closed, R (B) is non-closed and d(A) = n(A)+n(B) = ∞. In this case,

SGW (A,B) = {C ∈ B(K ,H ) : C is given by (2.1),n(A)+n(C3) = ∞,

R (B∗)+R(C∗PR (A)⊥) is closed}.

(iii) R (A) is non-closed, R (B) is closed and n(B) = d(A)+d(B) = ∞. In this case,

SGW (A,B) =
{

C ∈ B(K ,H ) : C is given by (2.1),d(B)+d(C3) = ∞,

R (A)+R (CPN (B)) is closed
}
.
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(iv) R (A) and R (B) are non-closed and n(B) = d(A) = ∞. In this case,

SGW (A,B) = {C ∈ B(K ,H ) : R (MC) is closed}.

Proof. Since necessary and sufficient conditions for the existence of C ∈ B(K ,H ) such that MC is generalized
Weyl are given in [10], we need only prove that the set SGW (A,B) is given as claimed in each of the four possible cases
appearing above.

(i) Suppose that R (A) and R (B) are closed and n(A)+ n(B) = d(A)+ d(B). Using Theorem 2.3, we have that
C ∈ B(K ,H ) is such that MC is generalized left Weyl if and only if C is given by (2.1), where C3 has closed range
and

n(A)+n(C3)≤ d(C3)+d(B).

Since we are looking for C ∈ B(K ,H ) such that MC is generalized Weyl, we are asking for which C ∈ B(K ,H )

satisfying the previously mentioned condition, MC is generalized right Weyl i.e (MC)
∗ is generalized left Weyl. Since,

(MC)
∗ =

(
B∗ C∗

0 A∗

)
:
(

K
H

)
→
(

K
H

)
and for C given by (2.1), C∗ is given by

C∗ =
(

C∗4 C∗2
C∗3 C∗1

)
:
(

N (A∗)
N (A∗)⊥

)
→

(
R (B∗)

R (B∗)⊥

)
, (2.11)

applying Theorem 2.3 we get that (MC)
∗ is a generalized left Weyl operator if and only if R (C∗3) is closed and

n(B∗)+n(C∗3)≤ d(C∗3)+d(A∗)

which is equivalent with R (C3) being closed and the inequality d(C3)+d(B)≤ n(A)+n(C3). Hence, MC is a gener-
alized Weyl operator if and only if C is given by (2.1), where C3 has closed range and n(A)+n(C3) = d(C3)+d(B).

(ii) Suppose that R (A) is closed, R (B) is non-closed and d(A) = n(A)+n(B) = ∞. Using Theorem 2.3, we have
that C ∈ B(K ,H ) is such that MC is generalized left Weyl if and only if R (B∗)+R (C∗PR (A)⊥) is closed. By item
(iii) of Theorem 2.3, using the representations of (MC)

∗ given above, we get that (MC)
∗ is a generalized left Weyl

operator if and only if R (B∗)+R (C∗PR (A)⊥) is closed and d(A∗)+ codim(R (B∗)+R (C∗PN (A∗))) = ∞. By Remark
1, we have that the last condition is equivalent with d(C∗3)+d(A∗) = ∞, i.e., n(A)+n(C3) = ∞, where C3 is the block
operator in the representation (2.1) of C.

Hence, MC is a generalized Weyl operator if and only if C is given by (2.1), where R (B∗)+R (C∗PR (A)⊥) is
closed and n(A)+n(C3) = ∞.

Items (iii) and (iv) can be proved in a similar manner.

In the next theorem, we present necessary and sufficient conditions which two operators A∈B(H ) and B∈B(K )

have to satisfy in order for MC to be a generalized left Weyl operator for each C ∈ B(K ,H ).

THEOREM 2.10. Let A ∈ B(H ) and B ∈ B(K ). Then MC is a generalized left Weyl operator for each C ∈
B(K ,H ) if and only if R (A) and R (B) are closed and one of the following conditions is satisfied:

(1) d(A)< ∞, n(B) = ∞, d(B) = ∞,
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(2) d(A) = ∞, n(B)< ∞,
(3) d(A),n(B)< ∞, n(A)+n(B)≤ d(A)+d(B).

Proof. Suppose that MC is a generalized left Weyl operator for each C ∈ B(K ,H ). If at least one of R (A) and
R (B) is not closed, we have that M0 is not a generalized left Weyl operator since its range is not closed. So, it follows
that R (A) and R (B) are closed subspaces.

Notice that for arbitrary C ∈ B(K ,H ), MC is given by

MC =


0 A1 C1 C2

0 0 C3 C4

0 0 0 B1

0 0 0 0

 :


N (A)

N (A)⊥

N (B)
N (B)⊥

→


R (A)
R (A)⊥

R (B)
R (B)⊥

 , (2.12)

where A1, B1 are invertible operators and that there exist invertible U,V ∈ B(H ⊕K ) such that

UMCV =


0 A1 0 0
0 0 C3 0
0 0 0 B1

0 0 0 0

 :


N (A)

N (A)⊥

N (B)
N (B)⊥

→


R (A)
R (A)⊥

R (B)
R (B)⊥

 . (2.13)

So, for any C3 ∈ B(N (B),R (A)⊥), we have that R (C3) is closed and

n(A)+n(C3)≤ d(B)+d(C3).

Hence, at least one of d(A) and n(B) is finite. So, we will consider all possible cases (there are 3 in total) when at least
one of d(A) and n(B) is finite.

Suppose first that d(A)< ∞ and n(B) = ∞. Since for any C3 ∈B(N (B), R (A)⊥), it follows that n(C3) = ∞,
and since there exists C3 ∈ B(N (B),R (A)⊥) such that d(C3) = 0, we conclude that n(MC) ≤ d(MC), for each C ∈
B(K ,H ) if and only if d(B) = ∞.

If d(A) = ∞ and n(B) < ∞ then for any C3 ∈ B(N (B),R (A)⊥), we have that d(C3) = ∞, so n(MC) ≤ d(MC) is
satisfied for any C ∈ B(K ,H ).

If d(A),n(B) < ∞ then for any C3 ∈ B(N (B),R (A)⊥), we have that n(B)− n(C3) = d(A)− d(C3), so n(MC) ≤
d(MC) if and only if n(A)+n(B)≤ d(A)+d(B).

The converse implication can be proved in the same manner.

As a corollary of the previous theorem, we also get the description of the set
⋃

C∈B(K ,H ) σ
g
lw(MC):

COROLLARY 2.11. For given operators A ∈ B(H ) and B ∈ B(K ) we have⋃
C∈B(K ,H )

σ
g
lw(MC) =

{
λ ∈ C : R (A−λI) is not closed

}
∪
{

λ ∈ C : R (B−λI) is not closed
}

∪
{

λ ∈ C : d(A−λI) = n(B−λI) = ∞
}

∪
{

λ ∈ C : d(A−λI),n(B−λI)< ∞,

n(A−λI)+n(B−λI)> d(A−λI)+d(B−λI)
}

∪
{

λ ∈ C : d(B−λI)< n(B−λI) = ∞
}
.
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REMARK 2. Throughout the paper, we have used the following fact: For given operators A∈B(H ) and B∈B(K )

in the each of following three cases:

(i) R (A) and R (B) are closed,
(ii) R (A) is closed, R (B) is non-closed,

(iii) R (A) is non-closed, R (B) is closed,

we have that R (MC) is closed if and only if the respective condition below is satisfied:

(1) R (C3) is closed,
(2) R (B∗)+R (C∗PR (A)⊥) is closed,
(3) R (A)+R(CPN (B)) is closed.
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