

GENERALIZED LEFT AND RIGHT WEYL SPECTRA OF UPPER TRIANGULAR OPERATOR MATRICES*

GUOJUN HAI[†] AND DRAGANA S. CVETKOVIĆ-ILIĆ[‡]

Abstract. In this paper, for given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, the sets of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ is generalized Weyl and generalized left (right) Weyl, are completely described. Furthermore, the following intersections and unions of the generalized left Weyl spectra

$$\bigcup_{C\in\mathscr{B}(\mathscr{K},\mathscr{H})} \sigma^g_{l_W}(M_C) \text{ and } \bigcap_{C\in\mathscr{B}(\mathscr{K},\mathscr{H})} \sigma^g_{l_W}(M_C)$$

are also described, and necessary and sufficient conditions which two operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ have to satisfy in order for M_C to be a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, are presented.

Key words. Operator matrix, Generalized left(right) Weyl, Spectrum.

AMS subject classifications. 47A10, 47A53, 47A55.

1. Introduction. Let \mathcal{H}, \mathcal{K} be infinite dimensional complex separable Hilbert spaces, and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators from \mathcal{H} to \mathcal{K} . For simplicity, we also write $\mathcal{B}(\mathcal{H}, \mathcal{H})$ as $\mathcal{B}(\mathcal{H})$. By $\mathcal{F}(\mathcal{H}, \mathcal{K})$ we denote the set of all operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$ with a finite dimensional range. For a given $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the symbols $\mathcal{N}(A)$ and $\mathcal{R}(A)$ denote the null space and the range of A, respectively. Let $n(A) = \dim \mathcal{N}(A), \beta(A) = \operatorname{codim} \mathcal{R}(A)$, and $d(A) = \dim \mathcal{R}_{\mathcal{L}}(A)^{\perp}$.

If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\mathcal{R}(A)$ is closed and $n(A) < \infty$, then A is said to be a upper semi-Fredholm operator. If $\beta(A) < \infty$, then A is called a lower semi-Fredholm operator. A semi-Fredholm operator is one which is either upper semi-Fredholm or lower semi-Fredholm. An operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is called Fredholm if it is both lower semi-Fredholm and upper semi-Fredholm. The subset of $\mathcal{B}(\mathcal{H}, \mathcal{K})$ consisting of all Fredholm operators is denoted by $\Phi(\mathcal{H}, \mathcal{K})$. By $\Phi_+(\mathcal{H}, \mathcal{K})$ ($\Phi_-(\mathcal{H}, \mathcal{K})$) we denote the set of all upper (lower) semi-Fredholm operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$.

If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\mathcal{R}(A)$ is closed and $n(A) \leq d(A)$, then *A* is a generalized left Weyl operator. If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\mathcal{R}(A)$ is closed and $d(A) \leq n(A)$, then *A* is a generalized right Weyl operator. Notice that in the cases of generalized left (right) Weyl operators, n(A) and d(A) are allowed to be infinity. An operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a generalized Weyl operator if it is both generalized right Weyl and generalized left Weyl. The set of all generalized Weyl operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$ is denoted by $W^g(\mathcal{H}, \mathcal{K})$.

Let $W_{gl}(\mathcal{H}, \mathcal{K})$ $(W_{gr}(\mathcal{H}, \mathcal{K}))$ denote the subset of $\mathcal{B}(\mathcal{H}, \mathcal{K})$ consisting of all generalized left (right) Weyl operators. For an operator $C \in \mathcal{B}(\mathcal{H})$, the generalized left (right) Weyl spectrum $\sigma_{lw}^g(C)$ $(\sigma_{rw}^g(C))$ is defined by

 $\sigma_{Iw}^g(C)(\sigma_{rw}^g(C)) = \{\lambda \in \mathbb{C} : C - \lambda I \text{ is not generalized left (right) Weyl}\}.$

^{*}Received by the editors on August 10, 2016. Accepted for publication on January 11, 2017. Handling Editor: Torsten Ehrhardt.

[†]School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, PR China (3695946@163.com).

[‡]University of Niš, Department of Mathematics, Faculty of Sciences and Mathematics, 18000 Niš, Serbia (dragana@pmf.ni.ac.rs). Supported by grant no. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.

The generalized Weyl spectrum is defined by

 $\sigma_w^g(C) = \{\lambda \in \mathbb{C} : C - \lambda I \text{ is not generalized Weyl}\}.$

In this paper, we address the question for which operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, there exists an operator $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that an upper-triangular operator matrix

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix} \to \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix},$$

is generalized left (right) Weyl. There are many papers which consider some types of invertibility, regularity and some other properties of an upper-triangular operator matrix M_C (see [1]–[17] and references therein) as well as various types of spectra of M_C . This paper is a continuation of the work presented in [10], where the sets $\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_w^g(M_C)$ and $\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_w^g(M_C)$ are described and some necessary and sufficient conditions for the existence of $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl are given, but the set of all such operators C is not described. As a corollary of our main results we obtain a description of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl, and we denote this set by $S_{GW}(A, B)$. The sets $\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{Iw}^g(M_C)$ and $\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{Iw}^g(M_C)$ are described for given $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ as well as the set of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl which is denoted by $S_{GLW}(A, B)$. In an analogous way, similar results can be provided for $\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{rw}^g(M_C)$ and $\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{rw}^g(M_C)$.

2. Results. In this section, by \mathcal{H}, \mathcal{K} we denote complex separable Hilbert spaces. For given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, by M_C we denote

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix} \to \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix},$$

where $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$. Evidently, for given $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, arbitrary $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ can be represented by

$$C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} : \begin{pmatrix} \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \to \begin{pmatrix} \overline{\mathcal{R}(A)} \\ \mathcal{R}(A)^{\perp} \end{pmatrix}.$$
 (2.1)

First, we will state some auxiliary lemmas which will be used in the proof of the main result.

LEMMA 2.1. If $A \in \mathcal{B}(\mathcal{H})$ and $D \in \mathcal{F}(\mathcal{H})$, then $\mathcal{R}(A+D)$ is closed if and only if $\mathcal{R}(A)$ is closed.

LEMMA 2.2. Let $S \in \mathcal{B}(\mathcal{H})$, $T \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $R \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be given operators.

(i) If $\mathcal{R}(S)$ is non-closed and $\mathcal{R}(\begin{pmatrix} S & T \end{pmatrix})$ is closed, then $n(\begin{pmatrix} S & T \end{pmatrix}) = \infty$. (ii) If $\mathcal{R}(S)$ is non-closed and $\mathcal{R}(\begin{pmatrix} S \\ R \end{pmatrix})$ is closed, then $d(\begin{pmatrix} S \\ R \end{pmatrix}) = \infty$.

Proof. (i) Suppose that $\mathcal{R}(S)$ is non-closed, $\mathcal{R}(\begin{pmatrix} S & T \end{pmatrix})$ is closed and $n(\begin{pmatrix} S & T \end{pmatrix}) < \infty$. Then $\begin{pmatrix} S & T \end{pmatrix}$ is a left Fredholm operator which implies that there exists an operator $\begin{pmatrix} X \\ Y \end{pmatrix} : \mathcal{H} \to \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix}$ such that

$$\left(\begin{array}{c} X\\ Y\end{array}\right)\left(\begin{array}{c} S & T\end{array}\right) = I + K,$$

for some compact operator $K \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$. Hence, $XS = I_{\mathcal{H}} + K_1$, for some compact operator $K_1 \in \mathcal{B}(\mathcal{H})$ which implies that *S* is left Fredholm and so $\mathcal{R}(S)$ is closed, which is a contradiction.

Generalized Left and Right Weyl Spectra of Upper Triangular Operator Matrices

(ii) The proof follows by taking adjoints in (i). \Box

In the following theorem, for given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, we present necessary and sufficient conditions for the existence of $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is a generalized left Weyl operator, and we completely describe the set of all such $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

THEOREM 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if one of the following conditions is satisfied:

- (i) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and $n(A) + n(B) \leq d(A) + d(B)$. In this case,
 - $S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : C \text{ is given by } (2.1), C_3 \text{ has closed range}, \\ n(A) + n(C_3) \le d(C_3) + d(B) \right\}.$
- (ii) $\mathcal{R}(A)$ is closed, $\mathcal{R}(B)$ is non-closed and $d(A) = \infty$. In this case,

$$S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(B^*) + R(C^* P_{\mathcal{R}(A)^{\perp}}) \text{ is closed} \right\}.$$

(iii) $\mathcal{R}(A)$ is non-closed, $\mathcal{R}(B)$ is closed and $n(B) = d(A) + d(B) = \infty$. In this case,

$$S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(A) + \mathcal{R}(CP_{\mathcal{N}(B)}) \text{ is closed}, \\ d(B) + \operatorname{codim}(\mathcal{R}(A) + \mathcal{R}(CP_{\mathcal{N}(B)})) = \infty \right\}.$$

(iv) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed and $n(B) = d(A) = \infty$. In this case,

$$S_{GLW}(A,B) = \{C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(M_C) \text{ is closed}\}.$$

For simplicity, we will divide the statement of this theorem into four propositions and prove each of them separately.

PROPOSITION 2.4. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if $n(A) + n(B) \leq d(A) + d(B)$. In this case,

$$S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : C \text{ is given by } (2.1), C_3 \text{ has closed range}, \\ n(A) + n(C_3) \le d(C_3) + d(B) \right\}.$$

Proof. If $n(A) + n(B) \le d(A) + d(B)$, then M_0 is a generalized left Weyl operator. Conversely, suppose that there exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is a generalized left Weyl operator and that C is given by (2.1). Then M_C has a matrix representation

$$M_C = \begin{pmatrix} A_1 & C_1 & C_2 \\ 0 & C_3 & C_4 \\ 0 & 0 & B_1 \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^{\perp} \\ \mathcal{K} \end{pmatrix},$$

where $A_1 : \mathcal{H} \longrightarrow \mathcal{R}(A)$ is right invertible and $B_1 : \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{K}$ is left invertible. Evidently, there exists invertible $U, V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_{C}V = \begin{pmatrix} A_{1} & 0 & 0\\ 0 & C_{3} & 0\\ 0 & 0 & B_{1} \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^{\perp} \\ \mathcal{K} \end{pmatrix}.$$
 (2.2)

Hence, UM_CV is a generalized left Weyl which implies that

$$n(A_1) + n(C_3) \le d(C_3) + d(B_1). \tag{2.3}$$

Since,

$$n(A_1) = n(A), \quad n(B) = n(C_3) + \dim \mathcal{N}(C_3)^{\perp},$$

 $d(B_1) = d(B)$ and $d(A) = d(C_3) + \dim \mathcal{R}(C_3)$,

having in mind that dim $\mathcal{N}(C_3)^{\perp} = \dim \mathcal{R}(C_3)$ and (2.3), we get

$$n(A) + n(B) \le d(A) + d(B).$$

To describe the set of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is a generalized left Weyl, notice that for arbitrary C given by (2.1), there exists invertible $U, V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that UM_CV is given by (2.10). Hence, M_C is a generalized left Weyl if and only if UM_CV is a generalized left Weyl which is equivalent with the fact that $\mathcal{R}(C_3)$ is closed and that (2.3) holds. \Box

PROPOSITION 2.5. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ is closed and $\mathcal{R}(B)$ is non-closed. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if $d(A) = \infty$. In this case,

$$S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{R}(A)^{\perp}}) \text{ is closed} \right\}.$$

Proof. Suppose that $d(A) = \infty$. Then M_{C_0} is a generalized left Weyl operator for C_0 given by

$$C_0 = \begin{pmatrix} 0 \\ J \end{pmatrix} : \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp},$$

where $J: \mathcal{K} \longrightarrow \mathcal{R}(A)^{\perp}$ is unitary. Evidently, M_{C_0} is represented by

$$M_{\mathcal{C}_0}=\left(egin{array}{cc} A_1 & 0 \ 0 & J \ 0 & B \end{array}
ight):\mathcal{H}\oplus\mathcal{K}\longrightarrow\mathcal{R}(A)\oplus\mathcal{R}(A)^{\perp}\oplus\mathcal{K},$$

where $A_1 : \mathcal{H} \longrightarrow \mathcal{R}(A)$ is right invertible. Since *J* is invertible, there exists an invertible operator $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_{\mathcal{C}_0}=\left(egin{array}{cc} A_1 & 0 \ 0 & J \ 0 & 0 \end{array}
ight):\mathcal{H}\oplus\mathcal{K}\longrightarrow\mathcal{R}(A)\oplus\mathcal{R}(A)^{\perp}\oplus\mathcal{K}.$$

Now, it is clear that UM_{C_0} is a generalized left Weyl operator, and so M_{C_0} is a generalized left Weyl operator.

Conversely, suppose that there exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl. Then M_C has a matrix representation

$$M_{C} = \begin{pmatrix} A_{1} & C_{1} \\ 0 & C_{2} \\ 0 & B \end{pmatrix} : \mathcal{H} \oplus \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \oplus \mathcal{K},$$
(2.4)

45

Generalized Left and Right Weyl Spectra of Upper Triangular Operator Matrices

where $A_1 : \mathcal{H} \longrightarrow \mathcal{R}(A)$ is right invertible. Thus, there exists an invertible operator $V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$M_{C}V = \begin{pmatrix} A_{1} & 0\\ 0 & C_{2}\\ 0 & B \end{pmatrix} : \mathcal{H} \oplus \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \oplus \mathcal{K}.$$

$$(2.5)$$

Now we will show that $d(A) = \infty$: Indeed, if $d(A) < \infty$, then $\mathcal{R}(C_2^*)$ is finite dimensional. Since $\mathcal{R}(M_C V)$ is closed, we have that $\mathcal{R}\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right)$ is closed, which implies that $\mathcal{R}(B^*) + \mathcal{R}(C_2^*)$ is closed. This, together with dim $\mathcal{R}(C_2^*) < \infty$, implies that $\mathcal{R}(B)$ is closed. This is a contradiction. Hence, $d(A) = \infty$.

In order to describe the set $S_{GLW}(A, B)$, notice that for arbitrary $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, M_C has a form (2.4) and that there exists an invertible operator $V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that $M_C V$ is given by (2.5). Hence, M_C is generalized left Weyl if and only if *C* is such that $\mathcal{R}\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right)$ is closed and that

$$n(A_1) + n\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right) \leq d(A_1) + d\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right) \right).$$
(2.6)

Notice that by Lemma 2.2, we have that for each $C_2 \in \mathcal{B}(\mathcal{K}, \mathcal{R}(A)^{\perp})$ such that $\mathcal{R}\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right)$ is closed, it follows that

$$d\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right) = \infty. \text{ Thus,}$$
$$S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{R}(A)^{\perp}}) \text{ is closed} \right\}. \quad \Box$$

PROPOSITION 2.6. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ is non-closed and $\mathcal{R}(B)$ is closed. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if $n(B) = d(A) + d(B) = \infty$. In this case,

$$S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(A) + R(CP_{\mathcal{M}(B)}) \text{ is closed}, \\ d(B) + \operatorname{codim}(\mathcal{R}(A) + \mathcal{R}(CP_{\mathcal{M}(B)})) = \infty \right\}.$$

Proof. Suppose that $n(B) = d(A) + d(B) = \infty$. Then there exists a left invertible operator $C_1 : \mathcal{N}(B) \longrightarrow \mathcal{H}$ such that $\mathcal{R}(C_1) = \overline{\mathcal{R}(A)}$. We will prove that M_C is a generalized left Weyl operator for C given by

$$C = \begin{pmatrix} C_1 & 0 \end{pmatrix} : \mathcal{N}(B) \oplus \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{H}.$$

Evidently, M_C is represented by

$$M_C = \left(egin{array}{ccc} A & C_1 & 0 \ 0 & 0 & B_1 \end{array}
ight) : \mathcal{H} \oplus \mathcal{N}(B) \oplus \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{H} \oplus \mathcal{K},$$

where $B_1 : \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{K}$ is left invertible and

$$\mathcal{R}(M_C) = (\mathcal{R}(A) + \mathcal{R}(C_1)) \oplus \mathcal{R}(B_1) = \overline{\mathcal{R}(A)} \oplus \mathcal{R}(B).$$

Thus, $\mathcal{R}(M_C)$ is closed and

$$d(M_C) = d(A) + d(B) = \infty,$$

i.e., M_C is a generalized left Weyl operator.

Conversely, suppose that there exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl. It follows that M_C has a matrix representation

$$M_C = \begin{pmatrix} A & C_1 & C_2 \\ 0 & 0 & B_1 \end{pmatrix} : \mathcal{H} \oplus \mathcal{N}(B) \oplus \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{H} \oplus \mathcal{K},$$
(2.7)

where $B_1 : \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{K}$ is left invertible and there exists an invertible operator $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_{C} = \begin{pmatrix} A & C_{1} & 0 \\ 0 & 0 & B_{1} \end{pmatrix} : \mathcal{H} \oplus \mathcal{N}(B) \oplus \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{H} \oplus \mathcal{K}.$$
(2.8)

Since UM_C has a closed range, by Lemma 2.1 and the fact that $\mathcal{R}(A)$ is non-closed, we have that $n(B) = \infty$. Also, applying Lemma 2.2, we get that $n((A C_1)) = \infty$ which implies that $d(UM_C) = d(B) + d((A C_1)) = \infty$. Since $d((A C_1)) \leq d(A)$, it follows that $d(A) + d(B) = \infty$.

In order to describe the set $S_{GLW}(A, B)$, notice that for arbitrary $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, M_C has a form (2.7) and that there exists an invertible operator $V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that UM_C is given by (2.8). Hence, M_C is generalized left Weyl if and only if C is such that $\mathcal{R}((A - C_1))$ is closed and that

$$n\left(\left(\begin{array}{cc}A & C_1\end{array}\right)\right) + n(B_1) \le d\left(\left(\begin{array}{cc}A & C_1\end{array}\right)\right) + d(B_1).$$

$$(2.9)$$

Notice that if $\mathcal{R}((A \ C_1))$ is closed, then by Lemma 2.2, we have that $n((A \ C_1)) = \infty$. Hence, M_C is a generalized left Weyl operator for $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ if and only if $\mathcal{R}((A \ C_1))$ is closed and $d((A \ C_1)) + d(B_1) = \infty$. Obviously, $d(B_1) = d(B)$. \Box

PROPOSITION 2.7. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if $n(B) = d(A) = \infty$. In this case,

$$S_{GLW}(A,B) = \{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : R(M_C) \text{ is closed} \}.$$

Proof. Since $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed, by Lemma 2.2, we conclude that if $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is such that $\mathcal{R}(M_C)$ is closed, then $n(M_C) = d(M_C) = \infty$. Hence, M_C is generalized left Weyl if and only if $R(M_C)$ is closed. Now, the proof directly follows by Theorem 2.6 of [4]. \Box

REMARK 1. It is interesting to notice that the condition $d(B) + \operatorname{codim}(\mathcal{R}(A) + \mathcal{R}(CP_{\mathcal{N}(B)})) = \infty$ from Proposition 2.6, appearing also in item (iii) of Theorem 2.3, can be replaced by the condition $d(C_3) + d(B) = \infty$, where C_3 is the block-operator defined by (2.1). So, if $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ are such that $\mathcal{R}(A)$ is non-closed and $\mathcal{R}(B)$ is closed, then

$$M_C = \begin{pmatrix} A_1 & C_1 & C_2 \\ 0 & C_3 & C_4 \\ 0 & 0 & B_1 \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^{\perp} \\ \mathcal{K} \end{pmatrix},$$

where $A_1 : \mathcal{H} \longrightarrow \overline{\mathcal{R}(A)}$ is with a dense range and $B_1 : \mathcal{N}(B)^{\perp} \longrightarrow \mathcal{K}$ is left invertible. There exists an invertible $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_{C} = \begin{pmatrix} A_{1} & C_{1} & 0\\ 0 & C_{3} & 0\\ 0 & 0 & B_{1} \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^{\perp} \\ \mathcal{K} \end{pmatrix}.$$
(2.10)

I L
AS

Generalized Left and Right Weyl Spectra of Upper Triangular Operator Matrices

Now, it is evident that $\mathcal{R}(M_C)$ is closed if and only if $\begin{pmatrix} A_1 & C_1 \\ 0 & C_3 \end{pmatrix}$ is closed which is equivalent with the fact that $\mathcal{R}(A) + R(CP_{\mathcal{N}(B)})$ is closed. Also,

$$d\left(\left(\begin{array}{cc}A_1 & C_1\\0 & C_3\end{array}\right)\right) = n\left(\left(\begin{array}{cc}A_1^* & 0\\C_1^* & C_3^*\end{array}\right)\right) = n(C_3^*) = d(C_3),$$

since A_1^* is injective ($\mathcal{R}(A_1) = \mathcal{R}(A)$). Hence, in this case, the set S_{GLW} can also be described by

$$\begin{split} S_{GLW}(A,B) &= \Big\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : C \text{ is given by } (2.1), \ \mathcal{R}(A) + R(CP_{\mathcal{N}(B)}) \\ & \text{ is closed}, \ d(C_3) + d(B) = \infty \Big\}. \end{split}$$

As a corollary of the previous theorem, we get the description of the set $\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^{g}(M_{C})$:

COROLLARY 2.8. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be given operators. Then

$$\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{Iw}^{g}(M_{C}) = \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I) \text{ is not closed, } n(B - \lambda I) < \infty \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(B - \lambda I) \text{ is not closed, } d(A - \lambda I) < \infty \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I) \text{ is not closed, } \mathcal{R}(B - \lambda I) \text{ is closed, } d(A - \lambda I) + d(B - \lambda I) < \infty \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I), \mathcal{R}(B - \lambda I) \text{ are closed, } n(A - \lambda I) + n(B - \lambda I) > d(A - \lambda I) + d(B - \lambda I) \right\}.$$

Using Theorem 2.3, Remark 1 and the fact that *A* is generalized left Weyl if and only if A^* is generalized right Weyl, we can give the description of the set $S_{GW}(A, B)$ which consists of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl. Notice that necessary and sufficient conditions for the existence of $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl are given in [10].

THEOREM 2.9. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be given operators. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl if and only if one of the following conditions is satisfied:

(i) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and n(A) + n(B) = d(A) + d(B). In this case,

$$S_{GW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : C \text{ is given by } (2.1), C_3 \text{ has closed range}, \\ n(A) + n(C_3) = d(C_3) + d(B) \right\}.$$

(ii) $\mathcal{R}(A)$ is closed, $\mathcal{R}(B)$ is non-closed and $d(A) = n(A) + n(B) = \infty$. In this case,

$$\begin{split} S_{GW}(A,B) &= \{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : C \text{ is given by } (2.1), n(A) + n(C_3) = \infty, \\ \mathcal{R}(B^*) + R(C^* P_{\mathcal{R}(A)^{\perp}}) \text{ is closed} \}. \end{split}$$

(iii) $\mathcal{R}(A)$ is non-closed, $\mathcal{R}(B)$ is closed and $n(B) = d(A) + d(B) = \infty$. In this case,

$$S_{GW}(A,B) = \{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : C \text{ is given by } (2.1), d(B) + d(C_3) = \infty, \\ \mathcal{R}(A) + \mathcal{R}(CP_{\mathcal{H}(B)}) \text{ is closed} \}.$$

(iv) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed and $n(B) = d(A) = \infty$. In this case,

$$S_{GW}(A,B) = \{C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(M_C) \text{ is closed}\}.$$

Proof. Since necessary and sufficient conditions for the existence of $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl are given in [10], we need only prove that the set $S_{GW}(A, B)$ is given as claimed in each of the four possible cases appearing above.

(i) Suppose that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and n(A) + n(B) = d(A) + d(B). Using Theorem 2.3, we have that $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is such that M_C is generalized left Weyl if and only if C is given by (2.1), where C_3 has closed range and

$$n(A) + n(C_3) \le d(C_3) + d(B).$$

Since we are looking for $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl, we are asking for which $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfying the previously mentioned condition, M_C is generalized right Weyl i.e $(M_C)^*$ is generalized left Weyl. Since,

$$(M_C)^* = \begin{pmatrix} B^* & C^* \\ 0 & A^* \end{pmatrix} : \begin{pmatrix} \mathcal{K} \\ \mathcal{H} \end{pmatrix} \to \begin{pmatrix} \mathcal{K} \\ \mathcal{H} \end{pmatrix}$$

and for C given by (2.1), C^* is given by

$$C^* = \begin{pmatrix} C_4^* & C_2^* \\ C_3^* & C_1^* \end{pmatrix} : \begin{pmatrix} \mathcal{N}(A^*) \\ \mathcal{N}(A^*)^{\perp} \end{pmatrix} \to \begin{pmatrix} \overline{\mathcal{R}(B^*)} \\ \mathcal{R}(B^*)^{\perp} \end{pmatrix},$$
(2.11)

applying Theorem 2.3 we get that $(M_C)^*$ is a generalized left Weyl operator if and only if $\mathcal{R}(C_3^*)$ is closed and

$$n(B^*) + n(C_3^*) \le d(C_3^*) + d(A^*)$$

which is equivalent with $\mathcal{R}(C_3)$ being closed and the inequality $d(C_3) + d(B) \le n(A) + n(C_3)$. Hence, M_C is a generalized Weyl operator if and only if *C* is given by (2.1), where C_3 has closed range and $n(A) + n(C_3) = d(C_3) + d(B)$.

(ii) Suppose that $\mathcal{R}(A)$ is closed, $\mathcal{R}(B)$ is non-closed and $d(A) = n(A) + n(B) = \infty$. Using Theorem 2.3, we have that $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is such that M_C is generalized left Weyl if and only if $\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{R}(A)^{\perp}})$ is closed. By item (iii) of Theorem 2.3, using the representations of $(M_C)^*$ given above, we get that $(M_C)^*$ is a generalized left Weyl operator if and only if $\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{R}(A)^{\perp}})$ is closed and $d(A^*) + \operatorname{codim}(\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{N}(A^*)})) = \infty$. By Remark 1, we have that the last condition is equivalent with $d(C_3^*) + d(A^*) = \infty$, i.e., $n(A) + n(C_3) = \infty$, where C_3 is the block operator in the representation (2.1) of C.

Hence, M_C is a generalized Weyl operator if and only if *C* is given by (2.1), where $\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{R}(A)^{\perp}})$ is closed and $n(A) + n(C_3) = \infty$.

Items (iii) and (iv) can be proved in a similar manner. \Box

In the next theorem, we present necessary and sufficient conditions which two operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ have to satisfy in order for M_C to be a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

THEOREM 2.10. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$. Then M_C is a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ if and only if $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and one of the following conditions is satisfied:

(1)
$$d(A) < \infty$$
, $n(B) = \infty$, $d(B) = \infty$,

Generalized Left and Right Weyl Spectra of Upper Triangular Operator Matrices

(2) $d(A) = \infty$, $n(B) < \infty$, (3) $d(A), n(B) < \infty$, $n(A) + n(B) \le d(A) + d(B)$.

Proof. Suppose that M_C is a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$. If at least one of $\mathcal{R}(A)$ and $\mathcal{R}(B)$ is not closed, we have that M_0 is not a generalized left Weyl operator since its range is not closed. So, it follows that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed subspaces.

Notice that for arbitrary $C \in \mathcal{B}(\mathcal{K}, \mathcal{H}), M_C$ is given by

$$M_{C} = \begin{pmatrix} 0 & A_{1} & C_{1} & C_{2} \\ 0 & 0 & C_{3} & C_{4} \\ 0 & 0 & 0 & B_{1} \\ 0 & 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} \mathcal{N}(A) \\ \mathcal{N}(A)^{\perp} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \to \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^{\perp} \\ \mathcal{R}(B) \\ \mathcal{R}(B)^{\perp} \end{pmatrix},$$
(2.12)

where A_1, B_1 are invertible operators and that there exist invertible $U, V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_{C}V = \begin{pmatrix} 0 & A_{1} & 0 & 0 \\ 0 & 0 & C_{3} & 0 \\ 0 & 0 & 0 & B_{1} \\ 0 & 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} \mathcal{N}(A) \\ \mathcal{N}(A)^{\perp} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^{\perp} \end{pmatrix} \to \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^{\perp} \\ \mathcal{R}(B) \\ \mathcal{R}(B) \\ \mathcal{R}(B)^{\perp} \end{pmatrix}.$$
 (2.13)

So, for any $C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^{\perp})$, we have that $\mathcal{R}(C_3)$ is closed and

$$n(A) + n(C_3) \le d(B) + d(C_3).$$

Hence, at least one of d(A) and n(B) is finite. So, we will consider all possible cases (there are 3 in total) when at least one of d(A) and n(B) is finite.

Suppose first that $d(A) < \infty$ and $n(B) = \infty$. Since for any $C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^{\perp})$, it follows that $n(C_3) = \infty$, and since there exists $C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^{\perp})$ such that $d(C_3) = 0$, we conclude that $n(M_C) \le d(M_C)$, for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ if and only if $d(B) = \infty$.

If $d(A) = \infty$ and $n(B) < \infty$ then for any $C_3 \in \mathcal{B}(\mathcal{K}(B), \mathcal{R}(A)^{\perp})$, we have that $d(C_3) = \infty$, so $n(M_C) \le d(M_C)$ is satisfied for any $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

If $d(A), n(B) < \infty$ then for any $C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^{\perp})$, we have that $n(B) - n(C_3) = d(A) - d(C_3)$, so $n(M_C) \le d(M_C)$ if and only if $n(A) + n(B) \le d(A) + d(B)$.

The converse implication can be proved in the same manner. \Box

As a corollary of the previous theorem, we also get the description of the set $\bigcup_{C \in \mathcal{B}(\mathcal{K},\mathcal{H})} \sigma_{lw}^g(M_C)$:

COROLLARY 2.11. For given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ we have

$$\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^{g}(M_{C}) = \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I) \text{ is not closed} \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(B - \lambda I) \text{ is not closed} \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : d(A - \lambda I) = n(B - \lambda I) = \infty \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : d(A - \lambda I), n(B - \lambda I) < \infty, \\ n(A - \lambda I) + n(B - \lambda I) > d(A - \lambda I) + d(B - \lambda I) \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : d(B - \lambda I) < n(B - \lambda I) = \infty \right\}.$$

I L AS

50

REMARK 2. Throughout the paper, we have used the following fact: For given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ in the each of following three cases:

- (i) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed,
- (ii) $\mathcal{R}(A)$ is closed, $\mathcal{R}(B)$ is non-closed,
- (iii) $\mathcal{R}(A)$ is non-closed, $\mathcal{R}(B)$ is closed,

we have that $\mathcal{R}(M_C)$ is closed if and only if the respective condition below is satisfied:

- (1) $\mathcal{R}(C_3)$ is closed,
- (2) $\mathcal{R}(B^*) + \mathcal{R}(C^* P_{\mathcal{R}(A)^{\perp}})$ is closed,
- (3) $\mathcal{R}(A) + R(CP_{\mathcal{N}(B)})$ is closed.

REFERENCES

- [1] X.H. Cao, M.Z. Guo, and B. Meng. Semi-Fredholm spectrum and Weyls theorem for operator matrices. Acta Math. Sin., 22:169–178, 2006.
- [2] X.H. Cao and B. Meng. Essential approximate point spectrum and Weyls theorem for operator matrices. J. Math. Anal. Appl., 304:759–771, 2005.
- [3] D.S. Cvetković -Ilić. The point, residual and continuous spectrum of an upper triangular operator matrix. *Linear Algebra Appl.*, 459:357–367, 2014.
- [4] Y.N. Dou, G.C. Du, C.F. Shao, and H.K. Du. Closedness of ranges of upper-triangular operators. J. Math. Anal. Appl., 304:759–771, 2005.
- [5] H.K. Du and J. Pan. Perturbation of spectrums of 2×2 operator matrices. *Proc. Amer. Math. Soc.*, 121:761–776, 1994.
- [6] G. Hai and A. Chen. The residual spectrum and the continuous spectrum of upper triangular operator matrices. Filomat, 28(1):65–71, 2014.
- [7] J.K. Han, H.Y. Lee, and W.Y. Lee. Invertible completions of 2 × 2 upper triangular operator matrices. Proc. Amer. Math. Soc., 128:119–123, 2000.
- [8] I.S. Hwang and W.Y. Lee. The boundedness below of 2×2 upper triangular operator matrix. *Integral Equations Operator Theory*, 39:267–276, 2001.
- [9] Y.Q. Ji. Quasitriangular + small compact = strongly irreducible. Trans. Amer. Math. Soc., 351:4657–4673, 1999.
- [10] G. Li, G. Hai, and A. Chen. Generalized Weyl spectrum of upper triangular operator matrices. Mediterr. J. Math, 12:1059–1067, 2015.
- [11] Y. Li, X.H. Sun, and H.K. Du. Intersections of the left and right essential spectra of 2 × 2 upper triangular operator matrices. Bull. Lond. Math. Soc., 36(6):811–819, 2004.
- [12] Y. Li, X.H. Sun, and H.K. Du. The intersection of left (right) spectra of 2×2 upper triangular operator matrices. *Linear Algebra Appl.*, 418:112–121, 2006.
- [13] Y. Li, X.H. Sun, and H.K. Du. A note on the left essential spectra of operator matrices. Acta Math. Sin., 23(12):2235–2240, 2007.
- [14] Y. Li and H. Du. The intersection of essential approximate point spectra of operator matrices. J. Math. Anal. Appl., 323:1171-1183, 2006.
- [15] K. Takahashi. Invertible completions of operator matrices. *Integral Equations Operator Theory*, 21:355–361, 1995.
- [16] C. Tretter. Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London, 2008.
- [17] S. Zhang, Z. Wu, and H. Zhong. Continuous spectrum, point spectrum and residual spectrum of operator matrices. *Linear Algebra Appl.*, 433:653–661, 2010.