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GENERALIZED LEFT AND RIGHT WEYL SPECTRA OF
UPPER TRIANGULAR OPERATOR MATRICES*

GUOJUN HAI" AND DRAGANA S. CVETKOVIC-ILIC#

Abstract. In this paper, for given operators A € B(#) and B € B(X), the sets of all C € B(X, #) such that M¢c = ( g g ) is generalized

Weyl and generalized left (right) Weyl, are completely described. Furthermore, the following intersections and unions of the generalized left Weyl
spectra

U of,Mc) ad () of,(Mc)
CEB(K,H) CeB(K,H)

are also described, and necessary and sufficient conditions which two operators A € B(#H) and B € B(K) have to satisfy in order for M to be a
generalized left Weyl operator for each C € B(X, H), are presented.
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1. Introduction. Let A, K be infinite dimensional complex separable Hilbert spaces, and let B(#, X) denote
the set of all bounded linear operators from # to K. For simplicity, we also write B(H, H ) as B(H). By F (H, K) we
denote the set of all operators from B(H, K) with a finite dimensional range. For a given A € B(H, X), the symbols
AL(A) and R (A) denote the null space and the range of A, respectively. Let n(A) = dimA(A), B(A) = codim®R (A),
and d(A) = dim R (A)~.

If A € B(#H, K) is such that R (A) is closed and n(A) < oo, then A is said to be a upper semi-Fredholm operator.
If B(A) < oo, then A is called a lower semi-Fredholm operator. A semi-Fredholm operator is one which is either
upper semi-Fredholm or lower semi-Fredholm. An operator A € B(#, X) is called Fredholm if it is both lower
semi-Fredholm and upper semi-Fredholm. The subset of B(#, KX) consisting of all Fredholm operators is denoted
by ®(H,K). By @, (H,K) (©_(H, X)) we denote the set of all upper (lower) semi-Fredholm operators from
B(H, K).

If A € B(H,XK) is such that R (A) is closed and n(A) < d(A), then A is a generalized left Weyl operator. If
A € B(#H, K) is such that R (A) is closed and d(A) < n(A), then A is a generalized right Weyl operator. Notice that in
the cases of generalized left (right) Weyl operators, n(A) and d(A) are allowed to be infinity. An operator A € B(H, X)
is a generalized Weyl operator if it is both generalized right Weyl and generalized left Weyl. The set of all generalized
Weyl operators from B(#, X) is denoted by W8 (#, K).

Let Wy (H, K) (W, (H, K)) denote the subset of B(H, K) consisting of all generalized left (right) Weyl opera-
tors. For an operator C € B(# ), the generalized left (right) Weyl spectrum o5, (C) (65,,(C)) is defined by

o}, (C)(c%,(C)) ={A e C:C—M is not generalized left (right) Weyl}.
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The generalized Weyl spectrum is defined by
o8 (C)={L e C:C—M isnot generalized Weyl}.

In this paper, we address the question for which operators A € B(H) and B € B(X), there exists an operator C €
B(XK,H) such that an upper-triangular operator matrix

ve= (o5 ) (%)= (%)

is generalized left (right) Weyl. There are many papers which consider some types of invertibility, regularity and some
other properties of an upper-triangular operator matrix M¢ (see [1]-[17] and references therein) as well as various
types of spectra of Mc. This paper is a continuation of the work presented in [10], where the sets e X.9H) oy (Mc)
and Nees(x ) oy, (Mc) are described and some necessary and sufficient conditions for the existence of C € B( K, H)
such that M¢ is generalized Weyl are given, but the set of all such operators C is not described. As a corollary of our
main results we obtain a description of all C € B( %X, #) such that M¢ is generalized Weyl, and we denote this set by
Scw (A, B). The sets Uces 91 Of, (Mc) and Ncep(x 21) 5, (Mc) are described for given A € B(#) and B € B(K)
as well as the set of all C € B(K,H) such that M¢ is generalized left Weyl which is denoted by Sgrw (4, B). In an
analogous way, similar results can be provided for Ucc g #) o4w(Mc) and Nees(x,#) o (Mc).

2. Results. In this section, by H, K we denote complex separable Hilbert spaces. For given operators A € B(H)

and B € B(X), by M¢ we denote
A C H H
w0 w) (%)~ (%)

where C € B(X,#{). Evidently, for given A € B(#) and B € B(X), arbitrary C € B(XK, #{) can be represented by
G G ) ( N(B) ) R(A)
C= : — . 2.1

( G G N(B)* R(A)*

First, we will state some auxiliary lemmas which will be used in the proof of the main result.

LEMMA 2.1. IfA € B(H) and D € F (), then R(A+ D) is closed if and only if R (A) is closed.

LEMMA 2.2. Let S € B(H), T € B(K,H) and R € B(H, K) be given operators.

(i) If R(S) is non-closed and R (( S T )) is closed, thenn(( S T ))=rco.

(ii) If R(S) is non-closed and ‘_7{(( }S; )) is closed, then d(( ; )) = oo,

Proof. (i) Suppose that R(S) is non-closed, R(( S T )) is closed and n(( S T )) <eo. Then

X
( S T ) is a left Fredholm operator which implies that there exists an operator ( v > CH — ( ;—([ ) such that

(J;)(S T )=I+K,

for some compact operator K € B(H & K). Hence, XS = I,; + K, for some compact operator K| € B(#) which
implies that S is left Fredholm and so R (S) is closed, which is a contradiction.
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(ii) The proof follows by taking adjoints in (i). O

In the following theorem, for given operators A € B(#) and B € B(X), we present necessary and sufficient
conditions for the existence of C € B(K,H) such that Mc is a generalized left Weyl operator, and we completely
describe the set of all such C € B(K,H).

THEOREM 2.3. Let A € B(H) and B € B(XK). There exists C € B(K,H ) such that Mc is generalized left Weyl
if and only if one of the following conditions is satisfied:

(i) R(A) and R (B) are closed and n(A)+n(B) < d(A)+d(B). In this case,
Seuw(A,B) = {C € B(K, ) : Cis given by [2.1)),Cs has closed range,
n(A) +n(C3) < d(C3) +d(B) }
(ii) R(A) is closed, R (B) is non-closed and d(A) = . In this case,
Seow (A, B) = {C € B(K, ) : R(B") + R(C"Pg a1 is closed} :
(iii) R(A) is non-closed, R (B) is closed and n(B) = d(A) +d(B) = oo. In this case,
Scuw(A,B) = {c € B(K,H) : R(A) + R(CPyy)) is closed,
d(B) + codim(R (A) + R (CPa))) = oo} .

(iv) R(A) and R (B) are non-closed and n(B) = d(A) = oo. In this case,

Sew (A,B) = {C € B(K,H) : R(Mc) is closed}.

For simplicity, we will divide the statement of this theorem into four propositions and prove each of them sepa-
rately.

PROPOSITION 2.4. Let A € B(H) and B € B(XK) be such that R (A) and R.(B) are closed. There exists C €
B(K,H) such that Mc is generalized left Weyl if and only if n(A) +n(B) < d(A) +d(B). In this case,

Seuw (A,B) = {C € B(K,H) :Cis given by (2.1),C3 has closed range,
n(A) +n(C3) < d(C) +d(3)}.
Proof. If n(A) +n(B) < d(A) +d(B), then My is a generalized left Weyl operator. Conversely, suppose that there

exists C € B(XK,#H) such that Mc is a generalized left Weyl operator and that C is given by (2.1). Then Mc has a
matrix representation

A C G H R(A)
Mc=| 0 G G |:| AB) | —| RA*T |,
0 0 B A(B)*+ K

where Ay : H — R (A) is right invertible and By : A\(B)* — K is left invertible. Evidently, there exists invertible
U,V € B(H & K) such that

A 0 0 H R(A)
UMcV=| 0 G 0 |:| AB | —| RA* |. (2.2)
0 0 B N(B)* X
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Hence, UM(YV is a generalized left Weyl which implies that
n(Ar)+n(C3) <d(C3) +d(By). 2.3)
Since,

n(Ar) =n(A), n(B)=n(C;)+dimN(C3)",

d(B;)=d(B) and d(A) =d(C3)+dimR(C3),
having in mind that dim A(C3)* = dim ® (C3) and li we get
n(A)+n(B) <d(A)+d(B).

To describe the set of all C € B(X, #) such that Mc is a generalized left Weyl, notice that for arbitrary C given by
(2.1), there exists invertible U,V € B(H & K) such that UMV is given by (2.10). Hence, Mc is a generalized left
Weyl if and only if UMV is a generalized left Weyl which is equivalent with the fact that ® (C3) is closed and that

@23) holds. O

PROPOSITION 2.5. Let A € B(H) and B € B(XK) be such that R (A) is closed and R (B) is non-closed. There
exists C € B(K, H ) such that Mc is generalized left Weyl if and only if d(A) = oo. In this case,

Seiw (A,B) = {C € B(K, H) : R(B") + R(C"PgqyL) is closed}.

Proof. Suppose that d(A) = e. Then Mc, is a generalized left Weyl operator for Cy given by

Co= ( 2 ) P K — R(A) B R(A),

where J : X — R (A)* is unitary. Evidently, Mc, is represented by

A 0
Mey=| 0 J | HoXK —RA)ORA) DK,
0 B

where Ay : H — R (A) is right invertible. Since J is invertible, there exists an invertible operator U € B(H & X)
such that

Ay

0
UMc, = J | HoK — RASRA) & K.
0

0
0
Now, it is clear that UM(, is a generalized left Weyl operator, and so Mc, is a generalized left Weyl operator.

Conversely, suppose that there exists C € B( K, H) such that M¢ is generalized left Weyl. Then M¢ has a matrix
representation

A C
Mc=| 0 G |:HoK—RAORA) DX, (2.4
0 B
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where A; : H — R (A) is right invertible. Thus, there exists an invertible operator V € B(H & X)) such that

Al 0
MV=| 0 G | HoK —RAORA K. (2.5)
0 B

Now we will show that d(A) = co: Indeed, if d(A) < oo, then R (C5) is finite dimensional. Since R (McV) is closed, we
have that ® (( Bz )) is closed, which implies that ® (B*) + R (C3) is closed. This, together with dim R (C}) < oo,
implies that & (B) is closed. This is a contradiction. Hence, d(A) = co.

In order to describe the set Sgrw (A, B), notice that for arbitrary C € B( K, H ), M has a form (2.4)) and that there
exists an invertible operator V € B(H & K) such that McV is given by (2.5)). Hence, Mc is generalized left Weyl if

and only if C is such that & ( ( Cg )) is closed and that

n(A1)+n((( (;2 )>> gd(Al)—i—d((( C; ))> 2.6)

Notice that by Lemma|[2.2] we have that for each C; € B( X, R (A)*) such that ® ( ( Cl;z > ) is closed, it follows that

((5)-=mm

Scuw (A,B) = {c € B(K,H) : R(B") + R(C"Pgya)1) is closed}. D

PROPOSITION 2.6. Let A € B(H) and B € B(K) be such that R (A) is non-closed and R (B) is closed. There
exists C € B(K,H) such that Mc is generalized left Weyl if and only if n(B) = d(A) +d(B) = . In this case,
Scuw (A, B) = {c € B(K, H) : R(A) +R(CPyy)) is closed,
d(B) +codim(R (A) + R (CPy(5))) = oo} .

Proof. Suppose that n(B) = d(A) + d(B) = . Then there exists a left invertible operator C; : A[(B) — H such
that R (C1) = R (A). We will prove that M is a generalized left Weyl operator for C given by

C=(C 0):NB)SN(B): — 4.

Evidently, M is represented by

Mc<g “ ;)1 ):}[@N(B)@N(B)LH}[@K,

where B : \[(B)* — K is left invertible and
R(Mc) = (R(A)+R(C1)) & R (B1) = R(A) & R(B).
Thus, R (Mc) is closed and

d(Mc) = d(A) +d(B) = o



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 41-50, February 2017.

Guojun Hai and Dragana S. Cvetkovié-Ili¢ 46

i.e., Mc is a generalized left Weyl operator.

Conversely, suppose that there exists C € B( X, H) such that M¢ is generalized left Weyl. It follows that M¢ has
a matrix representation

A C C
MC< 0 ol Bz ) HENB)SN(B): — Ha K, (2.7)
1
where B : A[(B)* — K is left invertible and there exists an invertible operator U € B(H @ %K) such that
A C O
UMC—< 0 0‘ 8 >:}[@9\[(B)@9\[(B)L—>}[@K. (2.8)
1

Since UM has a closed range, by Lemma [2.1| and the fact that & (A) is non-closed, we have that n(B) = . Also,
applying Lemma we getthatn(( A Cy )) = co which implies that d(UM¢) =d(B)+d(( A C; ))=ee. Since
d(( A Ci))<d(A),itfollows that d(A) + d(B) = .

In order to describe the set Sgrw (A, B), notice that for arbitrary C € B( K, H ), M has a form (2.7)) and that there
exists an invertible operator V € B(H & X) such that UM is given by (2.8). Hence, Mc is generalized left Weyl if
and only if C is such that & (( A C )) is closed and that

n((A C))+nB)<d((A C))+d(B). (2.9)

Notice that if ® (( A C; )) is closed, then by Lemma we have that n(( A €y )) =oo. Hence, Mc is a
generalized left Weyl operator for C € B(%K, #) ifandonlyif R (( A C; ))isclosedandd (( A C) ))+d(B))=
oo, Obviously, d(B1) =d(B). O

PROPOSITION 2.7. Let A € B(H) and B € B(XK) be such that R (A) and R(B) are non-closed. There exists
C € B(K,H) such that M is generalized left Weyl if and only if n(B) = d(A) = oo. In this case,

Sciw(A,B) = {C € B(K,H): R(Mc) is closed } .

Proof. Since R (A) and R (B) are non-closed, by Lemma we conclude that if C € B(X,#) is such that
R.(Mc) is closed, then n(M¢) = d(Mc) = . Hence, Mc is generalized left Weyl if and only if R(M() is closed. Now,
the proof directly follows by Theorem 2.6 of [4]. O

REMARK 1. Itis interesting to notice that the condition d(B) +codim (R (A) + R (CPy(g))) = ° from Proposition
appearing also in item (iii) of Theorem[2.3] can be replaced by the condition d(C3) + d(B) = oo, where Cs is the
block-operator defined by (2.1)). So, if A € B(#) and B € B(X) are such that R (A) is non-closed and R (B) is closed,
then

A C G H M
Mc=| 0 G G |:| AB | — | RA* |,
0 0 B A(B)*+ K

where A; : H — R (A) is with a dense range and B : A\(B)* — X is left invertible. There exists an invertible
U € B(H & K) such that

A G 0 H R(A)
UMc=| 0 ¢ 0 |:| «NB) | —| ®@A)* |. (2.10)
0 0 B N (B)* x
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A G

Now, it is evident that R (Mc) is closed if and only if ( 0 C
3

) is closed which is equivalent with the fact that

R(A) +R(CPy)) is closed. Also,

(5 ) -((8 2))-ner-scs

since A7 is injective (R (A1) = R.(A)). Hence, in this case, the set Sgrw can also be described by

Soow (A, B) = {c € B(K.H): Cis given by (1), R(A) +R(CPy(z)
is closed, d(C3) 4+ d(B) = o }.

As a corollary of the previous theorem, we get the description of the set Nceg(«, 1) o} (Mc):

COROLLARY 2.8. Let A € B(H) and B € B(XK) be given operators. Then
ﬂ o}, (Mc)={AeC:R(A—M) isnot closed, n(B—M) < e}
CeB(K.H)

U{A € C: R(B—M\) is not closed, d(A—Al) < oo}

U{A e C: R(A—M) isnot closed, R(B— M) is closed,
d(A=M)+d(B—M) < e}

U{AeC: R(A—M),R(B—\) are closed,
n(A=M)+n(B—M)>d(A—M)+d(B—M)}.

Using Theorem [2.3] Remark 1 and the fact that A is generalized left Weyl if and only if A* is generalized right Weyl,
we can give the description of the set Sgw (A, B) which consists of all C € B(X, #) such that M¢ is generalized Weyl.
Notice that necessary and sufficient conditions for the existence of C € B( X, #) such that M is generalized Weyl are
given in [10]].

THEOREM 2.9. Let A € B(#H) and B € B(XK) be given operators. There exists C € B(K,H) such that Mc is
generalized Weyl if and only if one of the following conditions is satisfied:

(i) R(A) and R (B) are closed and n(A) +n(B) = d(A) +d(B). In this case,
Scw(A,B) = {c € B(K, H) : C is given by (2.1),Cs has closed range,
n(A)+n(Cs) = d(C3) + d(B)}.
(ii) R(A) is closed, R (B) is non-closed and d(A) = n(A) +n(B) = co. In this case,

Sew(A,B) ={C € B(K,H) : Cis given by [2.1)),n(A) + n(C3) = oo,
R(B") +R(C"Pyg 4)1) is closed}.

(iii) R (A) is non-closed, R (B) is closed and n(B) = d(A) +d(B) = . In this case,

Sew(A,B) = {C € B(K,H) : C is given by (2.1),d(B) +d(C3) = oo,
R(A) + R(CPyp)) is closed}.
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(iv) R(A) and R (B) are non-closed and n(B) = d(A) = . In this case,
Sew(A,B) ={C € B(K,#H) : R(Mc) is closed}.

Proof. Since necessary and sufficient conditions for the existence of C € B(X, H) such that M¢ is generalized
Weyl are given in [10]], we need only prove that the set Sgw (A, B) is given as claimed in each of the four possible cases
appearing above.

(i) Suppose that R (A) and R (B) are closed and n(A) + n(B) = d(A) + d(B). Using Theorem [2.3] we have that
C € B(XK,H) is such that Mc is generalized left Weyl if and only if C is given by (2.1, where C3 has closed range
and

n(A) +n(Cs) < d(C3) +d(B).

Since we are looking for C € B(XK,H) such that M¢ is generalized Weyl, we are asking for which C € B(X, H)
satisfying the previously mentioned condition, M¢ is generalized right Weyl i.e (M¢)* is generalized left Weyl. Since,

ey =% 5 ) ()~ ()

and for C given by (2.1), C* is given by

“-(& &) (80~ (5)

applying Theorem we get that (Mc)* is a generalized left Weyl operator if and only if & (C}) is closed and
n(B*) +n(C3) <d(C3) +d(A7)

which is equivalent with R (C3) being closed and the inequality d(C3) +d(B) < n(A) +n(Cs). Hence, Mc is a gener-
alized Weyl operator if and only if C is given by (2.1]), where Cs has closed range and n(A) + n(Cs) = d(Cs) +d(B).

(ii) Suppose that R (A) is closed, R (B) is non-closed and d(A) = n(A) + n(B) = oo. Using Theorem[2.3] we have
that C € B(X, #) is such that Mc is generalized left Weyl if and only if R (B*) + K (C"Pg 4).) is closed. By item
(iii) of Theorem using the representations of (Mc¢)* given above, we get that (M¢)* is a generalized left Weyl
operator if and only if & (B") + R (C"Pg 4)) is closed and d(A*) + codim(R (B*) + R.(C*Py;(4+))) = o. By Remark
1, we have that the last condition is equivalent with d(C5) +d(A*) = e, i.e., n(A) +n(C3) = oo, where C3 is the block
operator in the representation of C.

Hence, Mc is a generalized Weyl operator if and only if C is given by lb where R (B*) + R(C"Pyg 4)1) is
closed and n(A) +n(Cz) = co.

Items (iii) and (iv) can be proved in a similar manner. [

In the next theorem, we present necessary and sufficient conditions which two operators A € B(H ) and B € B(XK)
have to satisfy in order for Mc to be a generalized left Weyl operator for each C € B( K, H).

THEOREM 2.10. Let A € B(H) and B € B(XK). Then Mc is a generalized left Weyl operator for each C €
B(K,H) if and only if R (A) and R (B) are closed and one of the following conditions is satisfied:

(1) d(A) < oo, n(B) =oo, d(B) = oo,
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(2) d(A) = o, n(B) < o,
(3) d(A),n(B) <, n(A)+n(B) <d(A)+d(B).
Proof. Suppose that Mc is a generalized left Weyl operator for each C € B(X, #). If at least one of K (A) and

R.(B) is not closed, we have that My is not a generalized left Weyl operator since its range is not closed. So, it follows
that R (A) and R (B) are closed subspaces.

Notice that for arbitrary C € B(X, # ), Mc is given by

0 Ay C G N (A) R(A)
[0 0 G G| | N4 R(A)*
Mc = 00 0 B : A(B) — % (B) , (2.12)
00 0 0 N(B)* R(B)*
where Ay, By are invertible operators and that there exist invertible U,V € B(H & K) such that
0 A4 0 0 N(A) R(A)
o0 o oo | | aw R (4)*
UMcV = 0 0 0 B : A(B) — % (B) . (2.13)
00 0 0 N(B)* R(B)*

So, for any C3 € B(N(B), R (A)*), we have that ® (C3) is closed and
n(A) +n(C3) <d(B)+d(Cs).

Hence, at least one of d(A) and n(B) is finite. So, we will consider all possible cases (there are 3 in total) when at least
one of d(A) and n(B) is finite.

Suppose first that d(A) <o and n(B) = co. Since for any C; € B(N(B), R (A)™1), it follows that n(C3) = oo,
and since there exists C3 € B(N(B), R (A)*) such that d(C3) = 0, we conclude that n(Mc) < d(Mc), for each C €
B(K,H) if and only if d(B) =

If d(A) = o and n(B) < oo then for any C3 € B(N(B), R (A)"), we have that d(C3) = o, so n(Mc) < d(Mc) is
satisfied for any C € B(K, H).

If d(A),n(B) < oo then for any C3 € B(N(B), R (A)1), we have that n(B) —n(Cs) = d(A) — d(C3), so n(M¢) <
d(Mc) if and only if n(A) +n(B) < d(A)+d(B).

The converse implication can be proved in the same manner. [

As a corollary of the previous theorem, we also get the description of the set UCEQ;( x.9H) GfW(Mc):

COROLLARY 2.11. For given operators A € B(#H ) and B € B(K) we have

U ol (Mc)={AeC:R(A—\) is not closed}
CeB(K,H)
U{h e C: R(B—M) isnot closed}
U{AeC:d(A—M)=n(B—M)=co}
U{AeC:d(A—M),n(B—M) < oo,
n(A—=M)+n(B—M)>dA—M)+d(B—M)}

U{AeC:d(B—M) <n(B—M)=oo}.
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REMARK 2. Throughout the paper, we have used the following fact: For given operators A € B(#) and B € B(X)

in the each of following three cases:

(i) R(A) and R (B) are closed,
(ii) R (A) is closed, R (B) is non-closed,
)

(iii) R (A) is non-closed, R (B) is closed,

we have that R (M¢) is closed if and only if the respective condition below is satisfied:

(1]
[2]

[3]

[4]
[5]
[6]
[7]

[8]

[9]
[10]
(11]

[12]

[13]
[14]
[15]
[16]
[17]

(1) R(C3) is closed,
(2) R(B*)+R(C"Pg4yr) is closed,
(3) R(A)+R(CPyp)) is closed.
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