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AUTOMORPHISMS OF A COMMUTING GRAPH OF

RANK ONE UPPER TRIANGULAR MATRICES∗

SHIKUN OU† AND JIN ZHONG‡

Abstract. Let F be a finite field, n > 2 an arbitrary integer, Mn(F ) the set of all n×n matrices

over F , and U1
n(F ) the set of all rank one upper triangular matrices of order n. For S ⊆ Mn(F ),

denote C(S) = {X ∈ S| XA = AX for all A ∈ S}. The commuting graph of S, denoted by Γ(S), is

the simple undirected graph with vertex set S\C(S) in which for every two distinct vertices A and B,

A ∼ B is an edge if and only if AB = BA. In this paper, it is shown that any graph automorphism

of Γ(U1
n(F )) with n > 3 can be decomposed into the product of an extremal automorphism, an inner

automorphism, a field automorphism and a local scalar multiplication.
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1. Introduction. Let F be a finite field, F ∗ = F \ {0}, and n > 2 an arbitrary

integer. We denote by Mn(F ) the set of all n × n matrices over F , Un(F ), U−1
n (F )

and U1
n(F ), respectively, the set of all upper triangular matrices, invertible upper

triangular matrices and rank one upper triangular matrices in Mn(F ). For a matrix

A = (aij) ∈ Mn(F ) and a map τ : F → F , let [A] and Aτ , respectively, be the

subspace spanned by A and the matrix (τ(aij)).

The concept of commuting graph was first introduced and studied for semisimple

rings by Akbari et al. in [2], and further studied in many references and therein,

see [1,3–13]. A lot of results about the diameter, the connectivity of commuting graphs

and so on have been obtained. Additional information about algebraic properties of

the elements can be obtained by studying the properties of a commuting graph. For

example, for a finite field F , if R is a ring with identity such that Γ(R) ∼= Γ(M2(F )),

then R ∼= M2(F ), see [13]. It was conjectured that this is also true for the full matrix

ring Mn(F ), where F is a finite field and n > 3.
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Generally, determining the full automorphisms of a graph is an important how-

ever a difficult problem both in graph theory and in algebraic theory. It seems that

little is known for the automorphisms of the commuting graphs of rings. This ob-

servation motivates us to do some work on this topic. For a finite field F , it seems

very difficult to determine the full automorphisms of Γ(Mn(F )), so we focus on the

subgraph of Γ(Mn(F )) induced by U1
n(F ). It’s clear that the vertex set of Γ(U1

n(F ))

is U1
n(F ). The following four types of automorphisms for Γ(U1

n(F )) are called standard

automorphisms of Γ(U1
n(F )).

• Let P ∈ U−1
n (F ). We define σP : U1

n(F ) → U1
n(F ) by A 7→ P−1AP . Then

it is easy to see that σP is an automorphism of Γ(U1
n(F )), which is called an

inner automorphism of Γ(U1
n(F )).

• If τ is an automorphism of the field F , then the map θτ : U1
n(F ) → U1

n(F )

defined by A 7→ Aτ is an automorphism of Γ(U1
n(F )), which is called a field

automorphism of Γ(U1
n(F )).

• Let ε =











0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...

0 1 · · · 0 0

1 0 · · · 0 0











∈ Mn(F ). Then it is not difficult to verify

that the map η : A 7→ εAT ε is an automorphism of Γ(U1
n(F )), which is called

an extremal automorphism of Γ(U1
n(F )). Note that η2 = 1. For convenience,

the identity automorphism of Γ(U1
n(F )) is also regarded as an extremal au-

tomorphism.

• Let ξ be a permutation on U1
n(F ) such that each [A] is stabilized, i.e, ξ(A) =

αAA for any A ∈ U1
n(F ), where αA ∈ F ∗ depends on A. Then ξ is an

automorphism of Γ(U1
n(F )), which is called a local scalar multiplication of

Γ(U1
n(F )).

It is not difficult to see that the following result holds.

Lemma 1.1. Let σP , θτ , η and ξ be defined as above. Then,

(i) σP · ξ = ξ · σP ;

(ii) η−1 · σP · η = ση(P−1);

(iii) η−1 · θτ · η = θτ ;

(iv) θ−1
τ · ξ · θτ and η−1 · ξ · η both are local scalar multiplications of Γ(U1

n(F )).

In this paper, we aim to describe the full automorphisms of Γ(U1
n(F )). In order to

prove the main theorem of this paper, we will follow a technique from a recent paper

in which the full automorphisms of the zero-divisor graph of U1
n(F ) were determined.
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In [14], Wong et al. showed that any graph automorphism of the zero-divisor graph

of U1
n(F ) with n > 3 can be decomposed into the product of an inner automorphism,

a field automorphism and a local scalar multiplication.

Our main result is as follows.

Theorem 1.2. Let n > 3. Then θ is an automorphism of Γ(U1
n(F )) if and

only if θ can be decomposed into the product of an extremal automorphism, an inner

automorphism, a field automorphism and a local scalar multiplication.

2. Notations and preliminaries. Let Fn be the n-dimensional column vector

space over F . It’s well known that any A ∈ U1
n(F ) can be written as A = αβT ,

where α, β ∈ Fn. Let e1, e2, . . . , en be the elements of the standard basis of Fn.

For convenience, in a vector expression α =
∑
aiei the subscript i can be less than

1 or greater than n, and we use the convention that the coefficient ai is regarded as

zero if i 6 0 or i > n + 1 in some term aiei. Then for A ∈ U1
n(F ), we can write

A =
∑

i6j aibjeie
T
j with ai, bj ∈ F . Denote by I the identity matrix.

In order to describe all automorphisms of the graph Γ(U1
n(F )), we need firstly to

study the automorphisms of a related graph. For S ⊆ Mn(F ), we refer to Γ(S) as

the graph with vertex set {[A] | A ∈ S \C(S)} in which for every two distinct vertices

[A] and [B], [A] ∼ [B] is an edge if and only if AB = BA. The graph is well defined

since AB = BA if and only if (aA)(bB) = (bB)(aA) for any a, b ∈ F ∗. Let Vn be the

vertex set of the graph Γ(U1
n(F )), i.e.,

Vn = {[A] | A ∈ U1
n(F )}.

For [A] ∈ Vn, we denote by N ([A]) the set of neighbours of [A]. The degree of [A],

written as deg([A]), is the cardinality of N ([A]). For a nonempty subset W of Vn, let

|W | be the cardinality of W . The subgraph of Γ(U1
n(F )) induced by W is denoted

by Γ[W ]. For two subsets U and W of the vertex set Vn, we denote U ∼ W (resp.,

U ⊥W ) if x ∼ y (resp., x 6∼ y) for any x ∈ U and any y ∈ W . Also {x} ∼W (resp.,

{x} ⊥W ) is denoted by x ∼W (resp., x ⊥W ). Set

W∼(U) = {x ∈ U : x ∼W} ,

W⊥(U) = {y ∈ U : y ⊥W} ,

and

Φij =

{[

(

∑

16s6i−1
ases + ei

)(

ej +
∑

j+16t6n
btet

)T
]

| as, bt ∈ F

}

, 1 6 i 6 j 6 n,

Φk =
⋃

16i6n+1−k
Φi,i+k−1, 1 6 k 6 n,

Wkl = Φkl ∪ Φn−l+1,n−k+1, 1 6 k 6 ⌊n+1

2
⌋ and k 6 l 6 n− k + 1.
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For 1 6 k 6 ⌊n+1
2 ⌋ and 1 6 t 6 n, by a direct computation, we have

Φ∼
k (Φt) =

{

Φt \
⋃

16i6n−k−t+2 Wi,i+t−1, k + t 6 n+ 1,

Φt, otherwise,
(2.1)

W⊥
kk(Φt) =

{
Wk,k+t−1, t = n− 2k + 2,

∅, otherwise,
(2.2)

W⊥
k,n−k+1(Φt) =

{
Wk−t+1,k, k > t,

∅, otherwise.
(2.3)

In [14], Wong et al. gave an explicit description of the vertex set and the order

of Γ(U1
n(F )).

Lemma 2.1. ([14, Lemma 3.1])

(i) Vn is the disjoint union of all Φij , 1 6 i 6 j 6 n.

(ii) The number of vertices in Φij is |F |n+i−j−1.

(iii) The number of vertices in Γ(U1
n(F )) is |Vn| =

∑

16i6j6n |F |n+i−j−1.

Now, we study the vertex degree of Γ(U1
n(F )).

Lemma 2.2. Let 1 6 i 6 j 6 n, and [A] ∈ Φij. Then deg([A]) = |Vn| − (n+ i−

j − 2 + δij)|F |n−1 − δij, where δij is defined to be 0 or 1 depending on i being equal

to j or not.

Proof. We first consider deg([eie
T
j ]) for 1 6 i 6 j 6 n. For any [αβT ] inN ([eie

T
j ]),

we may assume that α =
∑

s6k ases ∈ Fn, β =
∑

l6t btet ∈ Fn, 1 6 k 6 l 6 n. It’s

easily seen that
[
αβT

]
∼
[
eie

T
j

]
⇔ bi

(
αeTj

)
= aj

(
eiβ

T
)

(2.4)

⇔ akbi = 0 for all k 6= j, and ajbl = 0 for all l 6= i.(2.5)

Now, we claim that bi = 0. Indeed, if bi 6= 0, then by (2.5), ak = 0 for k 6= j.

Thus, it follows from (2.4) that aj 6= 0. Moreover, by (2.5) again, bl = 0 for l 6= i.

Consequently, αβT = (ajbi)eje
T
i , which implies that [eje

T
i ] = [αβT ] ∈ N ([eie

T
i ]) (note

that [eie
T
i ] /∈ N ([eie

T
i ])), a contradiction. Since bi = 0, there exists l 6= i such that

bl 6= 0. Then by (2.5) we have aj = 0. Therefore, [αβT ] ∼ [eie
T
j ] if and only if aj = 0

and bi = 0.

For any 1 6 k 6 l 6 n and 1 6 s 6 n, denote

Ψ
(s∗)
kl =

{ [
αβT

]
∈ Φkl | α, β ∈ Fn, αT es 6= 0

}

,

Ψ
(∗s)
kl =

{ [
αβT

]
∈ Φkl | α, β ∈ Fn, βT es 6= 0

}

,
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and

Ψ1 =
{ [
αβT

]
∈ U1

n(F ) | α, β ∈ Fn, αT ej 6= 0
}

,

Ψ2 =
{ [
αβT

]
∈ U1

n(F ) | α, β ∈ Fn, βT ei 6= 0
}

.

Then we can see that

Ψ1 =
⋃

j6k6l6n

Φ
(j∗)
kl , Ψ2 =

⋃

16k6l6i

Φ
(∗i)
kl ,

and

N
([
eie

T
j

])
= Vn \

(
Ψ1 ∪Ψ2 ∪

{[
eie

T
j

]})
.

Notice that Ψ1 ∩Ψ2 = Φii or ∅ depending on i being equal to j or not. Hence

deg
([
eie

T
j

])
= |Vn| − |Ψ1 ∪Ψ2| − δij

= |Vn| − |Ψ1| − |Ψ2|+ |Ψ1 ∩Ψ2| − δij

= |Vn| −
∑

j6k6l6n

|Φ
(j∗)
kl | −

∑

16k6l6i

|Φ
(∗i)
kl |+ (1 − δij)|Φii| − δij .

Now a direct computation shows that

|Ψ
(j∗)
kl | =

{
(|F | − 1) |F |n+k−l−2, j + 1 6 k 6 n,

|F |n+k−l−1, k = j,

and

|Ψ
(∗i)
kl | =

{
(|F | − 1) |F |n+k−l−2, 1 6 l 6 i− 1,

|F |n+k−l−1, l = i.

Thus,

deg([eie
T
j ]) = |Vn| − i|F |n−1 − (n− j − 1)|F |n−1 + (1− δij)|F |n−1 − δij

= |Vn| − (n+ i− j − 2 + δij)|F |n−1 − δij .

Next, we will show that deg([A]) = deg([eie
T
j ]) for [A] ∈ Φij , 1 6 i 6 j 6 n.

Suppose that [A] = [(
∑

16s6i−1 a
′
ses+ei)(ej+

∑

j+16t6n b
′
tet)

T ] ∈ Φij , where a
′
s, b

′
t ∈

F . Set P = I −
∑

16s6i−1 a
′
sese

T
i +

∑

j+16t6n b
′
teje

T
t ∈ U−1

n (F ). Then [P−1AP ] =

[eie
T
j ]. We define the map σ from N ([A]) to N ([eie

T
j ]) by [X ] 7→ [PXP−1], and notice

that σ is bijective. Hence, deg([A]) = deg([eie
T
j ]) for any [A] ∈ Φij , 1 6 i 6 j 6 n.

In order to classify automorphisms of Γ(U1
n(F )), it is necessary to investigate a

class of special subgraphs, the characteristic subgraphs of Γ(U1
n(F )).

Definition 2.3. For an automorphism ψ of Γ(U1
n(F )), a nonempty subset W

of the vertex set Vn is called stable under ψ if ψ(W ) = W . The subgraph Γ0 of
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Γ(U1
n(F )) is called a characteristic subgraph if the vertex set of Γ0 is stable under

each automorphism of Γ(U1
n(F )).

It’s obvious that the intersection, union and difference of two characteristic sub-

graphs are also such subgraphs, and it is not difficult to see that the following result

holds.

Lemma 2.4. Let U and W be subsets of Vn. If Γ[W ] and Γ[U ] are characteristic

subgraphs of Γ(U1
n(F )), then so are Γ[W∼(U)] and Γ[W⊥(U)].

Clearly, Vn is the disjoint union of Φ1, Φ2, . . . , Φn. For 1 6 k 6 n, if [A] ∈

Φi,i+k−1, 1 6 i 6 n+1− k, by Lemma 2.2 we see that deg([A]) = |Vn| − (n− k− 1+

δi,i+k−1)|F |n−1 − δi,i+k−1, which shows

deg ([A]) = |Vn| − (n− k − 1 + δ1k)|F |
n−1 − δ1k, ∀ [A] ∈ Φk, 1 6 k 6 n,(2.6)

where δij is defined as in Lemma 2.2. In the following, we will introduce some char-

acteristic subgraphs of Γ(U1
n(F )), which will play an important role in the studying

of the automorphisms of Γ(U1
n(F )).

Lemma 2.5. For any 1 6 k 6 n, Γ[Φk] is a characteristic subgraph of Γ(U1
n(F )).

Proof. Let ψ be an automorphism of Γ(U1
n(F )). For any [A] ∈ Φk, assume that

ψ([A]) ∈ Φl, 1 6 k, l 6 n. We can see from (2.6) that

deg (ψ ([A])) = |Vn| − (n− l − 1 + δ1l)|F |
n−1 − δ1l.(2.7)

Since deg([A]) = deg(ψ([A])) for any [A] ∈ Vn, then by (2.6) and (2.7) we get k = l,

which implies that ψ(Φk) ⊆ Φk. Similarly, we have ψ−1(Φk) ⊆ Φk. By considering

the action of ψ on ψ−1(Φk) ⊆ Φk we get Φk = ψ(ψ−1(Φk)) ⊆ ψ(Φk). Therefore,

ψ(Φk) = Φk.

Lemma 2.6. For any 1 6 k 6 ⌊n+1
2 ⌋ and k 6 l 6 n − k + 1, Γ[Wkl] is a

characteristic subgraph of Γ(U1
n(F )).

Proof. Denote by C the set of all characteristic subgraphs of Γ(U1
n(F )). We first

proceed by induction on k to show that Γ[Wkk] ∈ C for any 1 6 k 6 ⌊n+1
2 ⌋. For

k = 1, Φ⊥
n (Φ1) = W11, we can see from Lemma 2.4 and Lemma 2.5 that Γ[W11] ∈ C .

Assume that Γ[W11], Γ[W22], . . ., Γ[Wk−1,k−1] ∈ C , 2 6 k 6 ⌊n+1
2 ⌋. Observe that

Φ∼
n−k+1(Φ1) = Φ1\

⋃

16i6k Wii (see (2.1)), which implies that Γ[Φ1\
⋃

16i6k Wii] ∈ C .

Hence, Γ[Wkk] = Γ[Φ1]− Γ[Φ1 \
⋃

16i6k Wii]−
∑

16i6k−1 Γ[Wii] ∈ C .

Next, we show that Γ[Wkl] ∈ C for 1 6 k 6 ⌊n+1
2 ⌋ and k + 1 6 l 6 n− k + 1 by

considering the following three cases.

Case 1. 1 6 k 6 ⌊n+1
2 ⌋ and l = n− k + 1.
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It’s clear that W1n = Φ1n = Φn, then by Lemma 2.5 we know that W1n ∈ C . For

2 6 k 6 ⌊n+1
2 ⌋ and l = n− k+ 1, since W⊥

kk(Φl−k+1) = Wkl (see (2.2)), then Lemma

2.4, Lemma 2.5 and the above argument imply that Γ[Wkl] ∈ C .

Case 2. 1 6 k 6 ⌊n+1
2 ⌋ and k + 1 6 l 6 ⌊n+1

2 ⌋.

By Case 1 we have Γ[Wl,n−l+1] ∈ C . Then we can see from W⊥
l,n−l+1(Φl−k+1) =

Wkl (see (2.3)) that Γ[Wkl] ∈ C .

Case 3. 1 6 k 6 ⌊n+1
2 ⌋ and ⌊n+1

2 ⌋+ 1 6 l 6 n− k.

We proceed by induction on t to show that Γ[Wt,l−k+t] ∈ C for 1 6 t 6 k. By

Case 2 we have W1,n−l+1 ∈ C . For k = 1, W∼
1,n−l+1(Φl−k+1) = Φl−k+1 \ W1,l−k+1

(see (2.1)), which implies that Γ[Φl−k+1 \ W1,l−k+1] ∈ C . Thus, Γ[W1,l−k+1] =

Γ[Φl−k+1] − Γ[Φl−k+1 \ W1,l−k+1] ∈ C . Now assume that Γ[W1,l−k+1], Γ[W2,l−k+2],

. . ., Γ[Wt−1,l−k+t−1] ∈ C , and denote

Ψ = Φl−k+1 \
⋃

16i6t−1

Wi,l−k+i.

Obviously, Γ[Ψ] ∈ C . Then by W∼
1,n−l+k−t(Ψ) = Ψ \ Wt,l−k+t, we have Γ[Ψ \

Wt,l−k+t] ∈ C , which implies that Γ[Wt,l−k+t] = Γ[Ψ]− Γ[Ψ \Wt,l−k+t] ∈ C .

Therefore, Γ[Wkl] ∈ C for all 1 6 k 6 ⌊n+1
2 ⌋ and k 6 l 6 n− k + 1.

3. Automorphisms of Γ(U1
n(F )). In this section, we construct three standard

automorphisms of Γ(U1
n(F )), based on which we can describe any automorphism of

Γ(U1
n(F )) for n > 3.

• Let P ∈ U−1
n (F ). Define σP : Vn → Vn by [A] 7→ [P−1AP ]. Then it is easy

to verify that σP is an automorphism of Γ(U1
n(F )), which is called an inner

automorphism of Γ(U1
n(F )).

• Let τ be an automorphism of the field F . Then the map θτ : Vn → Vn
defined by [A] 7→ [Aτ ] is an automorphism of Γ(U1

n(F )), which is called a

field automorphism of Γ(U1
n(F )).

• Define the map η : Vn → Vn by [A] 7→ [εAT ε], where ε =
∑

16i6n eie
T
n+1−i.

Then it is not difficult to see that η is an automorphism of Γ(U1
n(F )), which

is called an extremal automorphism of Γ(U1
n(F )).

The main result of this section is the following theorem.

Theorem 3.1. Let n > 3. Then ψ is an automorphism of Γ(U1
n(F )) if and only

if

ψ = ηδ · σP · θτ ,
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where η, σP and θτ respectively are an extremal automorphism, an inner automor-

phism and a field automorphism of Γ(U1
n(F )), δ = 0 or 1.

Proof. The sufficiency is obvious, we only prove the necessity. Let ψ be an

automorphism of Γ(U1
n(F )). Since Γ[W11] is a characteristic subgraph of Γ(U1

n(F ))

(see Lemma 2.6), we have ψ([ene
T
n ]) ∈ W11 (= Φ11 ∪ Φnn). If ψ([ene

T
n ]) ∈ Φ11, then

η · ψ([eneTn ]) ∈ Φnn. Denote ψ1 = ηδ · ψ with δ = 0 or 1 such that ψ1([ene
T
n ]) ∈ Φnn.

We complete the proof by verifying the following ten claims.

Claim 1. There exists an inner automorphism σQ with Q ∈ U−1
n (F ) such that

[e1e
T
j ] is fixed by σQ · ψ1, 1 6 j 6 n.

Suppose that ψ1([ene
T
n ]) = [(

∑

16s6n−1 a
(n)
s es + en)e

T
n ] ∈ Φnn, where a

(n)
s ∈ F .

Set Q1 = I −
∑

16s6n−1 a
(n)
s ese

T
n ∈ U−1

n (F ), then σQ1 · φ1([ene
T
n ]) = [ene

T
n ].

For 1 6 j 6 n − 1, we assert that σQ1 · ψ1([e1e
T
j ]) ∈ Φ1j . Actually, if σQ1 ·

ψ1([e1e
T
j ]) 6∈ Φ1j , then σQ1 · ψ1([e1e

T
j ]) ∈ Φn−j+1,n. By applying (σQ1 · ψ1)

−1 to

σQ1 · ψ1([e1e
T
j ]) 6∼ [ene

T
n ], we have [e1e

T
j ] 6∼ [ene

T
n ], a contradiction. Now, we may

assume that

σQ1 · ψ1

([
e1e

T
j

])
=




e1



ej +
∑

j+16t6n

a
(j)
t et





T



 , 1 6 j 6 n− 1,

where a
(j)
t ∈ F . Set Q2 = I −

∑

16s<t6n a
(s)
t ese

T
t ∈ U−1

n (F ), then σQ2 · σQ1 ·

ψ1([e1e
T
j ]) = [e1e

T
j ], 1 6 j 6 n − 1. Observe that Γ[Φn] is a characteristic subgraph

of Γ(U1
n(F )), then it follows that σQ2 · σQ1 ·ψ1([e1e

T
n ]) = [e1e

T
n ]. Denote ψ2 = σQ ·ψ1

with Q = Q1Q2, then ψ2([e1e
T
j ]) = [e1e

T
j ] for all 1 6 j 6 n.

Claim 2. Each [eie
T
j ] is fixed by ψ2, 1 6 i 6 j 6 n.

It is clear that ψ2([eie
T
j ]) ⊆ Wij = Φij for i = n − j + 1. For i 6= n − j + 1,

if ψ2([eie
T
j ]) 6∈ Φij , then ψ2([eie

T
j ]) ∈ Φn−j+1,n−i+1. Applying ψ−1

2 to [e1e
T
n−j+1] 6∼

ψ2([eie
T
j ]) yields [e1e

T
n−j+1] 6∼ [eie

T
j ] by Claim 1, a contradiction. Thus, ψ2([eie

T
j ]) ∈

Φij , 2 6 i 6 j 6 n. Now we assume that

ψ2

([
eie

T
j

])
=









∑

16s6i−1

a(i)s es + ei







ej +
∑

j+16t6n

a
(j)
t et





T



 , 2 6 i 6 j 6 n,

where a
(i)
s , a

(j)
t ∈ F . For 1 6 s 6 i − 1, by applying ψ2 to [e1e

T
s ] ∼ [eie

T
j ] we have

[e1e
T
s ] ∼ ψ2([eie

T
j ]), which implies that a

(i)
s = 0. Similarly, a

(j)
t = 0 for j + 1 6 t 6 n.

Thus, ψ2([eie
T
j ]) = [eie

T
j ] for all 2 6 i 6 j 6 n.

Claim 3. Φ11 and Φnn are stable under ψ2.
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Denote

Φ
(k)
11 =

{[
e1α

T
]
∈ Φ11 | α ∈ Fn satisfies αT ek = 0

}
, 2 6 k 6 n,

Φ
(l)
nn =

{[
βeTn

]
∈ Φnn | β ∈ Fn satisfies eTl β = 0

}
, 1 6 l 6 n− 1,

Φ∗
11 =

{[
e1α

T
]
∈ Φ11 | α ∈ Fn satisfies αT ek 6= 0 for all 1 6 k 6 n

}
,

Φ∗
nn =

{[
βeTn

]
∈ Φnn | β ∈ Fn satisfies eTl β 6= 0 for all 1 6 l 6 n

}
.

Clearly, Φ11 = Φ
(2)
11 ∪ · · · ∪Φ

(n)
11 ∪Φ∗

11 and Φnn = Φ
(1)
nn ∪ · · · ∪Φ

(n−1)
nn ∪Φ∗

nn. Next, we

prove the following three statements.

(S1) ψ2(Φ
(k)
11 ) ⊆ Φ11, ψ2(Φ

(l)
nn) ⊆ Φnn, 2 6 k 6 n and 1 6 l 6 n− 1.

For 2 6 k 6 n, if ψ2(Φ
(k)
11 ) 6⊆ Φ11, then there exists [e1α

T ] ∈ Φ
(k)
11 with α ∈ Fn

such that ψ2([e1α
T ]) ∈ Φnn. Suppose that

ψ2([e1α
T ]) = [βeTn ] ∈ Φnn with β =

∑

biei ∈ Fn.

By applying ψ2 to [e1α
T ] ∼ [eke

T
n ] (notice that αT ek = 0) we get [βeTn ] ∼ [eke

T
n ],

which implies that

(eTn ek)
∑

bieie
T
n = bneke

T
n .(3.1)

When k 6= n, we see that eTnek = 0. Then by (3.1), bn = 0, which shows that

[βeTn ] /∈ Φnn, a contradiction. When k = n, (3.1) can be rewritten as
∑
bieie

T
n =

bnene
T
n , which follows that bi = 0 for 1 6 i 6 n− 1, and bn 6= 0. Then ψ2([e1α

T ]) =

[bnene
T
n ] = [ene

T
n ], which contradicts the result ψ2([ene

T
n ]) = [ene

T
n ] (see Claim 2).

Hence, ψ2(Φ
(k)
11 ) ⊆ Φ11 for 2 6 k 6 n. The proof of ψ2(Φ

(l)
nn) ⊆ Φnn for 1 6 l 6 n− 1

is similar.

Now, it follows from Φ∗
11 ∪ Φ∗

nn = W11 −
⋃

26k6n Φ
(k)
11 −

⋃

16k6n−1 Φ
(k)
nn and the

above arguments that ψ2(Φ
∗
11 ∪ Φ∗

nn) = Φ∗
11 ∪ Φ∗

nn.

(S2) ∆ = {(ae1 + e2)e
T
2 ∈ Φ22| a ∈ F} is stable under ψ2.

By Lemma 2.6, for any a ∈ F , ψ2((ae1 + e2)e
T
2 ) ∈ Φ22 or ψ2((ae1 + e2)e

T
2 ) ∈

Φn−1,n−1. The case n = 3 is clear. If n > 4, by applying ψ2 to [(ae1+e2)e
T
2 ] ∼ [e1e

T
n−1]

we have ψ2([(ae1 + e2)e
T
2 ]) ∼ [e1e

T
n−1]. It follows that ψ2([(ae1 + e2)e

T
2 ]) 6∈ Φn−1,n−1,

and so ψ2([(ae1 + e2)e
T
2 ]) ∈ Φ22. Assume that

ψ2

([
(ae1 + e2) e

T
2

])
=




(a1e1 + e2)



e2 +
∑

36t6n

atei





T



 ,(3.2)
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where a1, at ∈ F , 3 6 t 6 n. For 3 6 t 6 n, applying ψ2 to [(ae1 + e2)e
T
2 ] ∼ [ete

T
n ]

yields [(a1e1 + e2)(e2 +
∑

36t6n atei)
T ] ∼ [ete

T
n ], which implies that at = 0 for all

3 6 t 6 n in (3.2). Hence, ψ2([(ae1 + e2)e
T
2 ]) = [(a1e1 + e2)e

T
2 ] ∈ ∆.

(S3) ψ2(Φ
∗
11) = Φ∗

11 and ψ2(Φ
∗
nn) = Φ∗

nn.

Recall that ψ2(Φ
∗
11 ∪ Φ∗

nn) = Φ∗
11 ∪ Φ∗

nn. If ψ2(Φ
∗
11) 6= Φ∗

11, then there exists

[A] ∈ Φ∗
11 such that ψ2([A]) ∈ Φ∗

nn. Let A = e1(e1 +
∑

26i6n aiei)
T with ai ∈ F ∗,

2 6 i 6 n, and suppose that

ψ2 ([A]) =








∑

16j6n−1

bjei + en



 eTn



 ,

where bj ∈ F ∗, 1 6 j 6 n− 1. Applying ψ2 to [A] ∼ [(−a2e1 + e2)e
T
2 ] we know that

[(
∑

16j6n−1 bjei+ en)e
T
n ] ∼ [(xe1 + e2)e

T
2 ] for some x ∈ F , which implies that b2 = 0,

a contradiction. Thus, ψ2(Φ
∗
11) = Φ∗

11 and ψ2(Φ
∗
nn) = Φ∗

nn.

Claim 4. For any [α1β
T
1 ] ∈ Vn, let ψ2([α1β

T
1 ]) = [α2β

T
2 ]. Then the k-th compo-

nent of α1 (resp., β1) is zero if and only if the k-th component of α2 (resp., β2) is

zero, 1 6 k 6 n.

If [α1β
T
1 ] ∈ Φ11, by Claim 3 we may assume that α1 = e1 and α2 = e1, then

ψ2([e1β
T
1 ]) = [e1β

T
2 ]. Thus

β1e
T
k = 0 ⇔

[
e1β

T
1

]
∼
[
eke

T
n

]
⇔
[
e1β

T
2

]
∼
[
eke

T
n

]
⇔ βT

2 ek = 0.

If [α1β
T
1 ] ∈ Φnn, we may assume that β1 = en and β2 = en, then ψ2([α1e

T
n ]) =

[α2e
T
n ]. So

eTk α1 = 0 ⇔
[
e1e

T
k

]
∼
[
α1e

T
n

]
⇔
[
e1e

T
k

]
∼
[
α2e

T
n

]
⇔ eTk α2 = 0.

If [α1β
T
1 ] 6∈ W11, then [α2β

T
2 ] 6∈ W11, thus e

T
nα1 = eTnα2 = βT

1 e1 = βT
2 e1 = 0.

Now we can see that

eTk α1 = 0
(
resp., βT

1 ek = 0
)
⇔
[
e1e

T
k

]
∼
[
α1β

T
1

] (
resp.,

[
α1β

T
1

]
∼
[
eke

T
n

])

⇔
[
e1e

T
k

]
∼
[
α2β

T
2

] (
resp.,

[
α2β

T
2

]
∼
[
eke

T
n

])

⇔ eTk α2 = 0
(
resp., βT

2 ek = 0
)
.

Therefore, the k-th component of α1 (resp., β1) is zero if and only if the k-th compo-

nent of α2 (resp., β2) is zero.

For 1 6 i < j 6 n and a ∈ F , Claim 4 shows that there exists a permutation τ
(i)
j

on F satisfying τ
(i)
j (0) = 0 such that

ψ2

([

ei (ei + aej)
T
])

=

[

ei

(

ei + τ
(i)
j (a)ej

)T
]

.(3.3)
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For convenience, we assume that τ
(i)
j (a) = 1 for a ∈ F and i > j.

Claim 5. ψ2([(aei + ej)e
T
j ]) = [(−τ

(i)
j (−a)ei + ej)e

T
j ] for a ∈ F , 1 6 i < j 6 n.

For a ∈ F and 1 6 i < j 6 n, by Claim 4, we may assume that ψ2([(aei+ej)e
T
j ]) =

[(bei + ej)e
T
j ], where b ∈ F . Applying ψ2 on [ei(ei − aej)

T ] ∼ [(aei + ej)e
T
j ] we have

[ei(ei + τ
(i)
j (−a)ej)T ] ∼ [(bei + ej)e

T
j ], which implies that b = −τ

(i)
j (−a).

Claim 6. For 1 6 i 6 n, we have

ψ2

([(
∑

16s6i−1 ases + ei

)(

ei +
∑

i+16t6n btet

)T
])

=

[(

−
∑

16s6i−1 τ
(s)
i (−as) es + ei

)(

ei +
∑

i+16t6n τ
(i)
t (bt)et

)T
]

where as, bt ∈ F .

By Claim 4, we may assume that

ψ2

([(
∑

16s6i−1 ases + ei

)(

ei +
∑

i+16t6n btet

)T
])

=

[(
∑

16s6i−1 cses + ei

)(

ei +
∑

i+16t6n dtet

)T
]

∈ Φii,

where cs, dt ∈ F . For 1 6 k < i < l 6 n, it follows from (3.3) and Claim 5 that

ψ2([ek(ek−akei)T ]) = [ek(ek+τ
(k)
i (−ak)ei)T ] and ψ2([(−blei+el)eTl ]) = [(−τ

(i)
l (bl)ei+

el)e
T
l ]. Clearly,

[

ek (ek − akei)
T
]

∼









∑

16s6i−1

ases + ei







ei +
∑

i+16t6n

btet





T



 ,(3.4)

and









∑

16s6i−1

ases + ei







ei +
∑

i+16t6n

btet





T



 ∼

[
(−blei + el) e

T
l

]
.(3.5)

Applying ψ2 to (3.4) and (3.5) we have

[

ek

(

ek + τ
(k)
i (−ak) ei

)T
]

∼









∑

16s6i−1

cses + ei







ei +
∑

i+16t6n

dtet





T




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and








∑

16s6i−1

cses + ei







ei +
∑

i+16t6n

dtet





T



 ∼

[(

−τ
(i)
l (bl) ei + el

)

eTl

]

,

which imply that ck = −τ
(k)
i (−ak) and dl = τ

(i)
l (bl), 1 6 k < i < l 6 n.

Denote (τ
(1)
2 (1))−1τ

(1)
2 by τ , then τ(1) = 1, and (τ

(1)
2 (1))−1τ

(1)
2 (a) = τ(a) for any

a ∈ F .

Claim 7.

(i) τ
(i)
j (ab) = τ

(i)
k (a)τ

(k)
j (b) for a, b ∈ F , 1 6 i < k < j 6 n.

(ii) (τ
(i)
j (1))−1τ

(i)
j (a) = τ(a) for a ∈ F , 1 6 i < j 6 n.

(iii) τ(ab) = τ(a)τ(b) for a, b ∈ F .

For a, b ∈ F and 1 6 i < k < j 6 n, by Claim 6 we have

ψ2

([

ei (ei + aek + abej)
T
])

=

[

ei

(

ei + τ
(i)
k (a) ek + τ

(i)
j (ab)ej

)T
]

and

ψ2

([
(−bek + ej) e

T
j

])
=
[(

−τ
(k)
j (b) ek + ej

)

eTj

]

.

Applying ψ2 to [ei(ei + aek + abej)
T ] ∼ [(−bek + ej)e

T
j ] we get

[

ei

(

ei + τ
(i)
k (a) ek + τ

(i)
j (ab) ej

)T
]

∼
[(

−τ
(k)
j (b) ek + ej

)

eTj

]

,

which implies that τ
(i)
j (ab) = τ

(i)
k (a)τ

(k)
j (b). This completes the proof of (i).

When i = 1 and j > 3, we can see from (i) that

(

τ
(1)
j (1)

)−1

τ
(1)
j (a) =

(

τ
(1)
2 (1)τ

(2)
j (1)

)−1

τ
(1)
2 (a)τ

(2)
j (1) = τ(a).

When i > 2 and j > 3, we have

τ
(i)
j (1) = (τ

(1)
i (1))−1τ

(1)
j (1), τ

(i)
j (a) = (τ

(1)
i (1))−1τ

(1)
j (a),

which implies that (τ
(i)
j (1))−1τ

(i)
j (a) = τ

(1)
i (1)(τ

(1)
j (1))−1(τ

(1)
i (1))−1τ

(1)
j (a) = τ(a).

Thus, (τ
(i)
j (1))−1τ

(i)
j (a) = τ(a) for all a ∈ F and all 1 6 i < j 6 n. This completes

the proof of (ii).
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For a, b ∈ F , by (ii) we have τ(ab) = (τ
(1)
n (1))−1τ

(1)
n (ab). On the other hand, by

(i) we have τ
(1)
n (1) = τ

(1)
2 (1)τ

(2)
n (1), τ

(1)
n (ab) = τ

(1)
2 (a)τ

(2)
n (b). Therefore,

τ(ab) =
(

τ
(1)
2 (1)

)−1

τ
(1)
2 (a)

(

τ (2)n (1)
)−1

τ (2)n (b) = τ(a)τ(b),

which completes the proof of (iii).

By Claim 7 (iii), one can easily see that (τ(−1))2 = 1 and τ(−1) = −1. Thus,

τ(−a) = −τ(a) for any a ∈ F .

Claim 8. There exists an inner automorphism σD with D an invertible diagonal

matrix such that

σD · ψ2

([(
∑

16s6i−1 ases + ei

)(

ei +
∑

i+16t6n btet

)T
])

=

[(
∑

16s6i−1 τ(as)es + ei

)(

ei +
∑

i+16t6n τ(bt)et

)T
]

(3.6)

for all as, bt ∈ F and all 1 6 i 6 n.

For 2 6 j 6 n and a ∈ F , by Claim 7 (ii) we have τ
(1)
j (a) = τ(a)τ

(1)
j (1). For

2 6 s < i < t 6 n and a ∈ F , by Claim 7 (i) we have

τ
(s)
i (a) =

(

τ (1)s (1)
)−1

τ
(1)
i (a) =

(

τ (1)s (1)
)−1

τ (a) τ
(1)
i (1)

and

τ
(i)
t (a) =

(

τ
(1)
i (1)

)−1

τ
(1)
t (a) =

(

τ
(1)
i (1)

)−1

τ(a)τ
(1)
t (1).

Now, for 1 6 i < j 6 n, it follows from Claim 6 that

ψ2









(

∑

16s6i−1

ases + ei

)(

ei +
∑

i+16t6n

btet

)T








=





(

∑

16s6i−1

τ(as)τ
(1)
i

(1)

τ
(1)
s (1)

es + ei

)(

ej +
∑

i+16t6n

τ(bt)τ
(1)
t

(1)

τ
(1)
i

(1)
et

)T


 .

(3.7)

Let D = diag(1, (τ
(1)
2 (1))−1, . . . , (τ

(1)
n (1))−1). Then D ∈ U−1

n (F ) and the equality in

(3.7) can be rewritten as the form in (3.6).

Denote ψ3 = σD · ψ2.

Claim 9. τ is an automorphism of the field F .

By Claim 7 (iii), it suffices to prove that τ is additive. For any a, b ∈ F , by

Claim 8 we know that ψ3([e1(e1 + ae2 + be3)
T ]) = [e1(e1 + τ(a)e2 + τ(b)e3)

T ] and
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ψ3([(−(a+ b)e1 + e2 + e3)e
T
3 ]) = [(−τ(a+ b)e1 + e2 + e3)e

T
3 ]. Then by applying ψ3 to

[e1(e1+ae2+ be3)
T ] ∼ [(−(a+ b)e1+ e2+ e3)e

T
3 ], we get [e1(e1+ τ(a)e2+ τ(b)e3)

T ] ∼

[(−τ(a+ b)e1 + e2 + e3)e
T
3 ], which implies that τ(a+ b) = τ(a) + τ(b).

Claim 9 shows that τ can induce a field automorphism θτ of Γ(U1
n(F )). In the

following, we denote θ
−1

τ · ψ3 by ψ4. Then by Claim 8 we have

ψ4 ([A]) = [A] for any [A] ∈ Φii, 1 6 i 6 n.(3.8)

Claim 10. ψ4 is the identity automorphism of Γ(U1
n(F )).

By (3.8), it suffices to prove that ψ4([A]) = [A] for any A ∈ Φij , 1 6 i < j 6 n.

For 1 6 i < j 6 n and A = (
∑

16s6i−1 ases+ei)(ej+
∑

j+16t6n btet)
T with as, bt ∈ F ,

by Claim 4, we may assume that

ψ4 ([A]) =









∑

16s6i−1

cses + ei







ej +
∑

j+16t6n

dtet





T



 ∈ Φij ,

where cs, dt ∈ F . For 1 6 k 6 i− 1 and j + 1 6 l 6 n (if exists), by (3.8) we have

ψ4

([

ek (ek − akei)
T
])

=
[

ek (ek − akei)
T
]

,

ψ4

([
(−blej + el) e

T
l

])
=
[
(−blej + el) e

T
l

]
.

Applying ψ4 to [ek(ek − akei)
T ] ∼ [A] and [A] ∼ [(−blej + el)e

T
l ], respectively, we get

[

ek (ek − akei)
T
]

∼









∑

16s6i−1

cses + ei







ej +
∑

j+16t6n

dtet





T





and









∑

16s6i−1

cses + ei







ej +
∑

j+16t6n

dtet





T



 ∼

[
(−blej + el) e

T
l

]
,

which implies that ck = ak and dl = bl, 1 6 k 6 i − 1 and j + 1 6 l 6 n. Thus,

ψ4([A]) = [A] for any [A] ∈ Vn.

The above discussions show that ψ = ηδ · σP · θτ , where P = D−1Q−1, which

completes the proof.
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4. Automorphisms of Γ(U1
n(F )). In this section, we first show how to reduce

an automorphism of Γ(U1
n(F )) to that of Γ(U1

n(F )).

Lemma 4.1. Let A,B ∈ U1
n(F ). Then N (A)\{B} = N (B)\{A} (in Γ(U1

n(F )))

if and only if B is a nonzero multiple of A.

Proof. The sufficiency is obvious. We only prove the necessity. Suppose that [A] ∈

Φij , 1 6 i 6 j 6 n, then by the proof of Lemma 2.2 we conclude that there exists P ∈

U−1
n (F ) such that P−1AP = aeie

T
j with some a ∈ F ∗. By N (A)\{B} = N (B)\{A}

we know that N (eie
T
j )\{C} = N (C)\{eie

T
j }, where C = P−1BP . Suppose that

C =




∑

16k6t

akek








∑

t6l6n

blel





T

, where ak, bl ∈ F.

For s 6= i, j, by ese
T
s ∈ N (eie

T
j )\{C}, we have ese

T
s ∈ N (C)\{eieTj }, which implies

that C(ese
T
s ) = (ese

T
s )C. By the arbitrariness of s, we get C = aeie

T
i +beie

T
j +ceje

T
j ,

where a = aibi, b = aibj , c = ajbj . If i = j, then it is easily seen that C is a nonzero

multiple of eie
T
i . If i < j, we claim that a = 0 and c = 0. Indeed, if a 6= 0, Since

C ∈ U1
n(F ), we have C = aeie

T
i +beie

T
j . It follows that beie

T
j −aeje

T
j ∈ N (C)\{eieTj },

and so beie
T
j − aeje

T
j ∈ N (eie

T
j )\{C}, a contradiction. In a similar way we conclude

that c = 0. Thus, C is a nonzero multiple of eie
T
j and then B is a nonzero multiple

of A.

Let θ be an automorphism of Γ(U1
n(F )). We define θ on Γ(U1

n(F )) by

θ ([A]) = [θ (A)] , ∀A ∈ U1
n(F ).(4.1)

Lemma 4.2. Let θ be an automorphism of Γ(U1
n(F )), then θ is an automorphism

of Γ(U1
n(F )).

Proof. If [A] = [B] ∈ Vn, then B is a nonzero multiple of A. By Lemma 4.1 we

have N (A)\{B} = N (B)\{A}, which implies that

N (θ (A)) \ {θ (B)} = N (θ (B)) \ {θ (A)} .

Hence, θ(B) is also a nonzero multiple of θ(A), and then θ is well defined. It’s clear

that θ is a bijection, and θ([A]) ∼ θ([B]) if and only if [A] ∼ [B]. Thus, θ is an

automorphism of Γ(U1
n(F )).

Next, by Theorem 3.1 and Lemma 4.2, we can describe the automorphisms of

Γ(U1
n(F )) with n > 3 immediately.

Theorem 4.3. Let n > 3. If θ is an automorphism of Γ(U1
n(F )), then θ is of the

form

θ = ηδ · σP · θτ · ξ,
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where η, σP , θτ and ξ respectively are an extremal automorphism, an inner automor-

phism, a field automorphism and a local scalar multiplication of Γ(U1
n(F )) defined as

in section 1, δ = 0 or 1.

Proof. Let θ be an automorphism of Γ(U1
n(F )), and define θ as in (4.1), then by

Lemma 4.2 we see that θ is an automorphism of Γ(U1
n(F )). Applying Theorem 3.1,

we know that there exists a matrix P ∈ U−1
n (F ) and an automorphism τ of F such

that θ = ηδ · σP · θτ , where δ = 0 or 1. This shows that θ
−1

τ · σ−1
P · ηδ · θ acts as the

identity automorphism on Γ(U1
n(F )), or equivalently, θ

−1
τ ·σ−1

P · ηδ · θ sends each rank

one upper triangular matrix A to a scalar multiple of A. Thus, θ−1
τ · σ−1

P · ηδ · θ is

exactly a local scalar multiplication of Γ(U1
n(F )). The proof is complete.

Proof of Theorem 1.2. The necessity follows from Theorem 4.3, and the sufficiency

is obvious.

Now, we describe all automorphisms of Γ(U1
n(F )) for n = 2. To this end, we need

construct two exceptional type of automorphisms.

• For any a ∈ F , we define a permutation ρa on U1
2 (F ) as follows: for any

r ∈ F ∗, re1(e1 + ae2)
T is sent to r(−ae1 + e2)e

T
2 ; r(−ae1 + e2)e

T
2 is sent to

re1(e1 + ae2)
T ; each other vertices in U1

2 (F ) is fixed by ρa. Then ρa is an

automorphism of Γ(U1
2 (F )), and ρ

2
a = 1 (in fact ρ0 = η). Denote ρ =

∏

a∈F

ρδaa ,

where δa = 0 or 1.

• Let π be a permutation of F satisfying π(0) = 0. Define the map θπ :

U1
2 (F ) → U1

2 (F ) as follows: for any a, b ∈ F , r ∈ F ∗, re1(e1+ae2)
T is sent to

re1(e1 + π(a)e2)
T ; r(be1 + e2)e

T
2 is sent to r(−π(−b)e1 + e2)e

T
2 ; each re1e

T
2

is fixed by ϕπ . Then ϕπ is an automorphism of Γ(U1
2 (F )).

Denote by Kn the complete graph on n vertices. Let W0 = [e12]. For any a ∈ F ,

we denote

W(a) =
[

e1 (e1 + ae2)
T
]

∪
[
(−ae1 + e2) e

T
2

]
.

It’s clear that W0, W(a) with a ∈ F , are |F |+1 connected components in Γ(U1
2 (F )),

and that Γ[W0] ∼= K1, Γ[W(a)] ∼= K2. Automorphisms of Γ(U1
2 (F )) are characterized

as follows.

Theorem 4.4. θ is an automorphism of Γ(U1
2 (F )) if and only if

θ = σU · θπ · ρ · ξ,

where σU (with U a 2× 2 unit upper triangular matrix, all of whose diagonal entries

are 1, over F ) and ξ are respectively an inner automorphism and a local scalar mul-

tiplication of Γ(U1
2 (F )) defined as in section 1, θπ (with π a permutation on F fixing

0) and ρ are exceptional type of automorphisms of Γ(U1
2 (F )) defined as above.
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Proof. The sufficiency is obvious. For the necessity, assume that θ is an auto-

morphism of Γ(U1
2 (F )). Define θ as in (4.1), then by Lemma 4.2 we see that θ is an

automorphism of Γ(U1
2 (F )).

We first consider the action of θ on [e1e
T
1 ]. If θ([e1e

T
1 ]) = [e1(e1 + xe2)

T ] for

some x ∈ F , then σ−1
U · θ([e1eT1 ]) = [e1e

T
1 ], where U = e1e

T
1 + e2e

T
2 + xe1e2 is a unit

upper triangular matrix over F . If θ([e1e
T
1 ]) = [(ye1 + e2)e

T
2 ] for some y ∈ F , then

ρ0 ·θ([e1e
T
1 ]) = [e1(e1+xe2)

T ] with x = −y. It follows that σ−1
U ·ρ0 ·θ([e1e

T
1 ]) = [e1e

T
1 ],

and so σ−1
U · ρ0 · θ([e2e

T
2 ]) = [e2e

T
2 ]. Thus, we may assume that δ0 = 0 or 1 such that

σ−1
U · ρδ00 · θ

([
eie

T
i

])
=
[
eie

T
i

]
, i = 1, 2.

Next, for a ∈ F , it follows from Γ[W(a)] ∼= K2 that Γ[σ−1
U · ρδ00 · θ(W(a))] ∼= K2,

which implies that Γ[σ−1
U · ρδ00 · θ(W(a))] = Γ[W(b)] for some b ∈ F . Then, there

exists a permutation π of F such that σ−1
U · ρδ00 · θ(W(a)) = W(π(a)) for all a ∈ F .

Obviously, π(0) = 0. By this π we can induce a automorphism θπ of Γ(U1
2 (F )) such

that θ
−1

π ·σ−1
U · ρδ00 · θ(W(a)) = W(a), a ∈ F . Now, we conclude that for a ∈ F , either

θ
−1

π · σ−1
U · ρδ00 · θ

([

e1 (e1 + ae2)
T
])

=
[

e1 (e1 + ae2)
T
]

or

θ
−1

π · σ−1
U · ρδ00 · θ

([

e1 (e1 + ae2)
T
])

=
[
(−ae1 + e2) e

T
2

]
.

For a ∈ F ∗, choose δa = 0 or 1 such that ρa
δa ·θ

−1

π ·σ−1
U ·ρδ00 ·θ([e1(e1+ae2)T ]) = [e1(e1+

ae2)
T ], and denote ρ =

∏

a∈F

ρδaa , then ρ · θ
−1

π ·σ−1
U · θ([e1(e1+ ae2)

T ]) = [e1(e1+ ae2)
T ]

for any a ∈ F .

The above discussions show that ρ · θ
−1

π · σ−1
U · θ([A]) = [A] for any [A] ∈ V2. In a

similar way as in the proof of Theorem 4.3, we conclude that ρ · θ−1
π ·σ−1

U · θ is exactly

a local scalar multiplication of Γ(U1
2 (F )). This completes the proof.

5. Applications. In this section, we denote by Γn the graph Γ(U1
n(F )). The set

of all automorphisms of Γn, denoted by Aut(Γn), forms a group under composition of

transformations. Let Inn(Γn), Fie(Γn), Ext(Γn) and Loc(Γn), respectively, be the set

of all extremal automorphisms, inner automorphisms, field automorphisms and local

scalar multiplications of Γ(U1
n(F )) (see the definition in section 1), and denote by

Per1(Γ2) and Per2(Γ2) the set of all permutations ρ =
∏

a∈F

ρδaa and all permutations

θπ (with π a permutation on F fixing 0) on U1
2 (F ), respectively. Then it’s easy to

verify that Inn(Γn), Fie(Γn), Ext(Γn) and Loc(Γn) (resp., Per1(Γ2) and Per2(Γ2))

are all subgroups of Aut(Γn) (resp., Aut(Γ2)). If G and H are two subgroups of a
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group, we use G ×H and G ⋊H to denote their direct product, semidirect product

with G normal, respectively. Also G× · · · ×G
︸ ︷︷ ︸

k

is denoted by kG.

Now, we consider the orbit partition of the vertex set (see Corollary 5.1) and the

order of the group of automorphisms (see Corollary 5.2).

Corollary 5.1. The orbit partition of U1
n(F ) under the automorphisms is

U1
n(F ) =

k6l6n−k+1⋃

16k6⌊n+1
2 ⌋

Wkl. The number of orbits is ⌊n2

4 ⌋, unless n = 2 and in this

case, the number of orbits is 2.

Proof. For 1 6 k 6 ⌊n+1
2 ⌋ and k 6 l 6 n − k + 1, Lemma 2.6 shows that each

Wkl is stabilized under any automorphism. It suffices to prove that for any A ∈ Wkl,

there exists an automorphism θ such that θ(A) ∈ [eke
T
l ]. If [A] ∈ Φkl, suppose that

A = r(
∑

16s6k−1 ases + ek)(el +
∑

l+16t6n btet)
T , where r ∈ F ∗, as ∈ F , bt ∈ F .

Set P = I −
∑

16s6k−1 asese
T
k +

∑

l+16t6n btele
T
t ∈ U−1

n (F ), then σP (A) = reke
T
l . If

[A] ∈ Φn−l+1,n−k+1, we see that [η(A)] ∈ Φkl. Then by what we obtained above we

get that there exists a matrix P ∈ U−1
n (F ) such that σP · η(A) ∈ [eke

T
l ]. The second

result is obvious.

Corollary 5.2. Let |F | = q = pm with p a prime. Then

|Aut(Γn)| = 2mq
n(n−1)

2 (q − 1)
n−1

((q − 1)!)
|Vn| for n > 3,(5.1)

and

|Aut(Γn)| = 2qq(q − 1) ((q − 1)!)
|V2|+1

for n = 2.(5.2)

Proof. If n > 3, then by Theorem 4.3, each automorphism θ can be written as

θ = ηδ · σP · θτ · ξ, where δ = 0 or 1, P ∈ U−1
n (F ), τ ∈ Aut(F ), ξ is a permutation on

U1
n(F ) such that ξ([A]) = [A] for any A ∈ U1

n(F ). If η
δ1 ·σP1 ·θτ1 ·ξ1 = ηδ2 ·σP2 ·θτ2 ·ξ2,

then ηδ3 ·σP0 = θτ0 ·ξ0, where δ3 = 0 or 1, P0 = P−1
2 P1, τ0 = τ2·τ

−1
1 , ξ0 = ξ2·ξ

−1
1 . Since

[eie
T
j ] is stable under θτ0 · ξ0, we have ηδ3 · σP0([eie

T
j ]) = ηδ3 · [P−1

0 (eie
T
j )P0] = [eie

T
j ]

for all 1 6 i 6 j 6 n. This shows that δ3 = 0, and P0 is a diagonal matrix. By δ3 = 0,

we get δ1 = δ2, and so σP0 = θτ0 · ξ0. Let P0 = diag(d1, d2, . . . , dn) with di ∈ F ∗, then

σP0

([

e1 (e1 + aej)
T
])

=
[

e1
(
e1 + ad−1

1 djej
)T
]

,

σP0

([
(ae2 + en) e

T
n

])
=
[(
ad−1

2 dne2 + en
)
eTn
]

for all a ∈ F and all 2 6 j 6 n. On the other hand,

θτ0 · ξ0
([

e1 (e1 + aej)
T
])

=
[

e1 (e1 + τ0(a)ej)
T
]

,
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θτ0 · ξ0
([
(ae2 + en) e

T
n

])
=
[
(τ0(a)e2 + en) e

T
n

]
.

Consequently, τ0(a) = ad−1
1 dj = ad−1

2 dn, a ∈ F , 2 6 j 6 n. It follows that P0 is a

nonzero scalar matrix and τ0(a) = a for any a ∈ F . Hence, P1 = d1P2 and τ1 = τ2,

which implies that ξ1 = ξ2. Now, the above discussion shows that

|Aut(Γn)| = 2 ·
|U−1

n (F )|

q − 1
· |Aut(F )| · |Loc(Γn)|.

Denote by Kc
n the complement of the complete Kn, i.e., the graph consisting of n

isolated vertices. Clearly, Aut(Kn) ∼= Aut(Kc
n)

∼= Sn, where Sn is the symmetric

group of degree n. For any A ∈ U1
n(F ), we see that the subgraph induced by [A]

in Γ(U1
n(F )) is isomorphic to Kq−1 or Kc

q−1. This shows that Loc(Γn) ∼= kSq−1

with k =
|U1

n
(F )|

q−1 = |Vn|. It is not difficult to see that |U−1
n (F )| = (q − 1)nq

n(n−1)
2 ,

|Aut(F )| = m, |Sq−1| = (q − 1)!. Thus, we get (5.1).

When n = 2, it is easily seen that the number of permutations ρ on U1
n(F ) is 2

q

and the number of permutations π on F satisfying π(0) = 0 is (q − 1)!. Hence, in a

similar way as above, we have (5.2).

Finally, by Theorem 4.3, Theorem 4.4 and the proof of Corollary 5.2, we have the

following result.

Corollary 5.3. Let |F | = q. Then, the following hold:

(i) When n > 3, Aut(Γn) ∼= ((
U−1

n
(F )

K
× |Vn|Sq−1) ⋊ Aut(F )) ⋊ S2, where K =

{aI | a ∈ F ∗};

(ii) When n = 2, Aut(Γn) ∼= ((U2(F )× |V2|Sq−1)⋊ Sq−1)⋊ qS2, where U2(F ) is

the set of all 2× 2 unit upper triangular matrices over F .

Proof. If n > 3, then by Lemma 1.1 and Theorem 4.3, we get

Aut(Γn) = ((Inn(Γn)× Loc (Γn))⋊ Fie(Γn))⋊ Ext(Γn).

The proof of Corollary 5.2 shows that Inn(Γn) ∼=
U−1

n
(F )

K
with K = {aI | a ∈ F ∗},

Fie(Γn) ∼= Aut(F ), Ext(Γn) ∼= S2 and Loc(Γn) ∼= |Vn|Sq−1, from which we get (i).

When n = 2, by Theorem 4.4 and the proof of Corollary 5.2, it is easily seen that

Inn(Γn) ∼= U2(F ), where U2(F ) is the set of all 2 × 2 unit upper triangular matrices

over F , Per1(Γ2) ∼= qS2 and Per2(Γ2) ∼= Sq−1. Hence, in a similar way as above, we

obtain the result of (ii).
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[9] D. Dolžan, D. Bukovšek, and P. Oblak. Diameters of commuting graphs of matrices over semir-

ings. Semigoup Forum, 84:365–373, 2012.
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