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AUTOMORPHISMS OF A COMMUTING GRAPH OF
RANK ONE UPPER TRIANGULAR MATRICES*

SHIKUN OUT AND JIN ZHONGH#

Abstract. Let F' be a finite field, n > 2 an arbitrary integer, M, (F) the set of all n X n matrices
over F, and U} (F) the set of all rank one upper triangular matrices of order n. For S C M, (F),
denote C(S) ={X € S| XA = AX for all A € §}. The commuting graph of S, denoted by I'(S), is
the simple undirected graph with vertex set S\ C(S) in which for every two distinct vertices A and B,
A ~ B is an edge if and only if AB = BA. In this paper, it is shown that any graph automorphism
of T(UL(F)) with n > 3 can be decomposed into the product of an extremal automorphism, an inner
automorphism, a field automorphism and a local scalar multiplication.
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1. Introduction. Let F be a finite field, F* = F'\ {0}, and n > 2 an arbitrary
integer. We denote by M,,(F) the set of all n x n matrices over F, Uy, (F), U, *(F)
and UL(F), respectively, the set of all upper triangular matrices, invertible upper
triangular matrices and rank one upper triangular matrices in M, (F). For a matrix
A = (a;j) € My(F) and a map 7 : F — F, let [A] and A,, respectively, be the
subspace spanned by A and the matrix (7(a;;)).

The concept of commuting graph was first introduced and studied for semisimple
rings by Akbari et al. in [2], and further studied in many references and therein,
see [1,3-13]. A lot of results about the diameter, the connectivity of commuting graphs
and so on have been obtained. Additional information about algebraic properties of
the elements can be obtained by studying the properties of a commuting graph. For
example, for a finite field F, if R is a ring with identity such that I'(R) = T'(Ms(F)),
then R = My(F), see [13]. It was conjectured that this is also true for the full matrix
ring M,,(F'), where F is a finite field and n > 3.
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Generally, determining the full automorphisms of a graph is an important how-
ever a difficult problem both in graph theory and in algebraic theory. It seems that
little is known for the automorphisms of the commuting graphs of rings. This ob-
servation motivates us to do some work on this topic. For a finite field F', it seems
very difficult to determine the full automorphisms of I'(M,,(F)), so we focus on the
subgraph of T'(M,,(F)) induced by U!(F). It’s clear that the vertex set of I'(U}(F))
is U (F). The following four types of automorphisms for T'(U} (F)) are called standard
automorphisms of T(UL(F)).

e Let P € U, (F). We define op : U'(F) — UL(F) by A~ P7AP. Then
it is easy to see that op is an automorphism of T'(U!(F)), which is called an
inner automorphism of T(UL(F)).

e If 7 is an automorphism of the field F, then the map 6, : UL(F) — U} (F)
defined by A — A, is an automorphism of I'(UL(F)), which is called a field
automorphism of T(UL(F)).

o0 --- 01
00 --- 10
e Lete=| : i1 | € My (F). Then it is not difficult to verify
01 --- 00
10 --- 00

that the map 1 : A — AT¢ is an automorphism of I'(U} (F')), which is called
an extremal automorphism of T'(U}(F)). Note that n? = 1. For convenience,
the identity automorphism of T'(U!(F)) is also regarded as an extremal au-
tomorphism.

e Let & be a permutation on U} (F) such that each [A] is stabilized, i.e, {(A) =
aaA for any A € U}L(F), where ay4 € F* depends on A. Then £ is an
automorphism of T'(U}(F)), which is called a local scalar multiplication of

T(UL(F)).
It is not difficult to see that the following result holds.
LeEMMA 1.1. Let op, 0+, n and & be defined as above. Then,
(i) op-§=&-0p;
(it) =t -op-n=oyp1y;
(iid) 1t 0 = 0
(iv) 071 €0, and n=' - € - n both are local scalar multiplications of T(U}(F)).

In this paper, we aim to describe the full automorphisms of I'(U/} (F)). In order to
prove the main theorem of this paper, we will follow a technique from a recent paper
in which the full automorphisms of the zero-divisor graph of U!(F) were determined.
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In [14], Wong et al. showed that any graph automorphism of the zero-divisor graph
of UL (F) with n > 3 can be decomposed into the product of an inner automorphism,
a field automorphism and a local scalar multiplication.

Our main result is as follows.

THEOREM 1.2. Let n > 3. Then 0 is an automorphism of T'(UL(F)) if and
only if 6 can be decomposed into the product of an extremal automorphism, an inner
automorphism, a field automorphism and a local scalar multiplication.

2. Notations and preliminaries. Let F” be the n-dimensional column vector
space over F. It’s well known that any A € U}(F) can be written as A = a7,
where a, 8 € F™. Let e, es, ..., e, be the elements of the standard basis of F".
For convenience, in a vector expression a = »_ a;e; the subscript ¢ can be less than
1 or greater than n, and we use the convention that the coefficient a; is regarded as
zero if i < 0 or i > n+ 1 in some term a;e;. Then for A € UL(F), we can write
A= Zigj aibjeiejT with a;, b; € F. Denote by I the identity matrix.

In order to describe all automorphisms of the graph T'(U! (F)), we need firstly to
study the automorphisms of a related graph. For S C M,,(F), we refer to I'(S) as
the graph with vertex set {[4] | A € S\ C(S)} in which for every two distinct vertices
[A] and [B], [A] ~ [B] is an edge if and only if AB = BA. The graph is well defined
since AB = BA if and only if (aA)(bB) = (bB)(aA) for any a, b € F*. Let V,, be the
vertex set of the graph T'(UL(F)), i.e.,

Vo = {[A] | A€ Uy(F)}.

For [A] € V,,, we denote by N([A]) the set of neighbours of [A]. The degree of [A],
written as deg([A]), is the cardinality of AN([A]). For a nonempty subset W of V,,, let
|W| be the cardinality of W. The subgraph of T'(U4}(F)) induced by W is denoted
by T[W]. For two subsets U and W of the vertex set V;,, we denote U ~ W (resp.,
ULW)ifa~y (resp., z £ y) for any x € U and any y € W. Also {z} ~ W (resp.,
{z} L W) is denoted by & ~ W (resp., z L W). Set

W~U)={zcU: z~W},

WHU)={yeU: y LW},

and
T . .
O, = (21@@71 ases + ei) (ej + Zj+1<t<n btet) las,bp € Fp, 1<i<j<n,
(Dk - U1<i<n+1,k (bi,i+k717 1 < k < n,

Wit = @U@ iq1n—rt1, 1<k< 2] and k<I<n—k+1
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For1 <k < L"THJ and 1 <t < n, by a direct computation, we have

D, \ U1§i<n—k—t+2 Wi,ithfl, kE+t<n+ 1,

21) @)= { o

otherwise,
Wi kyt—1, t=n—2k+2
2.2 (@) = e 7
(2.2) Wi (®+) { @, otherwise,
Wh—t+1,k, k21
2.3 = D) = v ’
(2.3) Win—k+1(®t) { z, otherwise.

In [14], Wong et al. gave an explicit description of the vertex set and the order
of T(UL(F)).

LEMMA 2.1. ([14, Lemma 3.1])

(1) Vi is the disjoint union of all ®;;, 1 <i<j< n.

(ii) The number of vertices in ®;; is |F|" T~

(iii) The number of vertices in T(Uy (F)) is |Va| = 31 cicjcn |[FMH771
Now, we study the vertex degree of T'(UL(F)).

LEMMA 2.2. Let 1 <i<j<n, and [A] € ®;;. Then deg([A]) = |Vo| — (n+i—
J—2+08;)|F|[""1 = 8,5, where §;; is defined to be 0 or 1 depending on i being equal
to j or not.

Proof. We first consider deg([e;e] ]) for 1 < i < j < n. Forany [af”] in N([e;e]]),
we may assume that o = ngk ases € F™, B = Zlgt bies € F", 1 <k <l<n. It’s

easily seen that

(2.4) [aﬁT] ~ [eieﬂ &b, (oze]T) =a; (eiﬁT)
(2.5) < apb; =0 for all k # j, and ajb; = 0 for all [ # 4.

Now, we claim that b; = 0. Indeed, if b; # 0, then by (2.5), ar = 0 for k # j.
Thus, it follows from (2.4) that a; # 0. Moreover, by (2.5) again, b; = 0 for  # 7.
Consequently, a3 = (a;b;)e;el’, which implies that [eje] | = [aT] € N([e;el]) (note
that [e;el] ¢ N([e;el])), a contradiction. Since b; = 0, there exists [ # i such that
by # 0. Then by (2.5) we have a; = 0. Therefore, [a"] ~ [e;e]] if and only if a; =0
and b; = 0.

Forany 1 <k <l <nand1l<s<n, denote

‘I’;Sl*) = { [aBT] € @y |, B € F",aTe, # 0},

w), = { [aBT] € ®py | a, B € F, BTe, # 0},
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and

W = { [ap") €UL(F) | 0,8 € F,aTe; #0},

U, — { [0fT] € UL(F) | a, B € F™, BTe; # o}.
Then we can see that
U, = U q);z*)’ Uy = U q);»;i)’
j<k<i<n 1<k<IKE

and
N ([eie]) = Va \ (T2 U T2 U {[eief]})
Notice that &1 N ¥y = &;; or @ depending on i being equal to 5 or not. Hence
deg ([eieﬂ) = Vol = [W1 U Wy — 65
= [Va| = (V1] = [Wof 4 [W1 N W5 — 6y
=Val= 30 1eg7l= D0 10 4 (10|l — .

J<k<I<n 1<k<I<i

Now a direct computation shows that

WG| :{ (IF| =) [F["H=172 j+1<k<n,

|F|n+k—l—17 k= 7,
and
o = { (EL DI Ll
|| ) l=1.
Thus,

deg(leicT]) = Vil ~i[F["™" = (n—j — DIF™* + (1 - 8| F]"" — 6,
= Vol = (n+i—j—248,)[F]"~" — 3.

Next, we will show that deg([A]) = deg([eie]]) for [A] € @5, 1 < i < j < n.
Suppose that [A] = [(30 ;1 @bestei)(ej+2 1 1crcn bier) ] € @iy, where al, b €
F.Set P=1-3 .« jakese] +3 11 ¢cnbiejef € Uy (F). Then [P~TAP] =
eie]]. We define the map o from N'([A]) to N([e;e] ]) by [X] = [PX P}, and notice
that o is bijective. Hence, deg([A]) = deg([ee]]) for any [A] € ®;;, 1 <i<j<n. O

In order to classify automorphisms of T'(U}(F)), it is necessary to investigate a
class of special subgraphs, the characteristic subgraphs of T'(U}(F)).

DEFINITION 2.3. For an automorphism ¢ of T'(U!(F)), a nonempty subset W
of the vertex set Vj, is called stable under v if (W) = W. The subgraph Ty of
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T(UL(F)) is called a characteristic subgraph if the vertex set of Ty is stable under
each automorphism of T(U}(F)).

It’s obvious that the intersection, union and difference of two characteristic sub-
graphs are also such subgraphs, and it is not difficult to see that the following result
holds.

LEMMA 2.4. Let U and W be subsets of V,,. If T[W] and T[U] are characteristic
subgraphs of T(UL(F)), then so are T[W™~(U)] and T[W+(U)].

Clearly, V,, is the disjoint union of ®y, ®o, ..., ®,. For 1 < k < n, if [4] €
D, irp—1, 1 <i<n+1—k, by Lemma 2.2 we see that deg([A]) = |V,|—(n—k—1+
(Si7i+k,1)|F|n71 — (Si’iJrk,l, which shows

(2.6) deg([A]) = V| = (n —k — 14+ 61%)|F|" " — 61x, V [A] € B, 1 <k <,

where d;; is defined as in Lemma 2.2. In the following, we will introduce some char-
acteristic subgraphs of T'(U!(F)), which will play an important role in the studying
of the automorphisms of T(UL(F)).

LEMMA 2.5. For any 1 < k < n, T[®;] is a characteristic subgraph of T(UL(F)).

Proof. Let 1 be an automorphism of ['(U}(F)). For any [A] € ®, assume that
P([A]) € 1, 1 < k, 1 <n. We can see from (2.6) that

(2.7) deg (v ([A]) = [Val = (n — 1 = 1+ 60)[F|" ™" = 6u.

Since deg([A4]) = deg(1([A])) for any [A] € V,,, then by (2.6) and (2.7) we get k = I,
which implies that 1)(®;) C ®. Similarly, we have ¢~1(®;) C ®,. By considering
the action of ¢ on 1~ 1(®y) C @ we get ®; = (1 (Py)) C ¥(®y). Therefore,
(D) = . O

LEMMA 2.6. For any 1 < k < L”THJ and k <1 <n—k+1, TWy] is a
characteristic subgraph of T(UL(F)).

Proof. Denote by % the set of all characteristic subgraphs of T'(U}(F)). We first
proceed by induction on k to show that [[Wgi] € € for any 1 < k < [241]. For
k=1, ®(®;) = Wi, we can see from Lemma 2.4 and Lemma 2.5 that T[Wy;] € €.
Assume that T[Wi1], T[Waal, ..., f[Wk_Lk_l] €¥¢,2<k< L"THJ Observe that
O i1 (1) = @1\Uy ;< Wis (see (2.1)), which implies that f[@l\Umigk Wil € 6.
Hence, F[Wkk] = F[q)l] — F[(I)l \ Ulgigk W“] — Zlgigk—l F[W“] €EC.

Next, we show that T[Wy] € € for 1 < k < L”T'HJ and k+1<I<n—-k+1by
considering the following three cases.

Case 1. 1<k< 2] andl=n—k+1.
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It’s clear that Wy, = ®1,, = ®,,, then by Lemma 2.5 we know that W,,, € ¥. For
2<k< % and I =n—k+ 1, since Wﬁ(@l_k“)_: Wi (see (2.2)), then Lemma
2.4, Lemma 2.5 and the above argument imply that T'|[Wy] € €.

CaseE 2. 1<k< [ and k+1 <1< [ 2.

By Case 1 we have f[len,Hl] € %. Then we can see from Wl{-n_l_H(CI)l,kH) =
Wi (see (2.3)) that f[Wkl] €7.

Case 3. 1<k< 2] and |25 +1<I<n—Fk.

We proceed by induction on ¢ to show that T[W; k4] € € for 1 <t < k. By
Case 2 we have Wy ,,_141 € G. For k =1, W 1 (Prget1) = it \ Whi—kt1
(see (2.1)), which implies that I'[®;_p11 \ Whi—k+1] € €. Thus, TV —ky1] =
f[@l:k_H] —T[®— k11 \ Wi,-k+1] € €. Now assume that TW1 ;_gy1], D[Wa.—ki2],
ooy IWi1,i—k+1—1] € €, and denote

U= 4\ U Wid—kti-

1<i<t—1

Obviously, I'[¥] € ¢. Then by W iik—e(V) = W\ Wy ikye, we have INLVAN
Whi—k+t] € €, which implies that T[W;;_g1¢] = T[¥] — T[¥\ Wi r4t] € €.
<

Therefore, T[Wy] € € for all 1 < k <[22 ] and k

I<n—k+1.0

3. Automorphisms of I'(U/}(F)). In this section, we construct three standard
automorphisms of T'(U}(F)), based on which we can describe any automorphism of
T(UL(F)) for n > 3.

o Let P € U, (F). Define 5p : V,, — V,, by [A] — [P~LAP]. Then it is easy
to verify that &p is an automorphism of T'(U}(F)), which is called an inner
automorphism of T(UL(F)).

e Let 7 be an automorphism of the field F. Then the map 0.: V, -V,
defined by [A] + [A,] is an automorphism of T'(U}(F)), which is called a
field automorphism of T(U}(F)).

e Define the map 57 : V,, — V,, by [A] = [eAT¢], where ¢ = digi<n eel 1.
Then it is not difficult to see that 7 is an automorphism of T'(U4} (F')), which
is called an extremal automorphism of T'(U}(F)).

The main result of this section is the following theorem.

THEOREM 3.1. Let n > 3. Then v is an automorphism of T(U}(F)) if and only
if
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where 7, Tp and 0- respectively are an extremal automorphism, an inner automor-
phism and a field automorphism of T(UL(F)), =0 or 1.

Proof. The sufficiency is obvious, we only prove the necessity. Let ¢ be an
automorphism of T'(U, (F)). Since T[Wy1] is a characteristic subgraph of T} (F))
(see Lemma 2.6), we have ¢([epe ]) €Wy (= @11 U D). If Y([enel]) € @11, then
7 ([enel]) € ®,,,. Denote by = 7° - ¢ with § = 0 or 1 such that ¢y ([enel]) € @y
We complete the proof by verifying the following ten claims.

CLAIM 1. There ezists an inner automorphism oq with Q € U, *(F) such that
[ele | is fized by Tg -1, 1 < 5 < n.

Suppose that ¢1([ene)]) = [(XC1cocn 1 aie, + en)el] € B, where al™ € F.
Set Q1 =1 = ¥ ycocn 1 08 esed € UTH(F), then T, - G1([enc?]) = [enel].

For 1 < j < n—1, we assert that g, -wl([elejT]) € ®q;. Actually, if 7¢, -
1/)1([616 |) & @1y, then T, - Y1(lere]]) € Pnji1,n. By applying (Tq, - ¥1)~" to
wl([ele]T]) # lenel], we have [ere]] % [enel], a contradiction. Now, we may
assume that
T
Gou i ([eef]) = |en e+ Y alle , 1<j<n—1,
JH1<t<n

where a(]) € F. Set Q2 =1—31c.1cn ais)esetT € U, 1(F), then 5g, - Tg, -
Y1([ere]]) = [ere]], 1 < j < n—1. Observe that T'[®,] is a characteristic subgraph
of T(U}(F)), then it follows that Tg, -7, - ¥1([erel]) = [ele ]. Denote ¢ =3¢ - 11
with @ = Q1Q2, then 1/}2([€1€T]) [ele Jforall 1 <j<

CLAIM 2. Each [e;e;] 1 is fized by 19, 1 <i < j < n.

It is clear that ia([ese T]) CW;j =@ fori=n—j5+1 Fori#n—j+1,
if Ya(lese]]) & @iy, then o([ese]]) € Pnojiin—ir1. ApDlying ¥5 " to [eren ;] #
Va([eie; ]) yields [ere] ;1] # [eie]] by Claim 1, a contradiction. Thus, ¢ ([e;e]]) €

D, 2 < 1 < 7 <n. Now we assume that

i
T
v (lecf]) = || D alecter| (et Y ale| |, 2<i<isn

1<s<i—1 JH1I<t<n
where a!’ ),ag D eF. Forl1<s<i-— 1, by applying s to [erel]
[exel] ~ ¥a([eie] ]), which 1mphes that a{” = 0. Similarly, agj) =0forj+1<t<n
Thus, 2([eie; ]) = [eie] ] for all 2 < i < j < n.

~ [e;eT] we have
leie; ]

CrLAM 3. @1y and D, are stable under 1.
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Denote

@gli) = {[elaT} € 11 | a € F" satisfies aley, = 0} , 2< k<n,
o) = {[Bel] € ®pnn | B € F™ satisfies e] =0}, 1 <1 <n—1,
o7, = {[elaT} € ®1; | a € F™ satisfies aTep #£0forall 1 <k < n} ,

@, = {[Bel] € ®nn | B € F™ satisfies e] f# 0 forall 1 <1< n}.

Clearly, 11 = 2 U U UL and B, = B U--- UL Y UBE . Next, we

prove the following three statements.
(S1) ©2(®)) C @11, Ya(PRN) C By, 2<k<nand 1<I<n— 1.

For 2 <k < n,if wg(tl)gli)) ¢ ®1q, then there exists [e;al] € @Yi) with o € F™
such that 1 ([e;a®]) € ®,,,,. Suppose that

wQ([elaT]) = [565] € ®,, with B= Zbiei e F".

By applying v to [eral] ~ [erel] (notice that ale, = 0) we get [Bel] ~ [erel],

which implies that
(3.1) (efek) Z bieieg = bnekeg.

When k # n, we see that eley = 0. Then by (3.1), b, = 0, which shows that
[Bel] ¢ ®,,, a contradiction. When &k = n, (3.1) can be rewritten as > b;e;el =
bnenel which follows that b; = 0 for 1 <i < n — 1, and b, # 0. Then 15([e1aT]) =
[brenel] = [enel], which contradicts the result ¥s([enel]) = [enel] (see Claim 2).

Hence, ’lpg(q)gli)) C ®q; for 2 < k < n. The proof of @(cbﬁf%) Ch,,for1<li<n—1
is similar.

Now, it follows from ®f, U ®%, = Wit — Uscpep, @13 — Uicpen_t @4 and the
above arguments that o (®3, U P} ) = &7, U DF .

(S2) A ={(ae1 +e2)el € Pyl a € F} is stable under ;.

By Lemma 2.6, for any a € F, 12((ae1 + e2)el) € oy or 1a((aer + ex)ed) €
®,,_1.,—1. The casen = 3 is clear. If n > 4, by applying 15 to [(ae1+e2)ed ] ~ [erel_]
we have 19([(ae1 + e2)ed]) ~ [erel_,]. Tt follows that ¥ ([(aes +e2)ed]) € ®p_1.n-1,

and so ¥ ([(ae1 + e2)el]) € @a. Assume that

T

(3.2) b ([(aer +ea) el ]) = [(arer +e2) | ea+ Y ares ;

3<t<n
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where a1,a; € F, 3 <t < n. For 3 <t < n, applying ¢ to [(ae1 + e2)ed] ~ [erel]
yields [(a1e1 + e2)(e2 + X 3cicn atei)T] ~ [erel], which implies that a; = 0 for all
3 <t < nin (3.2). Hence, ¥o([(ae1 + e2)ed]) = [(a1e1 + e2)ed] € A.

(S3)  ¥2(®1y) = @7y and ¢o(®7,) = @7,

Recall that (P, U DL,) = &7, U @ . If (D7) # ®7y, then there exists
[A] € @}, such that 9([A]) € @, Let A = ei(er + Yocic, @ici)” with a; € F*,
2 <1 < n, and suppose that

P2 ([4]) = > beiten|er]|,
1<j<n—1
where b; € F*, 1 < j < n— 1. Applying 95 to [A] ~ [(—aze1 + e2)el] we know that
[(XCi<jcno1 biciten)e el'l ~ [(ze1 + ea)el] for some x € F, which implies that by = 0,

a contradiction. Thus, ¥ (®7,) = @1, and ¢2(Pf,,) = @F ..

CLAM 4. For any [a18T] € Vy,, let ¥a([c1BY]) = [a2BL]. Then the k-th compo-
nent of aq (resp., B1) is zero if and only if the k-th component of aa (resp., [B2) is
zero, 1 < k < n.

If [ 8] € @11, by Claim 3 we may assume that a; = e; and as = ej, then

Ua([e1fT]) = [e1f3]. Thus
5165 =0¢& [616?] ~ [eke } [€1ﬂ2} ~ [eke } PEN ﬂ2 e = 0.

If [1 8]] € @, we may assume that 81 = e, and B2 = e, then Y2([arel]) =
[a2el]. So

efal =0¢& [elef] ~ [aleﬂ & [elef] ~ [age } & ek as = 0.

If [187] & Wi1, then [aa8T] & Wi, thus ela; = efay = ffe; = Ble; = 0.
Now we can see that
efa; =0 (resp.,ﬁlTek = 0) & [elef] ~ [alﬂlT] (resp., [alﬂﬂ ~ [ekeﬂ)
& [eleﬂ ~ [agﬂQT] (resp., [agﬂﬂ ~ [ekeﬂ)
& efozg =0 (resp.7 Bre = O) .
Therefore, the k-th component of a; (resp., 31) is zero if and only if the k-th compo-
nent of ay (resp., B2) is zero.
For 1 <i<j<nandac€F, Claim 4 shows that there exists a permutation T]@
on F satisfying T( )(O) = 0 such that

(3.3) e ([ez (e; + aej)TD = [@i (ei + 7" (a)ej)T] :
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For convenience, we assume that Tj@ (a)=1fora e FandiZ>j.

Cramv 5. ¢o([(ae; +ej)el]) = [(—Tj@(—a)ei +ej)ef] forae F,1<i< n.

J<
Fora € Fand1 < i < j < n, by Claim 4, we may assume that ¢5([(aei+e;)e] ]) =

[(bei + e;)e]], where b € F. Applying ¢ on [ei(e; — ae;)"] ~ [(ae; + e;)e] ] we have

lei(e; + T]@ (—a)e;)"] ~ [(be; + ej)e] ], which implies that b = 7T;i)(*a).

CLAIM 6. For 1 <i < n, we have

(> ({(21@@1 ases + ei) (ei + Zz‘+1<t<" btet)T])

. i T
= [( 1<s<iot T,L-( ) (—as)es + 61’) (ei + Zi+1<t<n Tt( )(bt)et) ]

where ag, by € F.

By Claim 4, we may assume that

([ ) o ]

T
= [(21@@1 cs€es + ei> (ei + Zi+1<t<n dtet> } € oy,

where ¢g, di € F. For 1 < k < i <l < n, it follows from (3.3) and Claim 5 that
va(ler(er—are)]) = [en(er+m" (—ar)e)T] and da([(~bieten)ef ]) = (=7 (br)ei+
er)el]. Clearly,

T
(3.4) [ek (ex — akei)T} ~ Z ases + ¢€; e; + Z biey )
1<s<i—1 i+1<t<n
and
T
(3.5) Z ases + e; ei + Z beer ~ [(—blei +ep) elT} )
1<s<i—1 i+1<t<n

Applying 1 to (3.4) and (3.5) we have

T
|:ek<@k+7-i(k)(_ak)ei) }N Z Cs€s + € €; + Z diey

1<s<i—1 i+1<t<n
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and

Z Ccses + €5 e; + Z dies ~ [(,Tl(’i) (b)) e; + el) elT} ,

1<s<i—1 i+1<t<n

which imply that ¢, = —Ti(k)(—ak) and d; = Tl(i) (), 1<k<i<l<n

Denote (72(1)(1))_17'2(1) by 7, then 7(1) = 1, and (72(1)(1))_172(1)(a) = 7(a) for any
ack.

CLAIM 7.
(4) (z)(ab)*T(z)() J(b) fora, be F,1<i<k<j<
(i1) (17 (1)1 (a) = 7(a) fora€ F, 1<i<j<n.

(#3i) T(ab) = 7(a)7(b) for a, be F.

Fora, be Fand 1 <i <k < j<n,by Claim 6 we have
o ([e (es+ aci +abey)"] ) = [ (47 (@) i+ 71 <ab>ej)T]
and
vo ([(~ber+e;)el]) = [ (=71 B ex +¢5) €T

Applying s to [e;(e; + aey + abe;)T] ~ [(—bey, + e]-)ejT] we get
. . T
[ei (ei + Tlgz) (a)er + Tj@ (ab) ej) ] ~ [(—T;k) (b) ex + ej> ejT} ,

which implies that T]m (ab) = T]ii) (a)’l'](k) (b). This completes the proof of (i).

When ¢ =1 and j > 3, we can see from (i) that

(F0) " @ = (WP W) A @ () = 7(a).

When i > 2 and 5 > 3, we have

7=, 5@ = ) ),

which implies that (r\"(1))"'7\”(a) = 7" ()7 (1) (1) 7 (@) = (a).

J J

Thus, (Tj(i)(l))_lrj(i) (a) = 7(a) for all a € F and all 1 < ¢ < j < n. This completes

the proof of (ii).
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For a, b € F, by (ii) we have 7(ab) = (T,Sl)(l))_lrél)(ab). On the other hand, by
(i) we have 7'7(11)(1) = 72(1)(1)77(12)(1), Tr(ll)(ab) = 72(1)(@)7'7(12) (b). Therefore,
—1 —1
r(a@) = (570)  AV@ (W) 20 = @)
which completes the proof of (iii).

By Claim 7 (iii), one can easily see that (7(—1))? = 1 and 7(—1) = —1. Thus,
7(—a) = —7(a) for any a € F.

CLAIM 8. There exists an inner automorphism op with D an invertible diagonal
matriz such that

T
D - Vo ({(21@@'—1 ases + ei) (61’ + 2 iti<i<n btet) })
(3.6)
T
- [(21<s<i1 (as)es + ei) (ei + 2iti<i<n T(bt)@t) ]
for all as,by € F and all 1 <1 < n.

For 2 < j < nand a € F, by Claim 7 (ii) we have T;l)(a) = T(a)r(l)(l). For
2<s<i<t<nanda€F, by Claim 7 (i) we have

@)= (1) V) = (7 )

and

$a) = (W) 2@ = (5 W) .

Now, for 1 < i < j < n, it follows from Claim 6 that

T
(D) Yo asestei | e+ Y bie
1<s<i—1 i+1<t<n

T
T(as Lo ¢! 7(b Tt(l)l
= ( Z (i_()l)l(l)( )es + @i> (ej + Z (;()1)(1)( )et>
1<s<i—1 78 iri<t<n T

Let D = diag(L, (r{"(1))~%,..., (n{"(1))"1). Then D € U (F) and the equality in
(3.7) can be rewritten as the form in (3.6).

(3.7)

Denote 13 =T p - s.
CLAIM 9. 7 is an automorphism of the field F'.

By Claim 7 (iii), it suffices to prove that 7 is additive. For any a, b € F, by
Claim 8 we know that v3([e1(e1 + aez + bes)”]) = [e1(e1 + T(a)es + 7(b)es)?] and
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P3([(—(a+b)er +ea+e3)el]) = [(—7(a+b)er +e2+e3)el]. Then by applying ¥ to
[e1(e1 +aez+be3)T] ~ [(—(a+b)er +ea+e3)el], we get [e1(er +7(a)ea +7(b)es)T] ~
[(—7(a +b)er + ez + e3)el], which implies that 7(a + b) = 7(a) + 7(b).

Claim 9 shows that 7 can induce a field automorphism 6, of T(U}(F)). In the
following, we denote 57_ t 13 by ¥4. Then by Claim 8 we have

(3.8) ¥4 ([A]) = [4] for any [A] € ®;;, 1< i< n.

CLAIM 10. g4 is the identity automorphism of T(UL(F)).

By (3.8), it suffices to prove that 4([A]) = [A] for any A € ®;5, 1 <i<j < n.
Forl<i<j<nand A= (21@@4 as€s+€i)(€j+zj+1<t<n beer)T with as, by € F,
by Claim 4, we may assume that

T
¥ ([4]) = S oceste| e+ > die € dyj,
1<s<i—1 JHI<t<n

where ¢5,d; € F. For 1 <k <i—1and j+1<1<n (if exists), by (3.8) we have

(o ([ek (er — akei)TD = [ek (er — akei)T} )

¢4 ([(—blej + el) 61T]) = [(—blEj + 65) elT] .

Applying 4 to [ex(er — are;)”] ~ [A] and [A] ~ [(—biej + e;)e] ], respectively, we get

T
T
er (ex — age;) } ~ E cses + € e;j + E deey
1<s<i—1 J+H1I<t<n
and
T
T
g cs€s + € ej + g diey ~ [(fblej +er)e ] ,
1<s<i—1 J+H1I<t<n

which implies that ¢z = ap and d; = b, 1 < k<i—1and j+ 1 <[ <n. Thus,
¥4([A]) = [A] for any [A] € V,.

The above discussions show that ¢ = 7° - Gp - 0,, where P = D~'Q~', which
completes the proof. O
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4. Automorphisms of I'(U}(F)). In this section, we first show how to reduce
an automorphism of I'(U} (F)) to that of T'(U}(F)).

LEMMA 4.1. Let A, B € UL(F). Then N(A)\{B} = N(B)\{A} (in T(UL(F)))
if and only if B is a nonzero multiple of A.

Proof. The sufficiency is obvious. We only prove the necessity. Suppose that [A] €
®;;, 1 <7< j < n,then by the proof of Lemma 2.2 we conclude that there exists P &
U, ' (F) such that P~'AP = aese] with some a € F*. By N(A)\{B} = N(B)\{4}
we know that N (eze] )\{C} = N(C)\{eie] }, where C = P~'BP. Suppose that

T
C = Z aRe Z bre; ,  where ag, b € F.
1<kt t<i<n

For s # i,j, by esel € N(eie] )\{C}, we have esel € N(C)\{eie] }, which implies
that C(esel) = (esel)C. By the arbitrariness of s, we get C' = ae;e] +beje] +ceje]
where a = a;b;, b = a;b;, c = a;b;. If i = j, then it is easily seen that C' is a nonzero
multiple of e;el. If i < j, we claim that @ = 0 and ¢ = 0. Indeed, if a # 0, Since
C € UL(F), we have C = aeieiTereiejT. It follows that beieijaeje]T € N(C)\{eie]T},
and so besel —aeje] € N(e;ef )\{C}, a contradiction. In a similar way we conclude
that ¢ = 0. Thus, C is a nonzero multiple of eieJT and then B is a nonzero multiple
of A. O

Let 6 be an automorphism of I'(U!(F)). We define § on T'(U}(F)) by
(4.1) 0([A]) = [0 (A)], VA € Uy (F).

LEMMA 4.2. Let 6 be an automorphism of T(UL(F)), then 0 is an automorphism
of DUy (F)).

Proof. 1f [A] = [B] € V,,, then B is a nonzero multiple of A. By Lemma 4.1 we
have N (A)\{B} = N(B)\{A}, which implies that

N(O(AN\L0(B)} =N (0(B)\{0(A)}

Hence, 0(B) is also a nonzero multiple of (A), and then @ is well defined. It’s clear
that 6 is a bijection, and 8([A]) ~ 6([B]) if and only if [A] ~ [B]. Thus, 0 is an
automorphism of T'(U}(F)). O

Next, by Theorem 3.1 and Lemma 4.2, we can describe the automorphisms of
LU (F)) with n > 3 immediately.

THEOREM 4.3. Letn > 3. If 0 is an automorphism of (U} (F)), then 0 is of the
form

0=n°-op-0,-¢,
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where n, op, 0 and & respectively are an extremal automorphism, an inner automor-
phism, a field automorphism and a local scalar multiplication of T(UL(F)) defined as
in section 1, 6 =0 or 1.

Proof. Let 6 be an automorphism of I'(U}(F)), and define  as in (4.1), then by
Lemma 4.2 we see that § is an automorphism of T'(i}(F)). Applying Theorem 3.1,
we know that there exists a matrix P € U, 1(F) and an automorphism 7 of F such
that  =7° -@p - 0, where § = 0 or 1. This shows that 5;1 ~51§1 -7 - @ acts as the
identity automorphism on T(UL(F)), or equivalently, 0= - 05" -1° - 6 sends each rank
one upper triangular matrix A to a scalar multiple of A. Thus, 6! - a;l -n® .0 is
exactly a local scalar multiplication of I'(U}(F')). The proof is complete. O

Proof of Theorem 1.2. The necessity follows from Theorem 4.3, and the sufficiency
is obvious. O

Now, we describe all automorphisms of I'(U}(F)) for n = 2. To this end, we need
construct two exceptional type of automorphisms.

e For any a € F, we define a permutation p, on Uj(F) as follows: for any
r € F*, rej(er + aez)? is sent to r(—ae; + ez)ed’; r(—ae; + ea)el is sent to
re1(e1 + aez)’; each other vertices in Ui (F) is fixed by p,. Then p, is an

automorphism of T'(U3 (F)), and p? = 1 (in fact pp = 7). Denote p = [] pS,
acF
where 6, = 0 or 1.
e Let m be a permutation of F satisfying m(0) = 0. Define the map 6, :
U3 (F) — U3 (F) as follows: for any a,b € F, r € F*, rej(e1 +aez)’ is sent to
rei(er + m(a)ez)T; r(ber + ez)ed is sent to r(—m(—b)e; + ea)el’; each rejel

is fixed by .. Then ¢, is an automorphism of T'(Us (F)).

Denote by K,, the complete graph on n vertices. Let Wy = [e12]. For any a € F,
we denote

W(a) = [el (e1 + aeg)T} U[(—aer +e2)el].

It’s clear that Wy, W(a) with a € F, are |F| + 1 connected components in T'(U3 (F)),
and that T[Wy] = K1, T[W(a)] = K,. Automorphisms of T'(U3 (F)) are characterized
as follows.

THEOREM 4.4. 6 is an automorphism of U'(Us (F)) if and only if
HZUU'ew'p'€7

where oy (with U a 2 X 2 unit upper triangular matriz, all of whose diagonal entries
are 1, over F) and & are respectively an inner automorphism and a local scalar mul-
tiplication of T(U(F)) defined as in section 1, O (with © a permutation on F fizing
0) and p are exceptional type of automorphisms of T'(Us (F)) defined as above.
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Proof. The sufficiency is obvious. For the necessity, assume that 6 is an auto-
morphism of I'(Uj (F)). Define § as in (4.1), then by Lemma 4.2 we see that 6 is an
automorphism of T'(Us (F)).

We first consider the action of 6 on [ejel]. If 9([6161]) = [61(61 + weq)T] for

some x € F, then 7' - 0([erel]) = [ere]], where U = eje] + ezed + wejes is a unit
upper triangular matrix over F. If §([e;e]) = [(ye1 + 62)62] for some y € F, then
Po- 5([@16{]) [e1(e1 +xe2)T] with x = —y. It follows that 7' -5y -0([e1e]) = [erel],
and so 7' - pg - 0(Jezed]) = [e2el]. Thus, we may assume that dgp = 0 or 1 such that

551 Po -5([61‘6?]) = [eieﬂ , 1=1,2.

Next, for a € F, it follows from T[W(a)] = K> that T[a;" - 55 - 0(W(a))] = Ko,
which implies that F[__l 7 - 0W(a))] = F[W(b)] for some b € F. Then, there
exists a permutation 7 of F such that 7" - 5° - 00W(a)) = W(r(a)) for all a € F.
Obviously, 7m(0) = 0. By this © we can mduce a automorphism 6, of I'(U3 (F)) such
that 0, 75" -7 -0(W(a)) = W(a), a € F. Now, we conclude that for a € F, either

07yt w0 (e er +aen)”] ) = [er fer +aen)”]

or
5;1 ot -0 ([el (e1 + aeg)TD = [(—ae1 +e2)e7].

For a € F*, choose §, = 0 or 1 such that pg% N 700 -0([er(er+ae)T]) = [ex (et

s

aez)T], and denote p = [] pde, then ﬁ-?;l Tt 0([er(er +aea)T]) = [e1(er +aes)T]
acF
for any a € F.

The above discussions show that p - 5;1 Ty - 0([A]) = [A] for any [A] € V. Ina
similar way as in the proof of Theorem 4.3, we conclude that p-6,1 - o 1.9 is exactly
a local scalar multiplication of I'(U3 (F)). This completes the proof. O

5. Applications. In this section, we denote by I',, the graph T'(U!(F)). The set
of all automorphisms of T',,, denoted by Aut(T',,), forms a group under composition of
transformations. Let Inn(T',), Fie(T',), Ext(I',,) and Loc(T',,), respectively, be the set
of all extremal automorphisms, inner automorphisms, field automorphisms and local
scalar multiplications of T'(U!(F)) (see the definition in section 1), and denote by

Per;(T'2) and Pery(T'2) the set of all permutations p = [] pS* and all permutations
acF
0, (with 7 a permutation on F fixing 0) on U3 (F), respectively. Then it’s easy to

verify that Inn(T'),), Fie(T',), Ext([',,) and Loc(T',) (resp., Per;(I'2) and Pers(I'y))
are all subgroups of Aut(T',) (resp., Aut(T'2)). If G and H are two subgroups of a
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group, we use G x H and G x H to denote their direct product, semidirect product
with G normal, respectively. Also G x --- X G is denoted by kG.
—_——
k

Now, we consider the orbit partition of the vertex set (see Corollary 5.1) and the
order of the group of automorphisms (see Corollary 5.2).

COROLLARY 5.1.  The orbit partition of U}(F) under the automorphisms is

k<I<n—k+1 )
UNF) = U X Whi. The number of orbits is |“¢ |, unless n = 2 and in this
INNES

case, the number of orbits is 2.

Proof. For 1 < k < L”T'HJ and k <1< n-—k+1, Lemma 2.6 shows that each
Wy, is stabilized under any automorphism. It suffices to prove that for any A € Wy,
there exists an automorphism 6 such that 0(A) € [egef]. If [A] € @iy, suppose that
A= 7“(21@@@71 ases + ex)(e; + Zl+1<t<n beer)T, where r € F*, a, € F, b, € F.
Set P=1-— Zlgsgk—1 asesef + Zz+1<t§n beerel € U, 1(F), then op(A) = rekelT. If
[A] € ®p_i41,n—k+1, We see that [n(A)] € ®;. Then by what we obtained above we
get that there exists a matrix P € U,, ! (F) such that op - n(A) € [exef]. The second
result is obvious. O

COROLLARY 5.2. Let |F| = q = p™ with p a prime. Then

(5.1) aut(T,)| = 2mg™ 5 (¢—1)" (g - )" for n>3,
and
(5.2) |Aut(Dy)| = 2%(q — 1) (g — DY for n=2.

Proof If n > 3, then by Theorem 4.3, each automorphism 6 can be written as
0=n°-0p-0,- f, where § =0 or 1, P € U, }(F), 7 € Aut(F), £ is a permutation on
Z/l,ll(F) such that £([A]) = [A] for any A € UL(F). Ifn° -op, -0, &1 =12 -0p, -0, - o,
then 7% .0 p, = 0,,-&, where d3 = 0or 1, Py = P{lPl, To = Tg-Tfl, & = 52{;1. Since
[e;e]] is stable under 6, - &, we have 1% - op, ([e;e] ]) = 0 - [PO_I(eie]T)PO] = [ese]]
for all 1 < i < j < n. This shows that d3 = 0, and Py is a diagonal matrix. By d3 = 0,

we get 01 = d9, and so op, = O, -&. Let Py = diag(dy, da, . ..,d,) with d; € F*, then
_ T
TP, ([el (e1 + aej)TD = {el (61 + ad; ldjej) } ,

op, ([ aes +e,)e D = [(ad;ldnngren) eﬂ
for all @ € F and all 2 < 7 < n. On the other hand,

.o ([el el + ae; T]) = [el (e1 + To(a)ej)T] ,
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07, - €o ([(aeg +en) eﬂ) = [(7'0(@)@2 +en) eﬂ .

Consequently, 79(a) = adl_ldj = ady'd,, a € F, 2 < j < n. It follows that Py is a
nonzero scalar matrix and 79(a) = a for any a € F. Hence, P, = d1 P and 71 = 7o,
which implies that &1 = &. Now, the above discussion shows that

Uy (F))

[hue(D,)| = 2 22

- |Aut(F)| - [Loc(T'n)].

Denote by K the complement of the complete K, i.e., the graph consisting of n
isolated vertices. Clearly, Aut(K,) = Aut(K:) = S,, where S, is the symmetric
group of degree n. For any A € U}(F), we see that the subgraph induced by [A]
in T'(U,(F)) is isomorphic to K, 1 or Ki ;. This shows that Loc(I'y) = kSq1

n(n—1)

with k = \U(; Bl = = |V,|. It is not difficult to see that [U; 1 (F)| = (¢ —1)"¢" =z ,
|[Aut(F')| = m, |Sg—1] = (¢ — 1)!. Thus, we get (5.1).

When n = 2, it is easily seen that the number of permutations p on UL (F) is 29
and the number of permutations 7 on F satisfying 7(0) = 0 is (¢ — 1)!. Hence, in a
similar way as above, we have (5.2). O

Finally, by Theorem 4.3, Theorem 4.4 and the proof of Corollary 5.2, we have the
following result.

COROLLARY 5.3. Let |F| = q. Then, the following hold:
(i) When n > 3, hut(T,) = (Y 5 |V,|S, 1) x Aut(F)) x Sp, where K =
{al | a € F*};

(i) When n =2, Aut(T'y,) = ((Ua(F) x |Va]Sq—1) X Sq—1) % ¢S2, where Us(F) is
the set of all 2 X 2 unit upper triangular matrices over F.

Proof. If n > 3, then by Lemma 1.1 and Theorem 4.3, we get

Aut(T,,) = ((Inn(T,,) x Loc (T'},)) x Fie(T',)) x Ext(T'y,).
The proof of Corollary 5.2 shows that Inn(T',) = w with K = {al | a € F*},
Fie(T',) = Aut(F), Ext(T',) = S and Loc(T'y,) = |V;,|Sq—1, from which we get (i).

When n = 2, by Theorem 4.4 and the proof of Corollary 5.2, it is easily seen that
Inn(T,) & Us(F), where Us(F) is the set of all 2 x 2 unit upper triangular matrices
over F', Per(I'y) = ¢S> and Pery(I'y) = S,_1. Hence, in a similar way as above, we
obtain the result of (ii). O
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