AUTOMORPHISMS OF A COMMUTING GRAPH OF RANK ONE UPPER TRIANGULAR MATRICES*

SHIKUN OU ${ }^{\dagger}$ AND JIN ZHONG ${ }^{\ddagger}$

Abstract

Let F be a finite field, $n \geqslant 2$ an arbitrary integer, $\mathcal{M}_{n}(F)$ the set of all $n \times n$ matrices over F, and $\mathcal{U}_{n}^{1}(F)$ the set of all rank one upper triangular matrices of order n. For $\mathcal{S} \subseteq \mathcal{M}_{n}(F)$, denote $C(\mathcal{S})=\{X \in \mathcal{S} \mid X A=A X$ for all $A \in \mathcal{S}\}$. The commuting graph of \mathcal{S}, denoted by $\Gamma(\mathcal{S})$, is the simple undirected graph with vertex set $\mathcal{S} \backslash C(\mathcal{S})$ in which for every two distinct vertices A and B, $A \sim B$ is an edge if and only if $A B=B A$. In this paper, it is shown that any graph automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ with $n \geqslant 3$ can be decomposed into the product of an extremal automorphism, an inner automorphism, a field automorphism and a local scalar multiplication.

Key words. Automorphisms, Commuting graphs, Characteristic subgraphs, Groups.

AMS subject classifications. 05C25, 05C60, 11T99, 15A04.

1. Introduction. Let F be a finite field, $F^{*}=F \backslash\{0\}$, and $n \geqslant 2$ an arbitrary integer. We denote by $\mathcal{M}_{n}(F)$ the set of all $n \times n$ matrices over $F, \mathcal{U}_{n}(F), \mathcal{U}_{n}^{-1}(F)$ and $\mathcal{U}_{n}^{1}(F)$, respectively, the set of all upper triangular matrices, invertible upper triangular matrices and rank one upper triangular matrices in $\mathcal{M}_{n}(F)$. For a matrix $A=\left(a_{i j}\right) \in \mathcal{M}_{n}(F)$ and a map $\tau: F \rightarrow F$, let $[A]$ and A_{τ}, respectively, be the subspace spanned by A and the matrix $\left(\tau\left(a_{i j}\right)\right)$.

The concept of commuting graph was first introduced and studied for semisimple rings by Akbari et al. in [2], and further studied in many references and therein, see [1,3-13]. A lot of results about the diameter, the connectivity of commuting graphs and so on have been obtained. Additional information about algebraic properties of the elements can be obtained by studying the properties of a commuting graph. For example, for a finite field F, if R is a ring with identity such that $\Gamma(R) \cong \Gamma\left(\mathcal{M}_{2}(F)\right)$, then $R \cong \mathcal{M}_{2}(F)$, see [13]. It was conjectured that this is also true for the full matrix ring $\mathcal{M}_{n}(F)$, where F is a finite field and $n \geqslant 3$.

[^0]Generally, determining the full automorphisms of a graph is an important however a difficult problem both in graph theory and in algebraic theory. It seems that little is known for the automorphisms of the commuting graphs of rings. This observation motivates us to do some work on this topic. For a finite field F, it seems very difficult to determine the full automorphisms of $\Gamma\left(\mathcal{M}_{n}(F)\right)$, so we focus on the subgraph of $\Gamma\left(\mathcal{M}_{n}(F)\right)$ induced by $\mathcal{U}_{n}^{1}(F)$. It's clear that the vertex set of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ is $\mathcal{U}_{n}^{1}(F)$. The following four types of automorphisms for $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ are called standard automorphisms of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$.

- Let $P \in \mathcal{U}_{n}^{-1}(F)$. We define $\sigma_{P}: \mathcal{U}_{n}^{1}(F) \rightarrow \mathcal{U}_{n}^{1}(F)$ by $A \mapsto P^{-1} A P$. Then it is easy to see that σ_{P} is an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called an inner automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$.
- If τ is an automorphism of the field F, then the map $\theta_{\tau}: \mathcal{U}_{n}^{1}(F) \rightarrow \mathcal{U}_{n}^{1}(F)$ defined by $A \mapsto A_{\tau}$ is an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called a field automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$.
- Let $\varepsilon=\left(\begin{array}{ccccc}0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0\end{array}\right) \in \mathcal{M}_{n}(F)$. Then it is not difficult to verify that the map $\eta: A \mapsto \varepsilon A^{T} \varepsilon$ is an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called an extremal automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$. Note that $\eta^{2}=1$. For convenience, the identity automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ is also regarded as an extremal automorphism.
- Let ξ be a permutation on $\mathcal{U}_{n}^{1}(F)$ such that each $[A]$ is stabilized, i.e, $\xi(A)=$ $\alpha_{A} A$ for any $A \in \mathcal{U}_{n}^{1}(F)$, where $\alpha_{A} \in F^{*}$ depends on A. Then ξ is an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called a local scalar multiplication of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$.

It is not difficult to see that the following result holds.
Lemma 1.1. Let $\sigma_{P}, \theta_{\tau}, \eta$ and ξ be defined as above. Then,
(i) $\sigma_{P} \cdot \xi=\xi \cdot \sigma_{P}$;
(ii) $\eta^{-1} \cdot \sigma_{P} \cdot \eta=\sigma_{\eta\left(P^{-1}\right)}$;
(iii) $\eta^{-1} \cdot \theta_{\tau} \cdot \eta=\theta_{\tau}$;
(iv) $\theta_{\tau}^{-1} \cdot \xi \cdot \theta_{\tau}$ and $\eta^{-1} \cdot \xi \cdot \eta$ both are local scalar multiplications of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$.

In this paper, we aim to describe the full automorphisms of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$. In order to prove the main theorem of this paper, we will follow a technique from a recent paper in which the full automorphisms of the zero-divisor graph of $\mathcal{U}_{n}^{1}(F)$ were determined.

In [14], Wong et al. showed that any graph automorphism of the zero-divisor graph of $\mathcal{U}_{n}^{1}(F)$ with $n \geqslant 3$ can be decomposed into the product of an inner automorphism, a field automorphism and a local scalar multiplication.

Our main result is as follows.
ThEOREM 1.2. Let $n \geqslant 3$. Then θ is an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ if and only if θ can be decomposed into the product of an extremal automorphism, an inner automorphism, a field automorphism and a local scalar multiplication.
2. Notations and preliminaries. Let F^{n} be the n-dimensional column vector space over F. It's well known that any $A \in \mathcal{U}_{n}^{1}(F)$ can be written as $A=\alpha \beta^{T}$, where $\alpha, \beta \in F^{n}$. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the elements of the standard basis of F^{n}. For convenience, in a vector expression $\alpha=\sum a_{i} e_{i}$ the subscript i can be less than 1 or greater than n, and we use the convention that the coefficient a_{i} is regarded as zero if $i \leqslant 0$ or $i \geqslant n+1$ in some term $a_{i} e_{i}$. Then for $A \in \mathcal{U}_{n}^{1}(F)$, we can write $A=\sum_{i \leqslant j} a_{i} b_{j} e_{i} e_{j}^{T}$ with $a_{i}, b_{j} \in F$. Denote by I the identity matrix.

In order to describe all automorphisms of the graph $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, we need firstly to study the automorphisms of a related graph. For $\mathcal{S} \subseteq \mathcal{M}_{n}(F)$, we refer to $\bar{\Gamma}(\mathcal{S})$ as the graph with vertex set $\{[A] \mid A \in \mathcal{S} \backslash C(\mathcal{S})\}$ in which for every two distinct vertices $[A]$ and $[B],[A] \sim[B]$ is an edge if and only if $A B=B A$. The graph is well defined since $A B=B A$ if and only if $(a A)(b B)=(b B)(a A)$ for any $a, b \in F^{*}$. Let V_{n} be the vertex set of the graph $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, i.e.,

$$
V_{n}=\left\{[A] \mid A \in \mathcal{U}_{n}^{1}(F)\right\}
$$

For $[A] \in V_{n}$, we denote by $\mathcal{N}([A])$ the set of neighbours of $[A]$. The degree of $[A]$, written as $\operatorname{deg}([A])$, is the cardinality of $\mathcal{N}([A])$. For a nonempty subset W of V_{n}, let $|W|$ be the cardinality of W. The subgraph of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ induced by W is denoted by $\bar{\Gamma}[W]$. For two subsets U and W of the vertex set V_{n}, we denote $U \sim W$ (resp., $U \perp W$) if $x \sim y$ (resp., $x \nsim y$) for any $x \in U$ and any $y \in W$. Also $\{x\} \sim W$ (resp., $\{x\} \perp W$) is denoted by $x \sim W$ (resp., $x \perp W$). Set

$$
\begin{aligned}
& W^{\sim}(U)=\{x \in U: x \sim W\}, \\
& W^{\perp}(U)=\{y \in U: y \perp W\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{i j}=\left\{\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right] \mid a_{s}, b_{t} \in F\right\}, \quad 1 \leqslant i \leqslant j \leqslant n, \\
& \Phi_{k}=\bigcup_{1 \leqslant i \leqslant n+1-k} \Phi_{i, i+k-1}, \quad 1 \leqslant k \leqslant n, \\
& \mathcal{W}_{k l}=\Phi_{k l} \cup \Phi_{n-l+1, n-k+1}, \quad 1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor \text { and } k \leqslant l \leqslant n-k+1 .
\end{aligned}
$$

For $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $1 \leqslant t \leqslant n$, by a direct computation, we have

$$
\begin{align*}
& \Phi_{k}^{\sim}\left(\Phi_{t}\right)= \begin{cases}\Phi_{t} \backslash \bigcup_{1 \leqslant i \leqslant n-k-t+2} \mathcal{W}_{i, i+t-1}, & k+t \leqslant n+1, \\
\Phi_{t}, & \text { otherwise },\end{cases} \tag{2.1}\\
& \mathcal{W}_{k k}^{\perp}\left(\Phi_{t}\right)= \begin{cases}\mathcal{W}_{k, k+t-1}, & t=n-2 k+2, \\
\varnothing, & \text { otherwise },\end{cases} \tag{2.2}\\
& \mathcal{W}_{k, n-k+1}^{\perp}\left(\Phi_{t}\right)= \begin{cases}\mathcal{W}_{k-t+1, k}, & k \geqslant t, \\
\varnothing, & \text { otherwise } .\end{cases} \tag{2.3}
\end{align*}
$$

In [14], Wong et al. gave an explicit description of the vertex set and the order of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Lemma 2.1. ([14, Lemma 3.1])
(i) V_{n} is the disjoint union of all $\Phi_{i j}, 1 \leqslant i \leqslant j \leqslant n$.
(ii) The number of vertices in $\Phi_{i j}$ is $|F|^{n+i-j-1}$.
(iii) The number of vertices in $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ is $\left|V_{n}\right|=\sum_{1 \leqslant i \leqslant j \leqslant n}|F|^{n+i-j-1}$.

Now, we study the vertex degree of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.
Lemma 2.2. Let $1 \leqslant i \leqslant j \leqslant n$, and $[A] \in \Phi_{i j}$. Then $\operatorname{deg}([A])=\left|V_{n}\right|-(n+i-$ $\left.j-2+\delta_{i j}\right)|F|^{n-1}-\delta_{i j}$, where $\delta_{i j}$ is defined to be 0 or 1 depending on i being equal to j or not.

Proof. We first consider $\operatorname{deg}\left(\left[e_{i} e_{j}^{T}\right]\right)$ for $1 \leqslant i \leqslant j \leqslant n$. For any $\left[\alpha \beta^{T}\right]$ in $\mathcal{N}\left(\left[e_{i} e_{j}^{T}\right]\right)$, we may assume that $\alpha=\sum_{s \leqslant k} a_{s} e_{s} \in F^{n}, \beta=\sum_{l \leqslant t} b_{t} e_{t} \in F^{n}, 1 \leqslant k \leqslant l \leqslant n$. It's easily seen that

$$
\begin{align*}
{\left[\alpha \beta^{T}\right] \sim\left[e_{i} e_{j}^{T}\right] } & \Leftrightarrow b_{i}\left(\alpha e_{j}^{T}\right)=a_{j}\left(e_{i} \beta^{T}\right) \tag{2.4}\\
& \Leftrightarrow a_{k} b_{i}=0 \text { for all } k \neq j, \text { and } a_{j} b_{l}=0 \text { for all } l \neq i \tag{2.5}
\end{align*}
$$

Now, we claim that $b_{i}=0$. Indeed, if $b_{i} \neq 0$, then by (2.5), $a_{k}=0$ for $k \neq j$. Thus, it follows from (2.4) that $a_{j} \neq 0$. Moreover, by (2.5) again, $b_{l}=0$ for $l \neq i$. Consequently, $\alpha \beta^{T}=\left(a_{j} b_{i}\right) e_{j} e_{i}^{T}$, which implies that $\left[e_{j} e_{i}^{T}\right]=\left[\alpha \beta^{T}\right] \in \mathcal{N}\left(\left[e_{i} e_{i}^{T}\right]\right)$ (note that $\left.\left[e_{i} e_{i}^{T}\right] \notin \mathcal{N}\left(\left[e_{i} e_{i}^{T}\right]\right)\right)$, a contradiction. Since $b_{i}=0$, there exists $l \neq i$ such that $b_{l} \neq 0$. Then by (2.5) we have $a_{j}=0$. Therefore, $\left[\alpha \beta^{T}\right] \sim\left[e_{i} e_{j}^{T}\right]$ if and only if $a_{j}=0$ and $b_{i}=0$.

For any $1 \leqslant k \leqslant l \leqslant n$ and $1 \leqslant s \leqslant n$, denote

$$
\begin{aligned}
\Psi_{k l}^{(s *)} & =\left\{\left[\alpha \beta^{T}\right] \in \Phi_{k l} \mid \alpha, \beta \in F^{n}, \alpha^{T} e_{s} \neq 0\right\}, \\
\Psi_{k l}^{(* s)} & =\left\{\left[\alpha \beta^{T}\right] \in \Phi_{k l} \mid \alpha, \beta \in F^{n}, \beta^{T} e_{s} \neq 0\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \Psi_{1}=\left\{\left[\alpha \beta^{T}\right] \in \mathcal{U}_{n}^{1}(F) \mid \alpha, \beta \in F^{n}, \alpha^{T} e_{j} \neq 0\right\}, \\
& \Psi_{2}=\left\{\left[\alpha \beta^{T}\right] \in \mathcal{U}_{n}^{1}(F) \mid \alpha, \beta \in F^{n}, \beta^{T} e_{i} \neq 0\right\} .
\end{aligned}
$$

Then we can see that

$$
\Psi_{1}=\bigcup_{j \leqslant k \leqslant l \leqslant n} \Phi_{k l}^{(j *)}, \quad \Psi_{2}=\bigcup_{1 \leqslant k \leqslant l \leqslant i} \Phi_{k l}^{(* i)}
$$

and

$$
\mathcal{N}\left(\left[e_{i} e_{j}^{T}\right]\right)=V_{n} \backslash\left(\Psi_{1} \cup \Psi_{2} \cup\left\{\left[e_{i} e_{j}^{T}\right]\right\}\right)
$$

Notice that $\Psi_{1} \cap \Psi_{2}=\Phi_{i i}$ or \varnothing depending on i being equal to j or not. Hence

$$
\begin{aligned}
\operatorname{deg}\left(\left[e_{i} e_{j}^{T}\right]\right) & =\left|V_{n}\right|-\left|\Psi_{1} \cup \Psi_{2}\right|-\delta_{i j} \\
& =\left|V_{n}\right|-\left|\Psi_{1}\right|-\left|\Psi_{2}\right|+\left|\Psi_{1} \cap \Psi_{2}\right|-\delta_{i j} \\
& =\left|V_{n}\right|-\sum_{j \leqslant k \leqslant l \leqslant n}\left|\Phi_{k l}^{(j *)}\right|-\sum_{1 \leqslant k \leqslant l \leqslant i}\left|\Phi_{k l}^{(* i)}\right|+\left(1-\delta_{i j}\right)\left|\Phi_{i i}\right|-\delta_{i j} .
\end{aligned}
$$

Now a direct computation shows that

$$
\left|\Psi_{k l}^{(j *)}\right|= \begin{cases}(|F|-1)|F|^{n+k-l-2}, & j+1 \leqslant k \leqslant n \\ |F|^{n+k-l-1}, & k=j\end{cases}
$$

and

$$
\left|\Psi_{k l}^{(* i)}\right|= \begin{cases}(|F|-1)|F|^{n+k-l-2}, & 1 \leqslant l \leqslant i-1 \\ |F|^{n+k-l-1}, & l=i .\end{cases}
$$

Thus,

$$
\begin{aligned}
\operatorname{deg}\left(\left[e_{i} e_{j}^{T}\right]\right) & =\left|V_{n}\right|-i|F|^{n-1}-(n-j-1)|F|^{n-1}+\left(1-\delta_{i j}\right)|F|^{n-1}-\delta_{i j} \\
& =\left|V_{n}\right|-\left(n+i-j-2+\delta_{i j}\right)|F|^{n-1}-\delta_{i j} .
\end{aligned}
$$

Next, we will show that $\operatorname{deg}([A])=\operatorname{deg}\left(\left[e_{i} e_{j}^{T}\right]\right)$ for $[A] \in \Phi_{i j}, 1 \leqslant i \leqslant j \leqslant n$. Suppose that $[A]=\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s}^{\prime} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} b_{t}^{\prime} e_{t}\right)^{T}\right] \in \Phi_{i j}$, where a_{s}^{\prime}, $b_{t}^{\prime} \in$ F. Set $P=I-\sum_{1 \leqslant s \leqslant i-1} a_{s}^{\prime} e_{s} e_{i}^{T}+\sum_{j+1 \leqslant t \leqslant n} b_{t}^{\prime} e_{j} e_{t}^{T} \in \mathcal{U}_{n}^{-1}(F)$. Then $\left[P^{-1} A P\right]=$ $\left[e_{i} e_{j}^{T}\right]$. We define the map σ from $\mathcal{N}([A])$ to $\mathcal{N}\left(\left[e_{i} e_{j}^{T}\right]\right)$ by $[X] \mapsto\left[P X P^{-1}\right]$, and notice that σ is bijective. Hence, $\operatorname{deg}([A])=\operatorname{deg}\left(\left[e_{i} e_{j}^{T}\right]\right)$ for any $[A] \in \Phi_{i j}, 1 \leqslant i \leqslant j \leqslant n$.

In order to classify automorphisms of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, it is necessary to investigate a class of special subgraphs, the characteristic subgraphs of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Definition 2.3. For an automorphism ψ of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, a nonempty subset W of the vertex set V_{n} is called stable under ψ if $\psi(W)=W$. The subgraph $\bar{\Gamma}_{0}$ of
$\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ is called a characteristic subgraph if the vertex set of $\bar{\Gamma}_{0}$ is stable under each automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

It's obvious that the intersection, union and difference of two characteristic subgraphs are also such subgraphs, and it is not difficult to see that the following result holds.

Lemma 2.4. Let U and W be subsets of V_{n}. If $\bar{\Gamma}[W]$ and $\bar{\Gamma}[U]$ are characteristic subgraphs of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, then so are $\bar{\Gamma}\left[W^{\sim}(U)\right]$ and $\bar{\Gamma}\left[W^{\perp}(U)\right]$.

Clearly, V_{n} is the disjoint union of $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$. For $1 \leqslant k \leqslant n$, if $[A] \in$ $\Phi_{i, i+k-1}, 1 \leqslant i \leqslant n+1-k$, by Lemma 2.2 we see that $\operatorname{deg}([A])=\left|V_{n}\right|-(n-k-1+$ $\left.\delta_{i, i+k-1}\right)|F|^{n-1}-\delta_{i, i+k-1}$, which shows
(2.6) $\operatorname{deg}([A])=\left|V_{n}\right|-\left(n-k-1+\delta_{1 k}\right)|F|^{n-1}-\delta_{1 k}, \forall[A] \in \Phi_{k}, 1 \leqslant k \leqslant n$,
where $\delta_{i j}$ is defined as in Lemma 2.2. In the following, we will introduce some characteristic subgraphs of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, which will play an important role in the studying of the automorphisms of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Lemma 2.5. For any $1 \leqslant k \leqslant n, \bar{\Gamma}\left[\Phi_{k}\right]$ is a characteristic subgraph of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.
Proof. Let ψ be an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$. For any $[A] \in \Phi_{k}$, assume that $\psi([A]) \in \Phi_{l}, 1 \leqslant k, l \leqslant n$. We can see from (2.6) that

$$
\begin{equation*}
\operatorname{deg}(\psi([A]))=\left|V_{n}\right|-\left(n-l-1+\delta_{1 l}\right)|F|^{n-1}-\delta_{1 l} . \tag{2.7}
\end{equation*}
$$

Since $\operatorname{deg}([A])=\operatorname{deg}(\psi([A]))$ for any $[A] \in V_{n}$, then by (2.6) and (2.7) we get $k=l$, which implies that $\psi\left(\Phi_{k}\right) \subseteq \Phi_{k}$. Similarly, we have $\psi^{-1}\left(\Phi_{k}\right) \subseteq \Phi_{k}$. By considering the action of ψ on $\psi^{-1}\left(\Phi_{k}\right) \subseteq \Phi_{k}$ we get $\Phi_{k}=\psi\left(\psi^{-1}\left(\Phi_{k}\right)\right) \subseteq \psi\left(\Phi_{k}\right)$. Therefore, $\psi\left(\Phi_{k}\right)=\Phi_{k}$.

Lemma 2.6. For any $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $k \leqslant l \leqslant n-k+1$, $\bar{\Gamma}\left[\mathcal{W}_{k l}\right]$ is a characteristic subgraph of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Proof. Denote by \mathscr{C} the set of all characteristic subgraphs of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$. We first proceed by induction on k to show that $\bar{\Gamma}\left[\mathcal{W}_{k k}\right] \in \mathscr{C}$ for any $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$. For $k=1, \Phi_{n}^{\perp}\left(\Phi_{1}\right)=\mathcal{W}_{11}$, we can see from Lemma 2.4 and Lemma 2.5 that $\bar{\Gamma}\left[\mathcal{W}_{11}\right] \in \mathscr{C}$. Assume that $\bar{\Gamma}\left[\mathcal{W}_{11}\right], \bar{\Gamma}\left[\mathcal{W}_{22}\right], \ldots, \bar{\Gamma}\left[\mathcal{W}_{k-1, k-1}\right] \in \mathscr{C}, 2 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$. Observe that $\Phi_{n-k+1}^{\sim}\left(\Phi_{1}\right)=\Phi_{1} \backslash \bigcup_{1 \leqslant i \leqslant k} \mathcal{W}_{i i}$ (see (2.1)), which implies that $\bar{\Gamma}\left[\Phi_{1} \backslash \bigcup_{1 \leqslant i \leqslant k} \mathcal{W}_{i i}\right] \in \mathscr{C}$. Hence, $\bar{\Gamma}\left[\mathcal{W}_{k k}\right]=\bar{\Gamma}\left[\Phi_{1}\right]-\bar{\Gamma}\left[\Phi_{1} \backslash \bigcup_{1 \leqslant i \leqslant k} \mathcal{W}_{i i}\right]-\sum_{1 \leqslant i \leqslant k-1} \bar{\Gamma}\left[\mathcal{W}_{i i}\right] \in \mathscr{C}$.

Next, we show that $\bar{\Gamma}\left[\mathcal{W}_{k l}\right] \in \mathscr{C}$ for $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $k+1 \leqslant l \leqslant n-k+1$ by considering the following three cases.

CASE 1. $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $l=n-k+1$.

It's clear that $\mathcal{W}_{1 n}=\Phi_{1 n}=\Phi_{n}$, then by Lemma 2.5 we know that $\mathcal{W}_{1 n} \in \mathscr{C}$. For $2 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $l=n-k+1$, since $\mathcal{W}_{k k}^{\perp}\left(\Phi_{l-k+1}\right)=\mathcal{W}_{k l}$ (see (2.2)), then Lemma 2.4, Lemma 2.5 and the above argument imply that $\bar{\Gamma}\left[\mathcal{W}_{k l}\right] \in \mathscr{C}$.

CASE 2. $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $k+1 \leqslant l \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$.
By Case 1 we have $\bar{\Gamma}\left[\mathcal{W}_{l, n-l+1}\right] \in \mathscr{C}$. Then we can see from $\mathcal{W}_{l, n-l+1}^{\perp}\left(\Phi_{l-k+1}\right)=$ $\mathcal{W}_{k l}($ see $(2.3))$ that $\bar{\Gamma}\left[\mathcal{W}_{k l}\right] \in \mathscr{C}$.

CASE 3. $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $\left\lfloor\frac{n+1}{2}\right\rfloor+1 \leqslant l \leqslant n-k$.
We proceed by induction on t to show that $\bar{\Gamma}\left[\mathcal{W}_{t, l-k+t}\right] \in \mathscr{C}$ for $1 \leqslant t \leqslant k$. By Case 2 we have $\mathcal{W}_{1, n-l+1} \in \mathscr{C}$. For $k=1, \mathcal{W}_{1, n-l+1}^{\sim}\left(\Phi_{l-k+1}\right)=\Phi_{l-k+1} \backslash \mathcal{W}_{1, l-k+1}$ (see (2.1)), which implies that $\bar{\Gamma}\left[\Phi_{l-k+1} \backslash \mathcal{W}_{1, l-k+1}\right] \in \mathscr{C}$. Thus, $\bar{\Gamma}\left[\mathcal{W}_{1, l-k+1}\right]=$ $\bar{\Gamma}\left[\Phi_{l-k+1}\right]-\bar{\Gamma}\left[\Phi_{l-k+1} \backslash \mathcal{W}_{1, l-k+1}\right] \in \mathscr{C}$. Now assume that $\bar{\Gamma}\left[\mathcal{W}_{1, l-k+1}\right], \bar{\Gamma}\left[\mathcal{W}_{2, l-k+2}\right]$, $\ldots, \bar{\Gamma}\left[\mathcal{W}_{t-1, l-k+t-1}\right] \in \mathscr{C}$, and denote

$$
\Psi=\Phi_{l-k+1} \backslash \bigcup_{1 \leqslant i \leqslant t-1} \mathcal{W}_{i, l-k+i}
$$

Obviously, $\bar{\Gamma}[\Psi] \in \mathscr{C}$. Then by $\mathcal{W}_{1, n-l+k-t}^{\sim}(\Psi)=\Psi \backslash \mathcal{W}_{t, l-k+t}$, we have $\bar{\Gamma}[\Psi \backslash$ $\left.\mathcal{W}_{t, l-k+t}\right] \in \mathscr{C}$, which implies that $\bar{\Gamma}\left[\mathcal{W}_{t, l-k+t}\right]=\bar{\Gamma}[\Psi]-\bar{\Gamma}\left[\Psi \backslash \mathcal{W}_{t, l-k+t}\right] \in \mathscr{C}$.

Therefore, $\bar{\Gamma}\left[\mathcal{W}_{k l}\right] \in \mathscr{C}$ for all $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $k \leqslant l \leqslant n-k+1$. $\mathbf{\square}$
3. Automorphisms of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$. In this section, we construct three standard automorphisms of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, based on which we can describe any automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ for $n \geqslant 3$.

- Let $P \in \mathcal{U}_{n}^{-1}(F)$. Define $\bar{\sigma}_{P}: V_{n} \rightarrow V_{n}$ by $[A] \mapsto\left[P^{-1} A P\right]$. Then it is easy to verify that $\bar{\sigma}_{P}$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called an inner automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.
- Let τ be an automorphism of the field F. Then the map $\bar{\theta}_{\tau}: V_{n} \rightarrow V_{n}$ defined by $[A] \mapsto\left[A_{\tau}\right]$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called a field automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.
- Define the map $\bar{\eta}: V_{n} \rightarrow V_{n}$ by $[A] \mapsto\left[\varepsilon A^{T} \varepsilon\right]$, where $\varepsilon=\sum_{1 \leqslant i \leqslant n} e_{i} e_{n+1-i}^{T}$. Then it is not difficult to see that $\bar{\eta}$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, which is called an extremal automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

The main result of this section is the following theorem.
Theorem 3.1. Let $n \geqslant 3$. Then ψ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ if and only if

$$
\psi=\bar{\eta}^{\delta} \cdot \bar{\sigma}_{P} \cdot \bar{\theta}_{\tau}
$$

where $\bar{\eta}, \bar{\sigma}_{P}$ and $\bar{\theta}_{\tau}$ respectively are an extremal automorphism, an inner automorphism and a field automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right), \delta=0$ or 1 .

Proof. The sufficiency is obvious, we only prove the necessity. Let ψ be an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$. Since $\bar{\Gamma}\left[\mathcal{W}_{11}\right]$ is a characteristic subgraph of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ (see Lemma 2.6), we have $\psi\left(\left[e_{n} e_{n}^{T}\right]\right) \in \mathcal{W}_{11}\left(=\Phi_{11} \cup \Phi_{n n}\right)$. If $\psi\left(\left[e_{n} e_{n}^{T}\right]\right) \in \Phi_{11}$, then $\bar{\eta} \cdot \psi\left(\left[e_{n} e_{n}^{T}\right]\right) \in \Phi_{n n}$. Denote $\psi_{1}=\bar{\eta}^{\delta} \cdot \psi$ with $\delta=0$ or 1 such that $\psi_{1}\left(\left[e_{n} e_{n}^{T}\right]\right) \in \Phi_{n n}$. We complete the proof by verifying the following ten claims.

Claim 1. There exists an inner automorphism $\bar{\sigma}_{Q}$ with $Q \in \mathcal{U}_{n}^{-1}(F)$ such that $\left[e_{1} e_{j}^{T}\right]$ is fixed by $\bar{\sigma}_{Q} \cdot \psi_{1}, 1 \leqslant j \leqslant n$.

Suppose that $\psi_{1}\left(\left[e_{n} e_{n}^{T}\right]\right)=\left[\left(\sum_{1 \leqslant s \leqslant n-1} a_{s}^{(n)} e_{s}+e_{n}\right) e_{n}^{T}\right] \in \Phi_{n n}$, where $a_{s}^{(n)} \in F$. Set $Q_{1}=I-\sum_{1 \leqslant s \leqslant n-1} a_{s}^{(n)} e_{s} e_{n}^{T} \in \mathcal{U}_{n}^{-1}(F)$, then $\bar{\sigma}_{Q_{1}} \cdot \overline{\phi_{1}}\left(\left[e_{n} e_{n}^{T}\right]\right)=\left[e_{n} e_{n}^{T}\right]$.

For $1 \leqslant j \leqslant n-1$, we assert that $\bar{\sigma}_{Q_{1}} \cdot \psi_{1}\left(\left[e_{1} e_{j}^{T}\right]\right) \in \Phi_{1 j}$. Actually, if $\bar{\sigma}_{Q_{1}}$. $\psi_{1}\left(\left[e_{1} e_{j}^{T}\right]\right) \notin \Phi_{1 j}$, then $\bar{\sigma}_{Q_{1}} \cdot \psi_{1}\left(\left[e_{1} e_{j}^{T}\right]\right) \in \Phi_{n-j+1, n}$. By applying $\left(\bar{\sigma}_{Q_{1}} \cdot \psi_{1}\right)^{-1}$ to $\bar{\sigma}_{Q_{1}} \cdot \psi_{1}\left(\left[e_{1} e_{j}^{T}\right]\right) \nsim\left[e_{n} e_{n}^{T}\right]$, we have $\left[e_{1} e_{j}^{T}\right] \nsim\left[e_{n} e_{n}^{T}\right]$, a contradiction. Now, we may assume that

$$
\bar{\sigma}_{Q_{1}} \cdot \psi_{1}\left(\left[e_{1} e_{j}^{T}\right]\right)=\left[e_{1}\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} a_{t}^{(j)} e_{t}\right)^{T}\right], \quad 1 \leqslant j \leqslant n-1
$$

where $a_{t}^{(j)} \in F$. Set $Q_{2}=I-\sum_{1 \leqslant s<t \leqslant n} a_{t}^{(s)} e_{s} e_{t}^{T} \in \mathcal{U}_{n}^{-1}(F)$, then $\bar{\sigma}_{Q_{2}} \cdot \bar{\sigma}_{Q_{1}}$. $\psi_{1}\left(\left[e_{1} e_{j}^{T}\right]\right)=\left[e_{1} e_{j}^{T}\right], 1 \leqslant j \leqslant n-1$. Observe that $\bar{\Gamma}\left[\Phi_{n}\right]$ is a characteristic subgraph of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, then it follows that $\bar{\sigma}_{Q_{2}} \cdot \bar{\sigma}_{Q_{1}} \cdot \psi_{1}\left(\left[e_{1} e_{n}^{T}\right]\right)=\left[e_{1} e_{n}^{T}\right]$. Denote $\psi_{2}=\bar{\sigma}_{Q} \cdot \psi_{1}$ with $Q=Q_{1} Q_{2}$, then $\psi_{2}\left(\left[e_{1} e_{j}^{T}\right]\right)=\left[e_{1} e_{j}^{T}\right]$ for all $1 \leqslant j \leqslant n$.

Claim 2. Each $\left[e_{i} e_{j}^{T}\right]$ is fixed by $\psi_{2}, 1 \leqslant i \leqslant j \leqslant n$.
It is clear that $\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right) \subseteq \mathcal{W}_{i j}=\Phi_{i j}$ for $i=n-j+1$. For $i \neq n-j+1$, if $\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right) \notin \Phi_{i j}$, then $\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right) \in \Phi_{n-j+1, n-i+1}$. Applying ψ_{2}^{-1} to $\left[e_{1} e_{n-j+1}^{T}\right] \nsim$ $\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right)$ yields $\left[e_{1} e_{n-j+1}^{T}\right] \nsim\left[e_{i} e_{j}^{T}\right]$ by Claim 1, a contradiction. Thus, $\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right) \in$ $\Phi_{i j}, 2 \leqslant i \leqslant j \leqslant n$. Now we assume that

$$
\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right)=\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s}^{(i)} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} a_{t}^{(j)} e_{t}\right)^{T}\right], \quad 2 \leqslant i \leqslant j \leqslant n
$$

where $a_{s}^{(i)}, a_{t}^{(j)} \in F$. For $1 \leqslant s \leqslant i-1$, by applying ψ_{2} to $\left[e_{1} e_{s}^{T}\right] \sim\left[e_{i} e_{j}^{T}\right]$ we have $\left[e_{1} e_{s}^{T}\right] \sim \psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right)$, which implies that $a_{s}^{(i)}=0$. Similarly, $a_{t}^{(j)}=0$ for $j+1 \leqslant t \leqslant n$. Thus, $\psi_{2}\left(\left[e_{i} e_{j}^{T}\right]\right)=\left[e_{i} e_{j}^{T}\right]$ for all $2 \leqslant i \leqslant j \leqslant n$.

Claim 3. Φ_{11} and $\Phi_{n n}$ are stable under ψ_{2}.

Denote

$$
\begin{aligned}
& \Phi_{11}^{(k)}=\left\{\left[e_{1} \alpha^{T}\right] \in \Phi_{11} \mid \alpha \in F^{n} \text { satisfies } \alpha^{T} e_{k}=0\right\}, 2 \leqslant k \leqslant n, \\
& \Phi_{n n}^{(l)}=\left\{\left[\beta e_{n}^{T}\right] \in \Phi_{n n} \mid \beta \in F^{n} \text { satisfies } e_{l}^{T} \beta=0\right\}, 1 \leqslant l \leqslant n-1, \\
& \Phi_{11}^{*}=\left\{\left[e_{1} \alpha^{T}\right] \in \Phi_{11} \mid \alpha \in F^{n} \text { satisfies } \alpha^{T} e_{k} \neq 0 \text { for all } 1 \leqslant k \leqslant n\right\}, \\
& \Phi_{n n}^{*}=\left\{\left[\beta e_{n}^{T}\right] \in \Phi_{n n} \mid \beta \in F^{n} \text { satisfies } e_{l}^{T} \beta \neq 0 \text { for all } 1 \leqslant l \leqslant n\right\} .
\end{aligned}
$$

Clearly, $\Phi_{11}=\Phi_{11}^{(2)} \cup \cdots \cup \Phi_{11}^{(n)} \cup \Phi_{11}^{*}$ and $\Phi_{n n}=\Phi_{n n}^{(1)} \cup \cdots \cup \Phi_{n n}^{(n-1)} \cup \Phi_{n n}^{*}$. Next, we prove the following three statements.

$$
\left(S_{1}\right) \quad \psi_{2}\left(\Phi_{11}^{(k)}\right) \subseteq \Phi_{11}, \psi_{2}\left(\Phi_{n n}^{(l)}\right) \subseteq \Phi_{n n}, 2 \leqslant k \leqslant n \text { and } 1 \leqslant l \leqslant n-1
$$

For $2 \leqslant k \leqslant n$, if $\psi_{2}\left(\Phi_{11}^{(k)}\right) \nsubseteq \Phi_{11}$, then there exists $\left[e_{1} \alpha^{T}\right] \in \Phi_{11}^{(k)}$ with $\alpha \in F^{n}$ such that $\psi_{2}\left(\left[e_{1} \alpha^{T}\right]\right) \in \Phi_{n n}$. Suppose that

$$
\psi_{2}\left(\left[e_{1} \alpha^{T}\right]\right)=\left[\beta e_{n}^{T}\right] \in \Phi_{n n} \quad \text { with } \quad \beta=\sum b_{i} e_{i} \in F^{n}
$$

By applying ψ_{2} to $\left[e_{1} \alpha^{T}\right] \sim\left[e_{k} e_{n}^{T}\right]$ (notice that $\left.\alpha^{T} e_{k}=0\right)$ we get $\left[\beta e_{n}^{T}\right] \sim\left[e_{k} e_{n}^{T}\right]$, which implies that

$$
\begin{equation*}
\left(e_{n}^{T} e_{k}\right) \sum b_{i} e_{i} e_{n}^{T}=b_{n} e_{k} e_{n}^{T} \tag{3.1}
\end{equation*}
$$

When $k \neq n$, we see that $e_{n}^{T} e_{k}=0$. Then by (3.1), $b_{n}=0$, which shows that $\left[\beta e_{n}^{T}\right] \notin \Phi_{n n}$, a contradiction. When $k=n$, (3.1) can be rewritten as $\sum b_{i} e_{i} e_{n}^{T}=$ $b_{n} e_{n} e_{n}^{T}$, which follows that $b_{i}=0$ for $1 \leqslant i \leqslant n-1$, and $b_{n} \neq 0$. Then $\psi_{2}\left(\left[e_{1} \alpha^{T}\right]\right)=$ $\left[b_{n} e_{n} e_{n}^{T}\right]=\left[e_{n} e_{n}^{T}\right]$, which contradicts the result $\psi_{2}\left(\left[e_{n} e_{n}^{T}\right]\right)=\left[e_{n} e_{n}^{T}\right]$ (see Claim 2). Hence, $\psi_{2}\left(\Phi_{11}^{(k)}\right) \subseteq \Phi_{11}$ for $2 \leqslant k \leqslant n$. The proof of $\psi_{2}\left(\Phi_{n n}^{(l)}\right) \subseteq \Phi_{n n}$ for $1 \leqslant l \leqslant n-1$ is similar.

Now, it follows from $\Phi_{11}^{*} \cup \Phi_{n n}^{*}=\mathcal{W}_{11}-\bigcup_{2 \leqslant k \leqslant n} \Phi_{11}^{(k)}-\bigcup_{1 \leqslant k \leqslant n-1} \Phi_{n n}^{(k)}$ and the above arguments that $\psi_{2}\left(\Phi_{11}^{*} \cup \Phi_{n n}^{*}\right)=\Phi_{11}^{*} \cup \Phi_{n n}^{*}$.
$\left(S_{2}\right) \quad \Delta=\left\{\left(a e_{1}+e_{2}\right) e_{2}^{T} \in \Phi_{22} \mid a \in F\right\}$ is stable under ψ_{2}.
By Lemma 2.6, for any $a \in F, \psi_{2}\left(\left(a e_{1}+e_{2}\right) e_{2}^{T}\right) \in \Phi_{22}$ or $\psi_{2}\left(\left(a e_{1}+e_{2}\right) e_{2}^{T}\right) \in$ $\Phi_{n-1, n-1}$. The case $n=3$ is clear. If $n \geqslant 4$, by applying ψ_{2} to $\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right] \sim\left[e_{1} e_{n-1}^{T}\right]$ we have $\psi_{2}\left(\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right]\right) \sim\left[e_{1} e_{n-1}^{T}\right]$. It follows that $\psi_{2}\left(\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right]\right) \notin \Phi_{n-1, n-1}$, and so $\psi_{2}\left(\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right]\right) \in \Phi_{22}$. Assume that

$$
\begin{equation*}
\psi_{2}\left(\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right]\right)=\left[\left(a_{1} e_{1}+e_{2}\right)\left(e_{2}+\sum_{3 \leqslant t \leqslant n} a_{t} e_{i}\right)^{T}\right] \tag{3.2}
\end{equation*}
$$

where $a_{1}, a_{t} \in F, 3 \leqslant t \leqslant n$. For $3 \leqslant t \leqslant n$, applying ψ_{2} to $\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right] \sim\left[e_{t} e_{n}^{T}\right]$ yields $\left[\left(a_{1} e_{1}+e_{2}\right)\left(e_{2}+\sum_{3 \leqslant t \leqslant n} a_{t} e_{i}\right)^{T}\right] \sim\left[e_{t} e_{n}^{T}\right]$, which implies that $a_{t}=0$ for all $3 \leqslant t \leqslant n$ in (3.2). Hence, $\psi_{2}\left(\left[\left(a e_{1}+e_{2}\right) e_{2}^{T}\right]\right)=\left[\left(a_{1} e_{1}+e_{2}\right) e_{2}^{T}\right] \in \Delta$.
$\left(S_{3}\right) \quad \psi_{2}\left(\Phi_{11}^{*}\right)=\Phi_{11}^{*}$ and $\psi_{2}\left(\Phi_{n n}^{*}\right)=\Phi_{n n}^{*}$.
Recall that $\psi_{2}\left(\Phi_{11}^{*} \cup \Phi_{n n}^{*}\right)=\Phi_{11}^{*} \cup \Phi_{n n}^{*}$. If $\psi_{2}\left(\Phi_{11}^{*}\right) \neq \Phi_{11}^{*}$, then there exists $[A] \in \Phi_{11}^{*}$ such that $\psi_{2}([A]) \in \Phi_{n n}^{*}$. Let $A=e_{1}\left(e_{1}+\sum_{2 \leqslant i \leqslant n} a_{i} e_{i}\right)^{T}$ with $a_{i} \in F^{*}$, $2 \leqslant i \leqslant n$, and suppose that

$$
\psi_{2}([A])=\left[\left(\sum_{1 \leqslant j \leqslant n-1} b_{j} e_{i}+e_{n}\right) e_{n}^{T}\right]
$$

where $b_{j} \in F^{*}, 1 \leqslant j \leqslant n-1$. Applying ψ_{2} to $[A] \sim\left[\left(-a_{2} e_{1}+e_{2}\right) e_{2}^{T}\right]$ we know that $\left[\left(\sum_{1 \leqslant j \leqslant n-1} b_{j} e_{i}+e_{n}\right) e_{n}^{T}\right] \sim\left[\left(x e_{1}+e_{2}\right) e_{2}^{T}\right]$ for some $x \in F$, which implies that $b_{2}=0$, a contradiction. Thus, $\psi_{2}\left(\Phi_{11}^{*}\right)=\Phi_{11}^{*}$ and $\psi_{2}\left(\Phi_{n n}^{*}\right)=\Phi_{n n}^{*}$.

CLaim 4. For any $\left[\alpha_{1} \beta_{1}^{T}\right] \in V_{n}$, let $\psi_{2}\left(\left[\alpha_{1} \beta_{1}^{T}\right]\right)=\left[\alpha_{2} \beta_{2}^{T}\right]$. Then the k-th component of α_{1} (resp., β_{1}) is zero if and only if the k-th component of α_{2} (resp., β_{2}) is zero, $1 \leqslant k \leqslant n$.

If $\left[\alpha_{1} \beta_{1}^{T}\right] \in \Phi_{11}$, by Claim 3 we may assume that $\alpha_{1}=e_{1}$ and $\alpha_{2}=e_{1}$, then $\psi_{2}\left(\left[e_{1} \beta_{1}^{T}\right]\right)=\left[e_{1} \beta_{2}^{T}\right]$. Thus

$$
\beta_{1} e_{k}^{T}=0 \Leftrightarrow\left[e_{1} \beta_{1}^{T}\right] \sim\left[e_{k} e_{n}^{T}\right] \Leftrightarrow\left[e_{1} \beta_{2}^{T}\right] \sim\left[e_{k} e_{n}^{T}\right] \Leftrightarrow \beta_{2}^{T} e_{k}=0
$$

If $\left[\alpha_{1} \beta_{1}^{T}\right] \in \Phi_{n n}$, we may assume that $\beta_{1}=e_{n}$ and $\beta_{2}=e_{n}$, then $\psi_{2}\left(\left[\alpha_{1} e_{n}^{T}\right]\right)=$ $\left[\alpha_{2} e_{n}^{T}\right]$. So

$$
e_{k}^{T} \alpha_{1}=0 \Leftrightarrow\left[e_{1} e_{k}^{T}\right] \sim\left[\alpha_{1} e_{n}^{T}\right] \Leftrightarrow\left[e_{1} e_{k}^{T}\right] \sim\left[\alpha_{2} e_{n}^{T}\right] \Leftrightarrow e_{k}^{T} \alpha_{2}=0 .
$$

If $\left[\alpha_{1} \beta_{1}^{T}\right] \notin \mathcal{W}_{11}$, then $\left[\alpha_{2} \beta_{2}^{T}\right] \notin \mathcal{W}_{11}$, thus $e_{n}^{T} \alpha_{1}=e_{n}^{T} \alpha_{2}=\beta_{1}^{T} e_{1}=\beta_{2}^{T} e_{1}=0$. Now we can see that

$$
\begin{aligned}
e_{k}^{T} \alpha_{1}=0\left(\text { resp., } \beta_{1}^{T} e_{k}=0\right) & \left.\Leftrightarrow\left[e_{1} e_{k}^{T}\right] \sim\left[\alpha_{1} \beta_{1}^{T}\right] \quad \text { (resp., }\left[\alpha_{1} \beta_{1}^{T}\right] \sim\left[e_{k} e_{n}^{T}\right]\right) \\
& \Leftrightarrow\left[e_{1} e_{k}^{T}\right] \sim\left[\alpha_{2} \beta_{2}^{T}\right] \quad\left(\text { resp. },\left[\alpha_{2} \beta_{2}^{T}\right] \sim\left[e_{k} e_{n}^{T}\right]\right) \\
& \left.\Leftrightarrow e_{k}^{T} \alpha_{2}=0 \text { (resp., } \beta_{2}^{T} e_{k}=0\right)
\end{aligned}
$$

Therefore, the k-th component of α_{1} (resp., β_{1}) is zero if and only if the k-th component of α_{2} (resp., β_{2}) is zero.

For $1 \leqslant i<j \leqslant n$ and $a \in F$, Claim 4 shows that there exists a permutation $\tau_{j}^{(i)}$ on F satisfying $\tau_{j}^{(i)}(0)=0$ such that

$$
\begin{equation*}
\psi_{2}\left(\left[e_{i}\left(e_{i}+a e_{j}\right)^{T}\right]\right)=\left[e_{i}\left(e_{i}+\tau_{j}^{(i)}(a) e_{j}\right)^{T}\right] \tag{3.3}
\end{equation*}
$$

For convenience, we assume that $\tau_{j}^{(i)}(a)=1$ for $a \in F$ and $i \geqslant j$.
$\operatorname{CLAIM} 5 . \psi_{2}\left(\left[\left(a e_{i}+e_{j}\right) e_{j}^{T}\right]\right)=\left[\left(-\tau_{j}^{(i)}(-a) e_{i}+e_{j}\right) e_{j}^{T}\right]$ for $a \in F, 1 \leqslant i<j \leqslant n$.
For $a \in F$ and $1 \leqslant i<j \leqslant n$, by Claim 4, we may assume that $\psi_{2}\left(\left[\left(a e_{i}+e_{j}\right) e_{j}^{T}\right]\right)=$ $\left[\left(b e_{i}+e_{j}\right) e_{j}^{T}\right]$, where $b \in F$. Applying ψ_{2} on $\left[e_{i}\left(e_{i}-a e_{j}\right)^{T}\right] \sim\left[\left(a e_{i}+e_{j}\right) e_{j}^{T}\right]$ we have $\left[e_{i}\left(e_{i}+\tau_{j}^{(i)}(-a) e_{j}\right)^{T}\right] \sim\left[\left(b e_{i}+e_{j}\right) e_{j}^{T}\right]$, which implies that $b=-\tau_{j}^{(i)}(-a)$.

Claim 6. For $1 \leqslant i \leqslant n$, we have

$$
\begin{aligned}
& \psi_{2}\left(\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right]\right) \\
& =\left[\left(-\sum_{1 \leqslant s \leqslant i-1} \tau_{i}^{(s)}\left(-a_{s}\right) e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} \tau_{t}^{(i)}\left(b_{t}\right) e_{t}\right)^{T}\right]
\end{aligned}
$$

where $a_{s}, b_{t} \in F$.
By Claim 4, we may assume that

$$
\begin{aligned}
& \psi_{2}\left(\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right]\right) \\
& =\left[\left(\sum_{1 \leqslant s \leqslant i-1} c_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} d_{t} e_{t}\right)^{T}\right] \in \Phi_{i i}
\end{aligned}
$$

where $c_{s}, d_{t} \in F$. For $1 \leqslant k<i<l \leqslant n$, it follows from (3.3) and Claim 5 that $\psi_{2}\left(\left[e_{k}\left(e_{k}-a_{k} e_{i}\right)^{T}\right]\right)=\left[e_{k}\left(e_{k}+\tau_{i}^{(k)}\left(-a_{k}\right) e_{i}\right)^{T}\right]$ and $\psi_{2}\left(\left[\left(-b_{l} e_{i}+e_{l}\right) e_{l}^{T}\right]\right)=\left[\left(-\tau_{l}^{(i)}\left(b_{l}\right) e_{i}+\right.\right.$ $\left.\left.e_{l}\right) e_{l}^{T}\right]$. Clearly,

$$
\begin{equation*}
\left[e_{k}\left(e_{k}-a_{k} e_{i}\right)^{T}\right] \sim\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right] \sim\left[\left(-b_{l} e_{i}+e_{l}\right) e_{l}^{T}\right] \tag{3.5}
\end{equation*}
$$

Applying ψ_{2} to (3.4) and (3.5) we have

$$
\left[e_{k}\left(e_{k}+\tau_{i}^{(k)}\left(-a_{k}\right) e_{i}\right)^{T}\right] \sim\left[\left(\sum_{1 \leqslant s \leqslant i-1} c_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} d_{t} e_{t}\right)^{T}\right]
$$

and

$$
\left[\left(\sum_{1 \leqslant s \leqslant i-1} c_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} d_{t} e_{t}\right)^{T}\right] \sim\left[\left(-\tau_{l}^{(i)}\left(b_{l}\right) e_{i}+e_{l}\right) e_{l}^{T}\right]
$$

which imply that $c_{k}=-\tau_{i}^{(k)}\left(-a_{k}\right)$ and $d_{l}=\tau_{l}^{(i)}\left(b_{l}\right), 1 \leqslant k<i<l \leqslant n$.
Denote $\left(\tau_{2}^{(1)}(1)\right)^{-1} \tau_{2}^{(1)}$ by τ, then $\tau(1)=1$, and $\left(\tau_{2}^{(1)}(1)\right)^{-1} \tau_{2}^{(1)}(a)=\tau(a)$ for any $a \in F$.

Claim 7.

(i) $\tau_{j}^{(i)}(a b)=\tau_{k}^{(i)}(a) \tau_{j}^{(k)}(b)$ for $a, b \in F, 1 \leqslant i<k<j \leqslant n$.
(ii) $\left(\tau_{j}^{(i)}(1)\right)^{-1} \tau_{j}^{(i)}(a)=\tau(a)$ for $a \in F, 1 \leqslant i<j \leqslant n$.
(iii) $\tau(a b)=\tau(a) \tau(b)$ for $a, b \in F$.

For $a, b \in F$ and $1 \leqslant i<k<j \leqslant n$, by Claim 6 we have

$$
\psi_{2}\left(\left[e_{i}\left(e_{i}+a e_{k}+a b e_{j}\right)^{T}\right]\right)=\left[e_{i}\left(e_{i}+\tau_{k}^{(i)}(a) e_{k}+\tau_{j}^{(i)}(a b) e_{j}\right)^{T}\right]
$$

and

$$
\psi_{2}\left(\left[\left(-b e_{k}+e_{j}\right) e_{j}^{T}\right]\right)=\left[\left(-\tau_{j}^{(k)}(b) e_{k}+e_{j}\right) e_{j}^{T}\right]
$$

Applying ψ_{2} to $\left[e_{i}\left(e_{i}+a e_{k}+a b e_{j}\right)^{T}\right] \sim\left[\left(-b e_{k}+e_{j}\right) e_{j}^{T}\right]$ we get

$$
\left[e_{i}\left(e_{i}+\tau_{k}^{(i)}(a) e_{k}+\tau_{j}^{(i)}(a b) e_{j}\right)^{T}\right] \sim\left[\left(-\tau_{j}^{(k)}(b) e_{k}+e_{j}\right) e_{j}^{T}\right]
$$

which implies that $\tau_{j}^{(i)}(a b)=\tau_{k}^{(i)}(a) \tau_{j}^{(k)}(b)$. This completes the proof of (i).
When $i=1$ and $j \geqslant 3$, we can see from (i) that

$$
\left(\tau_{j}^{(1)}(1)\right)^{-1} \tau_{j}^{(1)}(a)=\left(\tau_{2}^{(1)}(1) \tau_{j}^{(2)}(1)\right)^{-1} \tau_{2}^{(1)}(a) \tau_{j}^{(2)}(1)=\tau(a)
$$

When $i \geqslant 2$ and $j \geqslant 3$, we have

$$
\tau_{j}^{(i)}(1)=\left(\tau_{i}^{(1)}(1)\right)^{-1} \tau_{j}^{(1)}(1), \quad \tau_{j}^{(i)}(a)=\left(\tau_{i}^{(1)}(1)\right)^{-1} \tau_{j}^{(1)}(a)
$$

which implies that $\left(\tau_{j}^{(i)}(1)\right)^{-1} \tau_{j}^{(i)}(a)=\tau_{i}^{(1)}(1)\left(\tau_{j}^{(1)}(1)\right)^{-1}\left(\tau_{i}^{(1)}(1)\right)^{-1} \tau_{j}^{(1)}(a)=\tau(a)$. Thus, $\left(\tau_{j}^{(i)}(1)\right)^{-1} \tau_{j}^{(i)}(a)=\tau(a)$ for all $a \in F$ and all $1 \leqslant i<j \leqslant n$. This completes the proof of (ii).

For $a, b \in F$, by (ii) we have $\tau(a b)=\left(\tau_{n}^{(1)}(1)\right)^{-1} \tau_{n}^{(1)}(a b)$. On the other hand, by (i) we have $\tau_{n}^{(1)}(1)=\tau_{2}^{(1)}(1) \tau_{n}^{(2)}(1), \tau_{n}^{(1)}(a b)=\tau_{2}^{(1)}(a) \tau_{n}^{(2)}(b)$. Therefore,

$$
\tau(a b)=\left(\tau_{2}^{(1)}(1)\right)^{-1} \tau_{2}^{(1)}(a)\left(\tau_{n}^{(2)}(1)\right)^{-1} \tau_{n}^{(2)}(b)=\tau(a) \tau(b)
$$

which completes the proof of (iii).
By Claim 7 (iii), one can easily see that $(\tau(-1))^{2}=1$ and $\tau(-1)=-1$. Thus, $\tau(-a)=-\tau(a)$ for any $a \in F$.

Claim 8. There exists an inner automorphism $\bar{\sigma}_{D}$ with D an invertible diagonal matrix such that

$$
\begin{align*}
& \bar{\sigma}_{D} \cdot \psi_{2}\left(\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right]\right) \\
& =\left[\left(\sum_{1 \leqslant s \leqslant i-1} \tau\left(a_{s}\right) e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} \tau\left(b_{t}\right) e_{t}\right)^{T}\right] \tag{3.6}
\end{align*}
$$

for all $a_{s}, b_{t} \in F$ and all $1 \leqslant i \leqslant n$.
For $2 \leqslant j \leqslant n$ and $a \in F$, by Claim 7 (ii) we have $\tau_{j}^{(1)}(a)=\tau(a) \tau_{j}^{(1)}(1)$. For $2 \leqslant s<i<t \leqslant n$ and $a \in F$, by Claim 7 (i) we have

$$
\tau_{i}^{(s)}(a)=\left(\tau_{s}^{(1)}(1)\right)^{-1} \tau_{i}^{(1)}(a)=\left(\tau_{s}^{(1)}(1)\right)^{-1} \tau(a) \tau_{i}^{(1)}(1)
$$

and

$$
\tau_{t}^{(i)}(a)=\left(\tau_{i}^{(1)}(1)\right)^{-1} \tau_{t}^{(1)}(a)=\left(\tau_{i}^{(1)}(1)\right)^{-1} \tau(a) \tau_{t}^{(1)}(1)
$$

Now, for $1 \leqslant i<j \leqslant n$, it follows from Claim 6 that

$$
\begin{align*}
& \psi_{2}\left(\left[\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{i}+\sum_{i+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}\right]\right) \\
& =\left[\left(\sum_{1 \leqslant s \leqslant i-1} \frac{\tau\left(a_{s}\right) \tau_{i}^{(1)}(1)}{\tau_{s}^{(1)}(1)} e_{s}+e_{i}\right)\left(e_{j}+\sum_{i+1 \leqslant t \leqslant n} \frac{\tau\left(b_{t}\right) \tau_{1}^{(1)}(1)}{\tau_{i}^{(1)}(1)} e_{t}\right)^{T}\right] \tag{3.7}
\end{align*}
$$

Let $D=\operatorname{diag}\left(1,\left(\tau_{2}^{(1)}(1)\right)^{-1}, \ldots,\left(\tau_{n}^{(1)}(1)\right)^{-1}\right)$. Then $D \in \mathcal{U}_{n}^{-1}(F)$ and the equality in (3.7) can be rewritten as the form in (3.6).

Denote $\psi_{3}=\bar{\sigma}_{D} \cdot \psi_{2}$.
Claim 9. τ is an automorphism of the field F.
By Claim 7 (iii), it suffices to prove that τ is additive. For any $a, b \in F$, by Claim 8 we know that $\psi_{3}\left(\left[e_{1}\left(e_{1}+a e_{2}+b e_{3}\right)^{T}\right]\right)=\left[e_{1}\left(e_{1}+\tau(a) e_{2}+\tau(b) e_{3}\right)^{T}\right]$ and
$\psi_{3}\left(\left[\left(-(a+b) e_{1}+e_{2}+e_{3}\right) e_{3}^{T}\right]\right)=\left[\left(-\tau(a+b) e_{1}+e_{2}+e_{3}\right) e_{3}^{T}\right]$. Then by applying ψ_{3} to $\left[e_{1}\left(e_{1}+a e_{2}+b e_{3}\right)^{T}\right] \sim\left[\left(-(a+b) e_{1}+e_{2}+e_{3}\right) e_{3}^{T}\right]$, we get $\left[e_{1}\left(e_{1}+\tau(a) e_{2}+\tau(b) e_{3}\right)^{T}\right] \sim$ $\left[\left(-\tau(a+b) e_{1}+e_{2}+e_{3}\right) e_{3}^{T}\right]$, which implies that $\tau(a+b)=\tau(a)+\tau(b)$.

Claim 9 shows that τ can induce a field automorphism $\bar{\theta}_{\tau}$ of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$. In the following, we denote $\bar{\theta}_{\tau}^{-1} \cdot \psi_{3}$ by ψ_{4}. Then by Claim 8 we have

$$
\begin{equation*}
\psi_{4}([A])=[A] \text { for any }[A] \in \Phi_{i i}, \quad 1 \leqslant i \leqslant n \tag{3.8}
\end{equation*}
$$

Claim 10. ψ_{4} is the identity automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.
By (3.8), it suffices to prove that $\psi_{4}([A])=[A]$ for any $A \in \Phi_{i j}, 1 \leqslant i<j \leqslant n$. For $1 \leqslant i<j \leqslant n$ and $A=\left(\sum_{1 \leqslant s \leqslant i-1} a_{s} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}$ with $a_{s}, b_{t} \in F$, by Claim 4, we may assume that

$$
\psi_{4}([A])=\left[\left(\sum_{1 \leqslant s \leqslant i-1} c_{s} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} d_{t} e_{t}\right)^{T}\right] \in \Phi_{i j}
$$

where $c_{s}, d_{t} \in F$. For $1 \leqslant k \leqslant i-1$ and $j+1 \leqslant l \leqslant n$ (if exists), by (3.8) we have

$$
\begin{gathered}
\psi_{4}\left(\left[e_{k}\left(e_{k}-a_{k} e_{i}\right)^{T}\right]\right)=\left[e_{k}\left(e_{k}-a_{k} e_{i}\right)^{T}\right] \\
\psi_{4}\left(\left[\left(-b_{l} e_{j}+e_{l}\right) e_{l}^{T}\right]\right)=\left[\left(-b_{l} e_{j}+e_{l}\right) e_{l}^{T}\right]
\end{gathered}
$$

Applying ψ_{4} to $\left[e_{k}\left(e_{k}-a_{k} e_{i}\right)^{T}\right] \sim[A]$ and $[A] \sim\left[\left(-b_{l} e_{j}+e_{l}\right) e_{l}^{T}\right]$, respectively, we get

$$
\left[e_{k}\left(e_{k}-a_{k} e_{i}\right)^{T}\right] \sim\left[\left(\sum_{1 \leqslant s \leqslant i-1} c_{s} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} d_{t} e_{t}\right)^{T}\right]
$$

and

$$
\left[\left(\sum_{1 \leqslant s \leqslant i-1} c_{s} e_{s}+e_{i}\right)\left(e_{j}+\sum_{j+1 \leqslant t \leqslant n} d_{t} e_{t}\right)^{T}\right] \sim\left[\left(-b_{l} e_{j}+e_{l}\right) e_{l}^{T}\right]
$$

which implies that $c_{k}=a_{k}$ and $d_{l}=b_{l}, 1 \leqslant k \leqslant i-1$ and $j+1 \leqslant l \leqslant n$. Thus, $\psi_{4}([A])=[A]$ for any $[A] \in V_{n}$.

The above discussions show that $\psi=\bar{\eta}^{\delta} \cdot \bar{\sigma}_{P} \cdot \bar{\theta}_{\tau}$, where $P=D^{-1} Q^{-1}$, which completes the proof.
4. Automorphisms of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$. In this section, we first show how to reduce an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ to that of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Lemma 4.1. Let $A, B \in \mathcal{U}_{n}^{1}(F)$. Then $\mathcal{N}(A) \backslash\{B\}=\mathcal{N}(B) \backslash\{A\} \quad\left(\right.$ in $\left.\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)\right)$ if and only if B is a nonzero multiple of A.

Proof. The sufficiency is obvious. We only prove the necessity. Suppose that $[A] \in$ $\Phi_{i j}, 1 \leqslant i \leqslant j \leqslant n$, then by the proof of Lemma 2.2 we conclude that there exists $P \in$ $\mathcal{U}_{n}^{-1}(F)$ such that $P^{-1} A P=a e_{i} e_{j}^{T}$ with some $a \in F^{*}$. By $\mathcal{N}(A) \backslash\{B\}=\mathcal{N}(B) \backslash\{A\}$ we know that $\mathcal{N}\left(e_{i} e_{j}^{T}\right) \backslash\{C\}=\mathcal{N}(C) \backslash\left\{e_{i} e_{j}^{T}\right\}$, where $C=P^{-1} B P$. Suppose that

$$
C=\left(\sum_{1 \leqslant k \leqslant t} a_{k} e_{k}\right)\left(\sum_{t \leqslant l \leqslant n} b_{l} e_{l}\right)^{T}, \quad \text { where } \quad a_{k}, b_{l} \in F
$$

For $s \neq i, j$, by $e_{s} e_{s}^{T} \in \mathcal{N}\left(e_{i} e_{j}^{T}\right) \backslash\{C\}$, we have $e_{s} e_{s}^{T} \in \mathcal{N}(C) \backslash\left\{e_{i} e_{j}^{T}\right\}$, which implies that $C\left(e_{s} e_{s}^{T}\right)=\left(e_{s} e_{s}^{T}\right) C$. By the arbitrariness of s, we get $C=a e_{i} e_{i}^{T}+b e_{i} e_{j}^{T}+c e_{j} e_{j}^{T}$, where $a=a_{i} b_{i}, b=a_{i} b_{j}, c=a_{j} b_{j}$. If $i=j$, then it is easily seen that C is a nonzero multiple of $e_{i} e_{i}^{T}$. If $i<j$, we claim that $a=0$ and $c=0$. Indeed, if $a \neq 0$, Since $C \in \mathcal{U}_{n}^{1}(F)$, we have $C=a e_{i} e_{i}^{T}+b e_{i} e_{j}^{T}$. It follows that $b e_{i} e_{j}^{T}-a e_{j} e_{j}^{T} \in \mathcal{N}(C) \backslash\left\{e_{i} e_{j}^{T}\right\}$, and so $b e_{i} e_{j}^{T}-a e_{j} e_{j}^{T} \in \mathcal{N}\left(e_{i} e_{j}^{T}\right) \backslash\{C\}$, a contradiction. In a similar way we conclude that $c=0$. Thus, C is a nonzero multiple of $e_{i} e_{j}^{T}$ and then B is a nonzero multiple of A.

Let θ be an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$. We define $\bar{\theta}$ on $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$ by

$$
\begin{equation*}
\bar{\theta}([A])=[\theta(A)], \forall A \in \mathcal{U}_{n}^{1}(F) \tag{4.1}
\end{equation*}
$$

Lemma 4.2. Let θ be an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, then $\bar{\theta}$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Proof. If $[A]=[B] \in V_{n}$, then B is a nonzero multiple of A. By Lemma 4.1 we have $\mathcal{N}(A) \backslash\{B\}=\mathcal{N}(B) \backslash\{A\}$, which implies that

$$
\mathcal{N}(\theta(A)) \backslash\{\theta(B)\}=\mathcal{N}(\theta(B)) \backslash\{\theta(A)\}
$$

Hence, $\theta(B)$ is also a nonzero multiple of $\theta(A)$, and then $\bar{\theta}$ is well defined. It's clear that $\bar{\theta}$ is a bijection, and $\bar{\theta}([A]) \sim \bar{\theta}([B])$ if and only if $[A] \sim[B]$. Thus, $\bar{\theta}$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$.

Next, by Theorem 3.1 and Lemma 4.2, we can describe the automorphisms of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ with $n \geqslant 3$ immediately.

THEOREM 4.3. Let $n \geqslant 3$. If θ is an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, then θ is of the form

$$
\theta=\eta^{\delta} \cdot \sigma_{P} \cdot \theta_{\tau} \cdot \xi
$$

where $\eta, \sigma_{P}, \theta_{\tau}$ and ξ respectively are an extremal automorphism, an inner automorphism, a field automorphism and a local scalar multiplication of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ defined as in section $1, \delta=0$ or 1 .

Proof. Let θ be an automorphism of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$, and define $\bar{\theta}$ as in (4.1), then by Lemma 4.2 we see that $\bar{\theta}$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$. Applying Theorem 3.1, we know that there exists a matrix $P \in \mathcal{U}_{n}^{-1}(F)$ and an automorphism τ of F such that $\bar{\theta}=\bar{\eta}^{\delta} \cdot \bar{\sigma}_{P} \cdot \bar{\theta}_{\tau}$, where $\delta=0$ or 1 . This shows that $\bar{\theta}_{\tau}^{-1} \cdot \bar{\sigma}_{P}^{-1} \cdot \bar{\eta}^{\delta} \cdot \bar{\theta}$ acts as the identity automorphism on $\bar{\Gamma}\left(\mathcal{U}_{n}^{1}(F)\right)$, or equivalently, $\theta_{\tau}^{-1} \cdot \sigma_{P}^{-1} \cdot \eta^{\delta} \cdot \theta$ sends each rank one upper triangular matrix A to a scalar multiple of A. Thus, $\theta_{\tau}^{-1} \cdot \sigma_{P}^{-1} \cdot \eta^{\delta} \cdot \theta$ is exactly a local scalar multiplication of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$. The proof is complete.

Proof of Theorem 1.2. The necessity follows from Theorem 4.3, and the sufficiency is obvious.

Now, we describe all automorphisms of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ for $n=2$. To this end, we need construct two exceptional type of automorphisms.

- For any $a \in F$, we define a permutation ρ_{a} on $\mathcal{U}_{2}^{1}(F)$ as follows: for any $r \in F^{*}, r e_{1}\left(e_{1}+a e_{2}\right)^{T}$ is sent to $r\left(-a e_{1}+e_{2}\right) e_{2}^{T} ; r\left(-a e_{1}+e_{2}\right) e_{2}^{T}$ is sent to $r e_{1}\left(e_{1}+a e_{2}\right)^{T}$; each other vertices in $\mathcal{U}_{2}^{1}(F)$ is fixed by ρ_{a}. Then ρ_{a} is an automorphism of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right.$), and $\rho_{a}^{2}=1$ (in fact $\rho_{0}=\eta$). Denote $\rho=\prod_{a \in F} \rho_{a}^{\delta_{a}}$, where $\delta_{a}=0$ or 1 .
- Let π be a permutation of F satisfying $\pi(0)=0$. Define the map θ_{π} : $\mathcal{U}_{2}^{1}(F) \rightarrow \mathcal{U}_{2}^{1}(F)$ as follows: for any $a, b \in F, r \in F^{*}, r e_{1}\left(e_{1}+a e_{2}\right)^{T}$ is sent to $r e_{1}\left(e_{1}+\pi(a) e_{2}\right)^{T} ; r\left(b e_{1}+e_{2}\right) e_{2}^{T}$ is sent to $r\left(-\pi(-b) e_{1}+e_{2}\right) e_{2}^{T}$; each $r e_{1} e_{2}^{T}$ is fixed by φ_{π}. Then φ_{π} is an automorphism of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$.

Denote by K_{n} the complete graph on n vertices. Let $\mathcal{W}_{0}=\left[e_{12}\right]$. For any $a \in F$, we denote

$$
\mathcal{W}(a)=\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right] \cup\left[\left(-a e_{1}+e_{2}\right) e_{2}^{T}\right] .
$$

It's clear that $\mathcal{W}_{0}, \mathcal{W}(a)$ with $a \in F$, are $|F|+1$ connected components in $\bar{\Gamma}\left(\mathcal{U}_{2}^{1}(F)\right)$, and that $\bar{\Gamma}\left[\mathcal{W}_{0}\right] \cong K_{1}, \bar{\Gamma}[\mathcal{W}(a)] \cong K_{2}$. Automorphisms of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$ are characterized as follows.

THEOREM 4.4. θ is an automorphism of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$ if and only if

$$
\theta=\sigma_{U} \cdot \theta_{\pi} \cdot \rho \cdot \xi
$$

where σ_{U} (with U a 2×2 unit upper triangular matrix, all of whose diagonal entries are 1, over F) and ξ are respectively an inner automorphism and a local scalar multiplication of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$ defined as in section $1, \theta_{\pi}$ (with π a permutation on F fixing 0) and ρ are exceptional type of automorphisms of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$ defined as above.

Proof. The sufficiency is obvious. For the necessity, assume that θ is an automorphism of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$. Define $\bar{\theta}$ as in (4.1), then by Lemma 4.2 we see that $\bar{\theta}$ is an automorphism of $\bar{\Gamma}\left(\mathcal{U}_{2}^{1}(F)\right)$.

We first consider the action of $\bar{\theta}$ on $\left[e_{1} e_{1}^{T}\right]$. If $\bar{\theta}\left(\left[e_{1} e_{1}^{T}\right]\right)=\left[e_{1}\left(e_{1}+x e_{2}\right)^{T}\right]$ for some $x \in F$, then $\bar{\sigma}_{U}^{-1} \cdot \bar{\theta}\left(\left[e_{1} e_{1}^{T}\right]\right)=\left[e_{1} e_{1}^{T}\right]$, where $U=e_{1} e_{1}^{T}+e_{2} e_{2}^{T}+x e_{1} e_{2}$ is a unit upper triangular matrix over F. If $\bar{\theta}\left(\left[e_{1} e_{1}^{T}\right]\right)=\left[\left(y e_{1}+e_{2}\right) e_{2}^{T}\right]$ for some $y \in F$, then $\bar{\rho}_{0} \cdot \bar{\theta}\left(\left[e_{1} e_{1}^{T}\right]\right)=\left[e_{1}\left(e_{1}+x e_{2}\right)^{T}\right]$ with $x=-y$. It follows that $\bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0} \cdot \bar{\theta}\left(\left[e_{1} e_{1}^{T}\right]\right)=\left[e_{1} e_{1}^{T}\right]$, and so $\bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0} \cdot \bar{\theta}\left(\left[e_{2} e_{2}^{T}\right]\right)=\left[e_{2} e_{2}^{T}\right]$. Thus, we may assume that $\delta_{0}=0$ or 1 such that

$$
\bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}\left(\left[e_{i} e_{i}^{T}\right]\right)=\left[e_{i} e_{i}^{T}\right], \quad i=1,2
$$

Next, for $a \in F$, it follows from $\bar{\Gamma}[\mathcal{W}(a)] \cong K_{2}$ that $\bar{\Gamma}\left[\bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}(\mathcal{W}(a))\right] \cong K_{2}$, which implies that $\bar{\Gamma}\left[\bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}(\mathcal{W}(a))\right]=\bar{\Gamma}[\mathcal{W}(b)]$ for some $b \in F$. Then, there exists a permutation π of F such that $\bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}(\mathcal{W}(a))=\mathcal{W}(\pi(a))$ for all $a \in F$. Obviously, $\pi(0)=0$. By this π we can induce a automorphism θ_{π} of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$ such that $\bar{\theta}_{\pi}^{-1} \cdot \bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}(\mathcal{W}(a))=\mathcal{W}(a), a \in F$. Now, we conclude that for $a \in F$, either

$$
\bar{\theta}_{\pi}^{-1} \cdot \bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}\left(\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right]\right)=\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right]
$$

or

$$
\bar{\theta}_{\pi}^{-1} \cdot \bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}\left(\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right]\right)=\left[\left(-a e_{1}+e_{2}\right) e_{2}^{T}\right]
$$

For $a \in F^{*}$, choose $\delta_{a}=0$ or 1 such that ${\overline{\rho_{a}}}^{\delta_{a}} \cdot \bar{\theta}_{\pi}^{-1} \cdot \bar{\sigma}_{U}^{-1} \cdot \bar{\rho}_{0}^{\delta_{0}} \cdot \bar{\theta}\left(\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right]\right)=\left[e_{1}\left(e_{1}+\right.\right.$ $\left.\left.a e_{2}\right)^{T}\right]$, and denote $\rho=\prod_{a \in F} \rho_{a}^{\delta_{a}}$, then $\bar{\rho} \cdot \bar{\theta}_{\pi}^{-1} \cdot \bar{\sigma}_{U}^{-1} \cdot \bar{\theta}\left(\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right]\right)=\left[e_{1}\left(e_{1}+a e_{2}\right)^{T}\right]$ for any $a \in F$.

The above discussions show that $\bar{\rho} \cdot \bar{\theta}_{\pi}^{-1} \cdot \bar{\sigma}_{U}^{-1} \cdot \bar{\theta}([A])=[A]$ for any $[A] \in V_{2}$. In a similar way as in the proof of Theorem 4.3 , we conclude that $\rho \cdot \theta_{\pi}^{-1} \cdot \sigma_{U}^{-1} \cdot \theta$ is exactly a local scalar multiplication of $\Gamma\left(\mathcal{U}_{2}^{1}(F)\right)$. This completes the proof.
5. Applications. In this section, we denote by Γ_{n} the graph $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$. The set of all automorphisms of Γ_{n}, denoted by $\operatorname{Aut}\left(\Gamma_{n}\right)$, forms a group under composition of transformations. Let $\operatorname{Inn}\left(\Gamma_{n}\right), \operatorname{Fie}\left(\Gamma_{n}\right), \operatorname{Ext}\left(\Gamma_{n}\right)$ and Loc $\left(\Gamma_{n}\right)$, respectively, be the set of all extremal automorphisms, inner automorphisms, field automorphisms and local scalar multiplications of $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ (see the definition in section 1), and denote by $\operatorname{Per}_{1}\left(\Gamma_{2}\right)$ and $\operatorname{Per}_{2}\left(\Gamma_{2}\right)$ the set of all permutations $\rho=\prod_{a \in F} \rho_{a}^{\delta_{a}}$ and all permutations θ_{π} (with π a permutation on F fixing 0) on $\mathcal{U}_{2}^{1}(F)$, respectively. Then it's easy to verify that $\operatorname{Inn}\left(\Gamma_{n}\right), \operatorname{Fie}\left(\Gamma_{n}\right), \operatorname{Ext}\left(\Gamma_{n}\right)$ and $\operatorname{Loc}\left(\Gamma_{n}\right)$ (resp., $\operatorname{Per}_{1}\left(\Gamma_{2}\right)$ and $\left.\operatorname{Per}_{2}\left(\Gamma_{2}\right)\right)$ are all subgroups of $\operatorname{Aut}\left(\Gamma_{n}\right)$ (resp., $\operatorname{Aut}\left(\Gamma_{2}\right)$). If G and H are two subgroups of a
group, we use $G \times H$ and $G \rtimes H$ to denote their direct product, semidirect product with G normal, respectively. Also $\underbrace{G \times \cdots \times G}_{k}$ is denoted by $k G$.

Now, we consider the orbit partition of the vertex set (see Corollary 5.1) and the order of the group of automorphisms (see Corollary 5.2).

Corollary 5.1. The orbit partition of $\mathcal{U}_{n}^{1}(F)$ under the automorphisms is $\mathcal{U}_{n}^{1}(F)=\bigcup_{1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor}^{k \leqslant l \leqslant n-k+1} \mathcal{W}_{k l}$. The number of orbits is $\left\lfloor\frac{n^{2}}{4}\right\rfloor$, unless $n=2$ and in this case, the number of orbits is 2 .

Proof. For $1 \leqslant k \leqslant\left\lfloor\frac{n+1}{2}\right\rfloor$ and $k \leqslant l \leqslant n-k+1$, Lemma 2.6 shows that each $\mathcal{W}_{k l}$ is stabilized under any automorphism. It suffices to prove that for any $A \in \mathcal{W}_{k l}$, there exists an automorphism θ such that $\theta(A) \in\left[e_{k} e_{l}^{T}\right]$. If $[A] \in \Phi_{k l}$, suppose that $A=r\left(\sum_{1 \leqslant s \leqslant k-1} a_{s} e_{s}+e_{k}\right)\left(e_{l}+\sum_{l+1 \leqslant t \leqslant n} b_{t} e_{t}\right)^{T}$, where $r \in F^{*}, a_{s} \in F, b_{t} \in F$. Set $P=I-\sum_{1 \leqslant s \leqslant k-1} a_{s} e_{s} e_{k}^{T}+\sum_{l+1 \leqslant t \leqslant n} b_{t} e_{l} e_{t}^{T} \in \mathcal{U}_{n}^{-1}(F)$, then $\sigma_{P}(A)=r e_{k} e_{l}^{T}$. If $[A] \in \Phi_{n-l+1, n-k+1}$, we see that $[\eta(A)] \in \Phi_{k l}$. Then by what we obtained above we get that there exists a matrix $P \in \mathcal{U}_{n}^{-1}(F)$ such that $\sigma_{P} \cdot \eta(A) \in\left[e_{k} e_{l}^{T}\right]$. The second result is obvious.

Corollary 5.2. Let $|F|=q=p^{m}$ with p a prime. Then

$$
\begin{equation*}
\left|\operatorname{Aut}\left(\Gamma_{n}\right)\right|=2 m q^{\frac{n(n-1)}{2}}(q-1)^{n-1}((q-1)!)^{\left|V_{n}\right|} \quad \text { for } n \geqslant 3 \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Aut}\left(\Gamma_{n}\right)\right|=2^{q} q(q-1)((q-1)!)^{\left|V_{2}\right|+1} \quad \text { for } \quad n=2 \tag{5.2}
\end{equation*}
$$

Proof. If $n \geqslant 3$, then by Theorem 4.3, each automorphism θ can be written as $\theta=\eta^{\delta} \cdot \sigma_{P} \cdot \theta_{\tau} \cdot \xi$, where $\delta=0$ or $1, P \in \mathcal{U}_{n}^{-1}(F), \tau \in \operatorname{Aut}(F), \xi$ is a permutation on $\mathcal{U}_{n}^{1}(F)$ such that $\xi([A])=[A]$ for any $A \in \mathcal{U}_{n}^{1}(F)$. If $\eta^{\delta_{1}} \cdot \sigma_{P_{1}} \cdot \theta_{\tau_{1}} \cdot \xi_{1}=\eta^{\delta_{2}} \cdot \sigma_{P_{2}} \cdot \theta_{\tau_{2}} \cdot \xi_{2}$, then $\eta^{\delta_{3}} \cdot \sigma_{P_{0}}=\theta_{\tau_{0}} \cdot \xi_{0}$, where $\delta_{3}=0$ or $1, P_{0}=P_{2}^{-1} P_{1}, \tau_{0}=\tau_{2} \cdot \tau_{1}^{-1}, \xi_{0}=\xi_{2} \cdot \xi_{1}^{-1}$. Since $\left[e_{i} e_{j}^{T}\right]$ is stable under $\theta_{\tau_{0}} \cdot \xi_{0}$, we have $\eta^{\delta_{3}} \cdot \sigma_{P_{0}}\left(\left[e_{i} e_{j}^{T}\right]\right)=\eta^{\delta_{3}} \cdot\left[P_{0}^{-1}\left(e_{i} e_{j}^{T}\right) P_{0}\right]=\left[e_{i} e_{j}^{T}\right]$ for all $1 \leqslant i \leqslant j \leqslant n$. This shows that $\delta_{3}=0$, and P_{0} is a diagonal matrix. By $\delta_{3}=0$, we get $\delta_{1}=\delta_{2}$, and so $\sigma_{P_{0}}=\theta_{\tau_{0}} \cdot \xi_{0}$. Let $P_{0}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in F^{*}$, then

$$
\begin{aligned}
\sigma_{P_{0}}\left(\left[e_{1}\left(e_{1}+a e_{j}\right)^{T}\right]\right) & =\left[e_{1}\left(e_{1}+a d_{1}^{-1} d_{j} e_{j}\right)^{T}\right] \\
\sigma_{P_{0}}\left(\left[\left(a e_{2}+e_{n}\right) e_{n}^{T}\right]\right) & =\left[\left(a d_{2}^{-1} d_{n} e_{2}+e_{n}\right) e_{n}^{T}\right]
\end{aligned}
$$

for all $a \in F$ and all $2 \leqslant j \leqslant n$. On the other hand,

$$
\theta_{\tau_{0}} \cdot \xi_{0}\left(\left[e_{1}\left(e_{1}+a e_{j}\right)^{T}\right]\right)=\left[e_{1}\left(e_{1}+\tau_{0}(a) e_{j}\right)^{T}\right]
$$

$$
\theta_{\tau_{0}} \cdot \xi_{0}\left(\left[\left(a e_{2}+e_{n}\right) e_{n}^{T}\right]\right)=\left[\left(\tau_{0}(a) e_{2}+e_{n}\right) e_{n}^{T}\right]
$$

Consequently, $\tau_{0}(a)=a d_{1}^{-1} d_{j}=a d_{2}^{-1} d_{n}, a \in F, 2 \leqslant j \leqslant n$. It follows that P_{0} is a nonzero scalar matrix and $\tau_{0}(a)=a$ for any $a \in F$. Hence, $P_{1}=d_{1} P_{2}$ and $\tau_{1}=\tau_{2}$, which implies that $\xi_{1}=\xi_{2}$. Now, the above discussion shows that

$$
\left|\operatorname{Aut}\left(\Gamma_{n}\right)\right|=2 \cdot \frac{\left|\mathcal{U}_{n}^{-1}(F)\right|}{q-1} \cdot|\operatorname{Aut}(F)| \cdot\left|\operatorname{Loc}\left(\Gamma_{n}\right)\right|
$$

Denote by K_{n}^{c} the complement of the complete K_{n}, i.e., the graph consisting of n isolated vertices. Clearly, $\operatorname{Aut}\left(K_{n}\right) \cong \operatorname{Aut}\left(K_{n}^{c}\right) \cong S_{n}$, where S_{n} is the symmetric group of degree n. For any $A \in \mathcal{U}_{n}^{1}(F)$, we see that the subgraph induced by $[A]$ in $\Gamma\left(\mathcal{U}_{n}^{1}(F)\right)$ is isomorphic to K_{q-1} or K_{q-1}^{c}. This shows that $\operatorname{Loc}\left(\Gamma_{n}\right) \cong k S_{q-1}$ with $k=\frac{\left|\mathcal{U}_{n}^{1}(F)\right|}{q-1}=\left|V_{n}\right|$. It is not difficult to see that $\left|\mathcal{U}_{n}^{-1}(F)\right|=(q-1)^{n} q^{\frac{n(n-1)}{2}}$, $|\operatorname{Aut}(F)|=m,\left|S_{q-1}\right|=(q-1)!$. Thus, we get (5.1).

When $n=2$, it is easily seen that the number of permutations ρ on $\mathcal{U}_{n}^{1}(F)$ is 2^{q} and the number of permutations π on F satisfying $\pi(0)=0$ is $(q-1)$!. Hence, in a similar way as above, we have (5.2).

Finally, by Theorem 4.3, Theorem 4.4 and the proof of Corollary 5.2, we have the following result.

Corollary 5.3. Let $|F|=q$. Then, the following hold:
(i) When $n \geqslant 3$, $\operatorname{Aut}\left(\Gamma_{n}\right) \cong\left(\left(\frac{\mathcal{U}_{n}^{-1}(F)}{K} \times\left|V_{n}\right| S_{q-1}\right) \rtimes \operatorname{Aut}(F)\right) \rtimes S_{2}$, where $K=$ $\left\{a I \mid a \in F^{*}\right\} ;$
(ii) When $n=2$, Aut $\left(\Gamma_{n}\right) \cong\left(\left(U_{2}(F) \times\left|V_{2}\right| S_{q-1}\right) \rtimes S_{q-1}\right) \rtimes q S_{2}$, where $U_{2}(F)$ is the set of all 2×2 unit upper triangular matrices over F.

Proof. If $n \geqslant 3$, then by Lemma 1.1 and Theorem 4.3, we get

$$
\operatorname{Aut}\left(\Gamma_{n}\right)=\left(\left(\operatorname{Inn}\left(\Gamma_{n}\right) \times \operatorname{Loc}\left(\Gamma_{n}\right)\right) \rtimes \operatorname{Fie}\left(\Gamma_{n}\right)\right) \rtimes \operatorname{Ext}\left(\Gamma_{n}\right)
$$

The proof of Corollary 5.2 shows that $\operatorname{Inn}\left(\Gamma_{n}\right) \cong \frac{\mathcal{U}_{n}^{-1}(F)}{K}$ with $K=\left\{a I \mid a \in F^{*}\right\}$, $\operatorname{Fie}\left(\Gamma_{n}\right) \cong \operatorname{Aut}(F), \operatorname{Ext}\left(\Gamma_{n}\right) \cong S_{2}$ and $\operatorname{Loc}\left(\Gamma_{n}\right) \cong\left|V_{n}\right| S_{q-1}$, from which we get (i).

When $n=2$, by Theorem 4.4 and the proof of Corollary 5.2, it is easily seen that $\operatorname{Inn}\left(\Gamma_{n}\right) \cong U_{2}(F)$, where $U_{2}(F)$ is the set of all 2×2 unit upper triangular matrices over $F, \operatorname{Per}_{1}\left(\Gamma_{2}\right) \cong q S_{2}$ and $\operatorname{Per}_{2}\left(\Gamma_{2}\right) \cong S_{q-1}$. Hence, in a similar way as above, we obtain the result of (ii).

Acknowledgment. The authors are grateful to the referees and to Prof. R. Loewy for their very valuable comments.

REFERENCES

[1] A. Abdollahi. Commuting graphs of full matrix rings over finite fields. Linear Algebra Appl., 428:2947-2954, 2008.
[2] S. Akbari, M. Ghandehari, M. Hadian, and A. Mohammadian. On commuting graphs of semisimple rings. Linear Algebra Appl., 390:345-355, 2004.
[3] S. Akbari and P. Raja. Commuting graphs of some subsets in simple rings. Linear Algebra Appl., 416:1038-1047, 2006.
[4] S. Akbari, A. Mohammadian, H. Radjavi, and P. Raja. On the diameters of commuting graphs. Linear Algebra Appl., 418:161-176, 2006.
[5] S. Akbari, H. Bidkhori, and A. Mohammadian. Commuting graphs of matrix algebras. Comm. Algebra, 36:4020-4031, 2008.
[6] G. Dolinar, B. Kuzma, and P. Oblak. On maximal distances in a commuting graph. Ars Math. Contemp., 23:243-256, 2012.
[7] G. Dolinar. Commuting graphs and extremal centralizers. Ars Math. Contemp., 7:453-459, 2014.
[8] D. Dolžan and P. Oblak. Commuting graph of matrices over semirings. Linear Algebra Appl., 435:1657-1665, 2011.
[9] D. Dolžan, D. Bukovšek, and P. Oblak. Diameters of commuting graphs of matrices over semirings. Semigoup Forum, 84:365-373, 2012.
[10] D. Dolžan, M. Konvalinka, and P. Oblak. Diameters of connected components of commuting graphs. Electron. J. Linear Algebra, 84:365-373, 2012.
[11] M. Giudici and A. Pope. The diameters of commuting graphs of linear groups and matrix rings over the integers modulo m. Australas. J. Combin., 48:221-230, 2010.
[12] C. Miguel. A note on a conjecture about commuting graphs. Linear Algebra Appl., 438:47504756, 2013.
[13] A. Mohammadian. On commuting graphs of finite matrix rings. Comm. Algebra, 38:988-994, 2010.
[14] D. Wong, X. Ma, and J. Zhou. The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices. Linear Algebra Appl., 460:242-258, 2014.

[^0]: *Received by the editors on July 18, 2015. Accepted for publication on October 26, 2016 Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China (ok6096@126.com). Supported by the NSFC grant no. 11661040, and the Science Foundation of Jiangxi University of Science and Technology (no. NSFJ2014-K12).
 ${ }^{\ddagger}$ Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China, (zhongjin1984@126.com). Supported by the NSFC grants no. 11661041 and no. 11426121, the Jiangxi Provincial Science and Technology Project (no. 20161BAB211016), and the Science Foundation of Jiangxi Provincial Education Department (no. GJJ150645).

