THE ϕ_{S} POLAR DECOMPOSITION WHEN THE COSQUARE OF S IS NONDEROGATORY*

RALPH JOHN DE LA CRUZ ${ }^{\dagger}$ AND DARYL Q. GRANARIO ${ }^{\ddagger}$

Abstract

For $S \in G L_{n}$, define $\phi_{S}: M_{n} \rightarrow M_{n}$ by $\phi_{S}(A)=S^{-1} A^{T} S$. A matrix $A \in M_{n}$ is ϕ_{S} orthogonal if $\phi_{S}(A)=A^{-1} ; A$ is ϕ_{S} symmetric if $\phi_{S}(A)=A ; A$ has a ϕ_{S} polar decomposition if $A=Z Y$ for some ϕ_{S} orthogonal Z and ϕ_{S} symmetric Y. If A has a ϕ_{S} polar decomposition, then A commutes with the cosquare $S^{-T} S$. Conditions under which the converse implication holds for the case where $S^{-T} S$ is nonderogatory, are obtained.

Key words. ϕ_{S} Orthogonal matrices, ϕ_{S} Symmetric matrices, ϕ_{S} Polar decomposition, Nonderogatory.

AMS subject classifications. 15A21, 15A23.

1. Introduction. Denote by M_{n} the set of all n-by- n complex matrices and by $G L_{n}$ the set of all n-by- n nonsingular complex matrices. If $S \in G L_{n}$, define the $\operatorname{map} \phi_{S}: M_{n} \rightarrow M_{n}$ by $\phi_{S}(A)=S^{-1} A^{T} S$. We say that $A \in M_{n}$ is ϕ_{S} orthogonal if $\phi_{S}(A)=A^{-1} ; A$ is ϕ_{S} symmetric if $\phi_{S}(A)=A ; A$ is ϕ_{S} skew symmetric if $\phi_{S}(A)=-A$; and A has a ϕ_{S} polar decomposition if we can write A as a product $A=Z Y$, where Z is ϕ_{S} orthogonal and Y is ϕ_{S} symmetric.

Every matrix $A \in M_{n}$ has a classical polar decomposition, that is, $A=Q R$, where Q is unitary and R is positive semidefinite. The algebraic polar decomposition or the orthogonal-symmetric polar decomposition is the ϕ_{S} polar decomposition when $S=I$. Kaplansky [9] showed that a matrix $A \in M_{n}$ has an algebraic polar decomposition if and only if $A A^{T}$ is similar to $A^{T} A$. In particular, every nonsingular matrix has an algebraic polar decomposition. Horn and Merino [7. Theorem 2.3] showed that a matrix $A \in M_{n}$ has a circular polar decomposition, that is $A=Q R$ for some real matrix $Q(\bar{Q}=Q)$ and coninvolutory $R\left(\bar{R}=R^{-1}\right)$, if and only if A and \bar{A} have the same range. In particular, every nonsingular matrix has a circular polar decomposition. Let $S \in G L_{n}$. A matrix $A \in M_{n}$ has a ψ_{S} polar decomposition if $A=Q R$, where Q is ψ_{S} orthogonal $\left(S^{-1} \bar{Q}^{-1} S=Q^{-1}\right.$ if Q is nonsingular or

[^0]equivalently $S^{-1} \bar{Q} S=Q$ if Q is singular) and R is ψ_{S} symmetric ($S^{-1} \bar{R}^{-1} S=R$). When $S=I$, the ψ_{S} polar decomposition is the circular polar decomposition. If $S^{-T} S$ is normal, Granario, Merino, and Paras [4, Corollary 16] showed that a matrix $A \in M_{n}$ has a ψ_{S} polar decomposition if and only if A commutes with $\bar{S} S, \operatorname{rank} A$ and $\operatorname{rank}(\bar{S} S-\lambda I) A$ have the same parity for every negative eigenvalue λ of $\bar{S} S$, and the ranges of $S A$ and \bar{A} are the same. In particular, a nonsingular matrix A has a ψ_{S} polar decomposition if and only if A commutes with $\bar{S} S$.

Let $S \in G L_{n}$. If Q is ϕ_{S} orthogonal and R is ϕ_{S} symmetric, then

$$
\begin{equation*}
\phi_{S}\left(\phi_{S}(Q)\right)=\phi_{S}\left(Q^{-1}\right)=\phi_{S}(Q)^{-1}=Q \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{S}\left(\phi_{S}(R)\right)=\phi_{S}(R)=R \tag{1.2}
\end{equation*}
$$

One checks that $\phi_{S}\left(\phi_{S}(A)\right)=A$ if and only if A commutes with $S^{-T} S$. Thus, every ϕ_{S} orthogonal matrix and ϕ_{S} symmetric matrix commutes with $S^{-T} S$, which implies that
if A has a ϕ_{S} polar decomposition, then A commutes with $S^{-T} S$.
If A is nonsingular, we show that the converse of (1.3) is true (see Theorem[2.1). Under certain assumptions on S, necessary and sufficient conditions for a (not necessarily nonsingular) matrix $A \in M_{n}$ to have a ϕ_{S} polar decomposition are given in the following.

1. If $S \in G L_{n}$ is symmetric, then A has a ϕ_{S} polar decomposition if and only if $A \phi_{S}(A)$ is similar to $\phi_{S}(A) A$ [6, Theorem 28].
2. If $S \in G L_{n}$ is skew symmetric, then A has a ϕ_{S} polar decomposition if and only if $A \phi_{S}(A)$ is similar to $\phi_{S}(A) A$ and $\operatorname{rank}\left(\left[A \phi_{S}(A)\right]^{k} A\right)$ is even for each nonnegative integer k [1, Corollary 10].
3. If $S \in G L_{n}$ is a real involution, then A has a ϕ_{S} polar decomposition if and only if A commutes with $S^{-T} S, A=X^{-1} \phi_{S}(A) Y$ and $\phi_{S}(A)=Y^{-1} A X$ for some $X, Y \in G L_{n}$ satisfying $\phi_{S}\left(\phi_{S}(X)\right)=X$ and $\phi_{S}\left(\phi_{S}(Y)\right)=Y$ [2, Theorem 11].
4. If $S \in G L_{n}$ is a real skew involution, then A has a ϕ_{S} polar decomposition if and only if A commutes with $S^{-T} S, A=X^{-1} \phi_{S}(A) Y$ and $\phi_{S}(A)=Y^{-1} A X$ for some $X, Y \in G L_{n}$ satisfying $\phi_{S}\left(\phi_{S}(X)\right)=X$ and $\phi_{S}\left(\phi_{S}(Y)\right)=Y$, and $\operatorname{rank}\left(\left[A \phi_{S}(A)\right]^{k} A\right)$ is even for each nonnegative integer k [2, Theorem 12].
5. If $S \in G L_{n}$ and $S^{-T} S$ is normal, then A has a ϕ_{S} polar decomposition if and only if A commutes with $S^{-T} S, A=X^{-1} \phi_{S}(A) Y$ and $\phi_{S}(A)=$ $Y^{-1} A X$ for some $X, Y \in G L_{n}$ satisfying $\phi_{S}\left(\phi_{S}(X)\right)=X$ and $\phi_{S}\left(\phi_{S}(Y)\right)=$ Y, and $\operatorname{rank}\left[\left(S^{-T} S-I\right)\left(A \phi_{S}(A)\right)^{k} A\right]$ is even for each nonnegative integer k [3, Theorem 9].

A matrix $A \in M_{n}$ is nonderogatory if for every eigenvalue λ of A, there is only one Jordan block corresponding to λ in the Jordan canonical form of A. If $S \in G L_{n}$ and S is symmetric or skew symmetric, then $S^{-T} S= \pm I$ is far from nonderogatory. In this paper we study the ϕ_{S} polar decomposition when $S^{-T} S$ is nonderogatory. We use the following notation for the statement of our main theorem.

Definition 1.1. Let $S \in G L_{n}$ and let $\mu_{1}, \mu_{1}^{-1}, \ldots, \mu_{k}, \mu_{k}^{-1}$ be the distinct eigenvalues of $S^{-T} S$ that are not 1 and -1 . We define

$$
\mathcal{S}(S, \pm):=\left(\prod_{i=1}^{k}\left(S^{-T} S-\mu_{i} I\right)^{n}\left(S^{-T} S-\mu_{i}^{-1} I\right)^{n}\right)\left(S^{-T} S \pm I\right)^{n}
$$

The following theorem is the main result of this paper.
Theorem 1.2. Let $S \in G L_{n}$ and suppose that $S^{-T} S$ is nonderogatory. Then A has a ϕ_{S} polar decomposition if and only if

1. A commutes with $S^{-T} S$,
2. $A \phi_{S}(A)$ is similar to $\phi_{S}(A) A$ via a matrix that commutes with $S^{-T} S$,
3. $\operatorname{rank}(\mathcal{S}(S,+) A)$ is zero or odd, and
4. $\operatorname{rank}(\mathcal{S}(S,-) A)$ is even.

In Section 2, we give some preliminary results. In particular, we give properties of the operator ϕ_{S} and we give a canonical form of matrices in $G L_{n}$ under congruence. In Section 3, we prove Theorem 1.2
2. Preliminaries. We denote by $\sigma(A)$ the spectrum of the matrix $A \in M_{n}$. Let $f: M_{n} \rightarrow M_{n}$ be a linear operator such that $\sigma(f(A))=\sigma(A)$ and $f(A B)=f(B) f(A)$ for all $A, B \in M_{n}$. By [5, Theorem 4.5.7], there exists $S \in G L_{n}$ such that $f(A)=$ $\phi_{S}(A)$. Conversely, the operator ϕ_{S} satisfies the two conditions $\sigma\left(\phi_{S}(A)\right)=\sigma(A)$ and $\phi_{S}(A B)=\phi_{S}(B) \phi_{S}(A)$ for all $A, B \in M_{n}$. If, in addition, we have $\phi_{S}\left(\phi_{S}(A)\right)=A$ for all $A \in M_{n}$, we can choose S to be symmetric or skew-symmetric [6, Lemma 15]. If $A \in M_{n}$ and p is an element of $\mathbb{C}[x]$, the set of polynomials with complex coefficients, then $p\left(\phi_{S}(A)\right)=\phi_{S}(p(A))$. This implies that the set of ϕ_{S} symmetric and the set of ϕ_{S} skew symmetric matrices are subspaces of M_{n}.

Define the set

$$
\mathcal{C}\left(S^{-T} S\right)=\left\{A \in M_{n}: A\left(S^{-T} S\right)=\left(S^{-T} S\right) A\right\}
$$

the centralizer of the cosquare $S^{-T} S$. Then $\phi_{S}\left(\phi_{S}(A)\right)=A$ if and only if $A \in$ $\mathcal{C}\left(S^{-T} S\right)$. One also checks that the cosquare of S is ϕ_{S} orthogonal.

Let $S \in G L_{n}$ and let $A \in \mathcal{C}\left(S^{-T} S\right)$ be nonsingular. The matrix $\phi_{S}(A) A$ is ϕ_{S} symmetric. Since A is nonsingular, it follows that $\phi_{S}(A) A$ is nonsingular and has a
square root R such that $R=f\left(\phi_{S}(A) A\right)$ for some $f \in \mathbb{C}[x]$. Observe that

$$
\phi_{S}(R)=\phi_{S}\left(f\left(\phi_{S}(A) A\right)\right)=f\left(\phi_{S}\left(\phi_{S}(A) A\right)\right)=f\left(\phi_{S}(A) A\right)=R
$$

that is, R is ϕ_{S} symmetric. Now, let $Q \equiv A R^{-1}$. Note that

$$
Q \phi_{S}(Q)=A R^{-1}\left(R^{-1} \phi_{S}(A)\right)=A\left(R^{2}\right)^{-1} \phi_{S}(A)=A\left(\phi_{S}(A) A\right)^{-1} \phi_{S}(A)=I
$$

that is, Q is ϕ_{S} orthogonal. Finally, since $A=Q R$, the matrix A has a ϕ_{S} polar decomposition.

Theorem 2.1. Let $S, A \in G L_{n}$. Then A has a ϕ_{S} polar decomposition if and only if A commutes with $S^{-T} S$.

Let $A, B \in M_{n}$. We say that A is congruent to B if there exists $X \in G L_{n}$ such that $A=X^{T} B X$. Given congruent matrices $S, S_{0} \in G L_{n}$, we have the following properties.

Proposition 2.2. Let $X, S, S_{0} \in G L_{n}$, and suppose that $S=X^{T} S_{0} X$. Let $A \in M_{n}$ and set $A_{0}=X A X^{-1}$. Then the following hold:

1. $A \in \mathcal{C}\left(S^{-T} S\right)$ if and only if $A_{0} \in \mathcal{C}\left(S_{0}^{-T} S_{0}\right)$.
2. A is ϕ_{S} orthogonal if and only if A_{0} is $\phi_{S_{0}}$ orthogonal.
3. A is ϕ_{S} skew symmetric if and only if A_{0} is $\phi_{S_{0}}$ skew symmetric.
4. A is ϕ_{S} symmetric if and only if A_{0} is $\phi_{S_{0}}$ symmetric.
5. $X \mathcal{S}(S, \pm) A X^{-1}=\mathcal{S}\left(S_{0}, \pm\right) A_{0}$.

Under the assumptions of Proposition [2.2, a matrix A has a ϕ_{S} polar decomposition if and only if $X A X^{-1}$ has a $\phi_{S_{0}}$ polar decomposition. Whenever it is convenient, we may replace a nonsingular matrix S by a matrix that is congruent to it. The following theorem gives a canonical form of nonsingular matrices under congruence. For $\lambda \in \mathbb{C}$, we denote by $J_{k}(\lambda)$ the k-by- k upper triangular Jordan block corresponding to λ.

Theorem 2.3. [8, Theorem 1.1] Let $A \in M_{n}$. Then there exist $X \in G L_{n}$ and nonnegative integers n_{i}, m_{j}, p_{r}, and μ_{r} such that

$$
\begin{equation*}
X^{T} A X=\left(\bigoplus_{i=1}^{\alpha} J_{n_{i}}(0)\right) \oplus\left(\bigoplus_{j=1}^{\beta} \Gamma_{m_{j}}\right) \oplus\left(\bigoplus_{r=1}^{\gamma} H_{2 p_{r}}\left(\mu_{r}\right)\right), \tag{2.1}
\end{equation*}
$$

where each $\Gamma_{m_{j}}$ is of the form

$$
\Gamma_{m_{j}}=\left[\begin{array}{cccccc}
0 & & & & & (-1)^{m_{j}+1} \\
& & & . & & (-1)^{m_{j}} \\
& & 1 & . & \\
& -1 & -1 & & \\
1 & 1 & & & 0
\end{array}\right] \text { for } m_{j}>1 \text { and } \Gamma_{1}=[1]
$$

each $H_{2 p_{r}}\left(\mu_{r}\right)$ is of the form

$$
H_{2 p_{r}}(\mu)=\left[\begin{array}{cc}
0 & I_{p_{r}} \\
J_{p_{r}}(\mu) & 0
\end{array}\right], 0 \neq \mu \neq(-1)^{p_{r}+1}
$$

and μ is determined up to replacement by μ^{-1}. Moreover, the direct sum in (2.1) is determined uniquely up to permutation of the direct summands.

Let $A, B \in G L_{n}$. If $A=X^{T} B X$ for some $X \in G L_{n}$, then

$$
A^{-T} A=\left(X^{T} B X\right)^{-T}\left(X^{T} B X\right)=X^{-1} B^{-T} B X
$$

That is, the cosquares of A and B are similar. The converse is also true [8, Lemma 2.1].

Let $S \in G L_{n}$ and let $S^{-T} S$ be nonderogatory. Then $S^{-T} S$ is similar to

$$
\begin{equation*}
J=\bigoplus_{j=1}^{k}\left(J_{m_{j}}\left(\mu_{j}\right) \oplus J_{m_{j}}\left(\mu_{j}^{-1}\right)\right) \oplus J_{2 a+1}(1) \oplus J_{2 b}(-1) \tag{2.2}
\end{equation*}
$$

where $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in \mathbb{C} \backslash\{-1,0,1\}$ are such that $\mu_{j} \neq \mu_{r}, \mu_{r}^{-1}$ if $j \neq r$. By the uniqueness assertion of Theorem [2.3, S is congruent to

$$
\begin{equation*}
S_{0}=\left(\bigoplus_{j=1}^{k} H_{2 m_{j}}\left(\mu_{j}\right)\right) \oplus \Gamma_{2 a+1} \oplus \Gamma_{2 b} \tag{2.3}
\end{equation*}
$$

where the cosquare of S_{0} is

$$
\begin{equation*}
\bigoplus_{j=1}^{k}\left(J_{m_{j}}\left(\mu_{j}\right) \oplus J_{m_{j}}^{-T}\left(\mu_{j}\right)\right) \oplus G_{2 a+1} \oplus G_{2 b} \tag{2.4}
\end{equation*}
$$

and G_{k} is similar to $J_{k}\left((-1)^{k+1}\right)$.
Set $\mathcal{P}(A) \equiv\{p(A) \mid p \in \mathbb{C}[x]\}$. It is known that if A is nonderogatory, then $\mathcal{C}(A)=\mathcal{P}(A)$ [5, Corollary 4.4.18].

Let $S \in M_{n}$ be a direct sum of the form (2.3), and let $A \in \mathcal{C}\left(S^{-T} S\right)$. Since $S^{-T} S$ is nonderogatory, it follows that $\mathcal{C}\left(S^{-T} S\right)=\mathcal{P}\left(S^{-T} S\right)$. Hence, if $A \in \mathcal{C}\left(S^{-T} S\right)$, then $A=f\left(S^{-T} S\right)$ for some $f \in \mathbb{C}[x]$. Now,

$$
\begin{aligned}
A & =f\left(S^{-T} S\right) \\
& =\bigoplus_{j=1}^{k}\left(f\left(J_{m_{j}}\left(\mu_{j}\right)\right) \oplus f\left(J_{m_{j}}^{-T}\left(\mu_{j}\right)\right)\right) \oplus f\left(G_{2 a+1}\right) \oplus f\left(G_{2 b}\right),
\end{aligned}
$$

which is block diagonal conformal to S. Moreover,

$$
\left.\phi_{S}(A)=\phi_{S}\left(f\left(S^{-T} S\right)\right)=f\left(\phi_{S}\left(S^{-T} S\right)\right)\right)=f\left(S^{-1} S^{T}\right)=f\left(\left(S^{-T} S\right)^{-1}\right)
$$

For $j \in\{1,2, \ldots, k\}$, let $A_{j}=f\left(J_{m_{j}}\left(\mu_{j}\right)\right) \oplus f\left(J_{m_{j}}\left(\mu_{j}\right)^{-T}\right)$, let $A_{-}=f\left(G_{2 a+1}\right)$ and $A_{+}=f\left(G_{2 b}\right)$ so that

$$
\begin{equation*}
A=\bigoplus_{j=1}^{k} A_{j} \oplus A_{-} \oplus A_{+} \tag{2.5}
\end{equation*}
$$

In particular, every ϕ_{S} orthogonal or ϕ_{S} symmetric matrix is a matrix of the form (2.5). Hence, if A is a matrix of the form (2.5) and A has a ϕ_{S} polar decomposition, say $A=Q R$, where Q is ϕ_{S} orthogonal and R is ϕ_{S} symmetric, then

$$
Q=\bigoplus_{j=1}^{k} Q_{j} \oplus Q_{-} \oplus Q_{+} \quad \text { and } \quad R=\bigoplus_{j=1}^{k} R_{j} \oplus R_{-} \oplus R_{+}
$$

are partitioned conformal to A. Since each Q_{*} and R_{*} are respectively $\phi_{S_{*}}$ orthogonal and $\phi_{S_{*}}$ symmetric, where $* \in\{1,2, \ldots, k\} \cup\{+,-\}$, it follows that A_{*} has a $\phi_{S_{*}}$ polar decomposition. The converse is also true.

Lemma 2.4. Let S and A be the direct sum of the form (2.3) and (2.5), respectively. Then A has a ϕ_{S} polar decomposition if and only if A_{j} has a $\phi_{S_{j}}$ polar decomposition for all $j \in\{1,2, \ldots, k\} \cup\{-,+\}$.
3. Proof of Theorem 1.2, Let $S \in G L_{n}$ and suppose that $S^{-T} S$ is nonderogatory. Suppose that A commutes with $S^{-T} S$. Then there exists $X \in G L_{n}$ such that $S_{0}=X^{-T} S X^{-1}$ is the direct sum in (2.3). Assume that $A_{0}=X A X^{-1}$ is the direct sum in (2.5), that is, $A_{0} \in \mathcal{C}\left(S_{0}^{-T} S_{0}\right)$. Using (2.4), one computes

$$
\begin{equation*}
\mathcal{S}\left(S_{0},+\right)=0_{n-(2 a+1+2 b)} \oplus\left(G_{2 a+1}+I_{2 a+1}\right)^{n} \oplus 0_{2 b} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{S}\left(S_{0},-\right)=0_{2 n-2 b} \oplus\left(G_{2 b}-I_{2 b}\right)^{n} . \tag{3.2}
\end{equation*}
$$

Since $\sigma\left(G_{2 a+1}\right)=\{1\}$ and $\sigma\left(G_{2 b}\right)=\{-1\}$, we have

$$
\begin{equation*}
\operatorname{rank}\left(\mathcal{S}\left(S_{0},+\right) A_{0}\right)=\operatorname{rank} A_{+} \quad \text { and } \quad \operatorname{rank}\left(\mathcal{S}\left(S_{0},-\right) A_{0}\right)=\operatorname{rank} A_{-} \tag{3.3}
\end{equation*}
$$

Now A_{0} has a $\phi_{S_{0}}$ polar decomposition if and only if A_{j} has a $\phi_{H_{2 m_{j}}\left(\mu_{j}\right)}$ polar decomposition for all $j \in\{1,2, \ldots, k\}, A_{+}$has a $\phi_{\Gamma_{2 a+1}}$ polar decomposition, and A_{-} has a $\phi_{\Gamma_{2 b}}$ polar decomposition, due to Lemma [2.4. This is equivalent to the following set of conditions (see Theorem 3.4 and Theorem 3.7, which we prove in the succeeding subsections):
(a) For all $j \in\{1,2, \ldots, k\}, A_{j} \phi_{H_{2 m_{j}}\left(\mu_{j}\right)}\left(A_{j}\right)$ is similar to $\phi_{H_{2 m_{j}}\left(\mu_{j}\right)}\left(A_{j}\right) A_{j}$ via a matrix in $\mathcal{C}\left(H_{2 m_{j}}\left(\mu_{j}\right)^{-T} H_{2 m_{j}}\left(\mu_{j}\right)\right)$.
(b) $\operatorname{rank} A_{+}$is zero or is odd and rank A_{-}is even.

Since $\mathcal{C}\left(G_{n}\right)$ is a commutative algebra, we have $A_{-} \phi_{\Gamma_{2 b}}\left(A_{-}\right)=\phi_{\Gamma_{2 b}}\left(A_{-}\right) A_{-}$and $A_{+} \phi_{\Gamma_{2 a+1}}\left(A_{+}\right)=\phi_{\Gamma_{2 a+1}}\left(A_{+}\right) A_{+}$. Therefore, condition (a) above is equivalent to
(a^{*}) $A_{0} \phi_{S_{0}}\left(A_{0}\right)$ is similar to $\phi_{S_{0}}\left(A_{0}\right) A_{0}$ via a matrix in $\mathcal{C}\left(S_{0}^{-T} S_{0}\right)$.
By (3.3), condition (b) is equivalent to
$\left(b^{*}\right) \operatorname{rank}\left(\mathcal{S}\left(S_{0},+\right) A_{0}\right)$ is zero or odd and $\operatorname{rank}\left(\mathcal{S}\left(S_{0},-\right) A_{0}\right)$ is even.
One checks that $\left(a^{*}\right)$ and $\left(b^{*}\right)$ are satisfied and $A_{0} \in \mathcal{C}\left(S_{0}^{-T} S_{0}\right)$ if and only if S and A satisfy the conditions in Theorem 1.2 (see Proposition 2.2). This proves Theorem [1.2 subject to verification of our claims about (a) $\left(S=H_{2 n}(\mu)\right)$ and (b) ($S=\Gamma_{n}$) which we address in the succeeding subsections.
3.1. The case $S=\Gamma_{n}$. Let $S=\Gamma_{n}$. If $n=1$, then every matrix has a ϕ_{S} polar decomposition since every 1-by-1 matrix is ϕ_{S} symmetric. Let $n>1$. We can write $G_{n}=S^{-T} S$ as a polynomial in $J_{n}(0)$:

$$
G_{n}=(-1)^{n} I_{n}+2(-1)^{n} \sum_{k=1}^{n-1} J_{n}(0)^{k} .
$$

Therefore, for all $A \in \mathcal{C}\left(G_{n}\right)$, we have $A=f\left(J_{n}(0)\right)$ for some $f \in \mathbb{C}[x]$ with $\operatorname{deg} f<n$ if $A \neq 0$.

Lemma 3.1. Let $n>1$. Then $\phi_{\Gamma_{n}}\left(J_{n}(0)\right)=-J_{n}(0)$.
It follows from Lemma 3.1 that $A \in M_{n}$ is ϕ_{S} symmetric if and only if f is an even polynomial. Now, if A and B are ϕ_{S} symmetric, then there exist even polynomials p and q such that $p\left(J_{n}(0)\right)=A$ and $q\left(J_{n}(0)\right)=B$. Hence, $C=A B=r\left(J_{n}(0)\right)$ where $r=p q$ is even, that is, C is also ϕ_{S} symmetric.

Lemma 3.2. Let $A, B \in \mathcal{C}\left(G_{n}\right)$.
(a) If A and B are ϕ_{S} symmetric, then $A B$ is ϕ_{S} symmetric.
(b) If A and B have ϕ_{S} polar decompositions, then $A B$ has a ϕ_{S} polar decomposition.

Proof. The first statement is done. The second statement follows from the first and the fact that $\mathcal{C}\left(G_{n}\right)$ is a commuting family.

Let

$$
\begin{equation*}
A=\sum_{i=0}^{m} a_{2 i}\left(J_{n}(0)\right)^{2 i} \tag{3.4}
\end{equation*}
$$

be ϕ_{S} symmetric. Let $2 j$ be the minimum integer in (3.4) such that $a_{2 j} \neq 0$. Then $\operatorname{rank} A=\operatorname{rank}\left(J_{n}(0)\right)^{2 j}=n-2 j$. Thus, the rank of A has the same parity as n.

Lemma 3.3. Let A be nonzero and $\phi_{\Gamma_{n}}$ symmetric. Then $\operatorname{rank} A$ has the same parity as n. In particular, if a matrix has a $\phi_{\Gamma_{n}}$ polar decomposition, then its rank has the same parity as n.

Let $A \in \mathcal{C}\left(G_{n}\right)$ be nonzero. If A is nonsingular, then A has a ϕ_{S} polar decomposition. Assume that $A=f\left(J_{n}(0)\right)$ for some $f \in \mathbb{C}[x]$ with $\operatorname{deg} f<n$. If A is singular, then $A=J_{n}(0)^{s} B$ for some $B \in G L_{n} \cap \mathcal{C}\left(G_{n}\right)$ and $0<s \leq \operatorname{deg} f$. Now if rank A has the same parity as n, then $\operatorname{rank} J_{n}(0)^{s}=n-s$ has the same parity as n; this happens only if s is even. Thus, $J_{n}(0)^{s}$ is ϕ_{S} symmetric, and since B has a ϕ_{S} polar decomposition, A has a ϕ_{S} polar decomposition.

Theorem 3.4. Let $S \in G L_{n}$ and let S be congruent to Γ_{n}. Let $A \in M_{n}$ be nonzero. Then A has a ϕ_{S} polar decomposition if and only if $A \in \mathcal{C}\left(S^{-T} S\right)$ and rank A has the same parity as n.
3.2. The case $S=H_{2 n}(\mu)$. Let $S=H_{2 n}(\mu)$, where $\mu \in \mathbb{C} \backslash\{-1,0,1\}$. Let $A \in \mathcal{C}\left(S^{-T} S\right)$ be given. Then $A=B \oplus C$ where $B, C \in M_{n}$ and B, C^{T} are upper triangular Toeplitz. Conversely, if $A=B \oplus C$ for some $B, C \in M_{n}$ such that B, C^{T} are upper triangular Toeplitz, then $A \in \mathcal{C}\left(S^{-T} S\right)$. Moreover, $\phi_{S}(A)=C^{T} \oplus B^{T}$ so A is ϕ_{S} symmetric if and only if $C=B^{T} ; A$ is ϕ_{S} orthogonal if and only if B is nonsingular and $C=B^{-T}$.

Let $A, B, C, D \in M_{n}$. We say that the pair (A, B) is contragrediently equivalent to the pair (C, D) if there exist $X, Y \in G L_{n}$ such that $A=X^{-1} C Y$ and $B=Y^{-1} D X$. In this case, we write $(A, B) \sim(C, D)$. The following theorem gives equivalent conditions for a matrix to have a ϕ_{S} polar decomposition if $S=H_{2 n}(\mu)$. Similar results were proved by Horn and Merino [6, Theorem 28] if $S \in G L_{n}$ is symmetric, and by Granario, Merino, and Paras [3. Theorem 8] if $S \in G L_{n}$ and $S^{-T} S$ is normal. Our proof is parallel to those in [6] and [3].

Theorem 3.5. Let $S=H_{2 n}(\mu)$, where $\mu \in \mathbb{C} \backslash\{-1,0,1\}$. Let $B, C \in M_{n}$. Suppose that $A=B \oplus C \in \mathcal{C}\left(S^{-T} S\right)$. The following are equivalent:

1. $\left(B, C^{T}\right) \sim\left(C^{T}, B\right)$.
2. $\left(A, \phi_{S}(A)\right) \sim\left(\phi_{S}(A), A\right)$ and the equivalence can be achieved using ϕ_{S} orthogonal matrices.
3. $\left(A, \phi_{S}(A)\right) \sim\left(\phi_{S}(A), A\right)$ and the equivalence can be achieved using matrices in $\mathcal{C}\left(S^{-T} S\right)$.
4. There are ϕ_{S} orthogonal matrices Q_{1} and Q_{2} such that $A=Q_{1} \phi_{S}(A) Q_{2}$.
5. There is a $U \in M_{n}$ such that $\left(B, C^{T}\right) \sim(U, U)$.
6. There are ϕ_{S} orthogonal matrices Q_{3}, Q_{4} and a ϕ_{S} symmetric matrix V such that $A=Q_{3} V Q_{4}$.
7. There is a ϕ_{S} orthogonal matrix Q and $a \phi_{S}$ symmetric matrix L such that $A=Q L$.
8. There is a ϕ_{S} orthogonal matrix Q such that $A=Q \phi_{S}(A) Q$.

Proof. Let $A=B \oplus C$, where $B, C^{T} \in M_{n}$ are upper triangular Toeplitz. Suppose that there exist a ϕ_{S} orthogonal $Z=Z_{1} \oplus Z_{1}^{-T}$ and a ϕ_{S} symmetric $Y=Y_{1} \oplus Y_{1}^{T}$ such that $A=Z Y$. Then $B=Z_{1} Y_{1}$ and $C^{T}=Y_{1} Z_{1}^{-1}$, that is, $\left(B, C^{T}\right) \sim\left(Y_{1}, Y_{1}\right)$. Note that $\left(B, C^{T}\right) \sim\left(Y_{1}, Y_{1}\right)$ implies $\left(B, C^{T}\right) \sim\left(C^{T}, B\right)$ and in turn, $\left(B, C^{T}\right) \sim$ $\left(C^{T}, B\right)$ implies that $\left(A, \phi_{S}(A)\right) \sim\left(\phi_{S}(A), A\right)$ and the equivalence is achieved using ϕ_{S} orthogonal matrices.

If $\left(A, \phi_{S}(A)\right) \sim\left(\phi_{S}(A), A\right)$ and the equivalence is achieved using ϕ_{S} orthogonal matrices, then $\left(A, \phi_{S}(A)\right) \sim\left(\phi_{S}(A), A\right)$ and the equivalence is achieved using matrices in $\mathcal{C}\left(S^{-T} S\right)$. The converse is also true [3, Lemma 4].

Suppose that $\left(A, \phi_{S}(A)\right) \sim\left(\phi_{S}(A), A\right)$ and the equivalence is achieved using ϕ_{S} orthogonal matrices. By [3, Lemma 4], there are ϕ_{S} orthogonal matrices

$$
\begin{equation*}
Q_{1}=X_{1} \oplus X_{1}^{-T} \text { and } Q_{2}=X_{2} \oplus X_{2}^{-T} \tag{3.5}
\end{equation*}
$$

such that $A=Q_{1} \phi_{S}(A) Q_{2}$. Set

$$
\begin{equation*}
E=A Q_{1}^{-1}=Q_{1} \phi_{S}(A) Q_{2} Q_{1}^{-1} \text { and } Q=Q_{2} Q_{1}^{-1} \tag{3.6}
\end{equation*}
$$

Then $E=\phi_{S}(E) Q$. Notice that

$$
\begin{equation*}
E Q^{-1}=\phi_{S}(E)=\phi_{S}\left(\phi_{S}(E) Q\right)=Q^{-1} E . \tag{3.7}
\end{equation*}
$$

Hence, E commutes with Q^{-1}. Consequently, E commutes with Q. Also, $\phi_{S}(E)$ commutes with Q. Let R be a square root of Q that is polynomial in Q. Then $R \in \mathcal{C}\left(S^{-T} S\right)$ and R commutes with both E and $\phi_{S}(E)$. Now,

$$
\begin{equation*}
\left(E R^{-1}\right)^{2}=E^{2}\left(R^{2}\right)^{-1}=E^{2} Q^{-1}=E \phi_{S}(E)=A \phi_{S}(A), \tag{3.8}
\end{equation*}
$$

that is, $A \phi_{S}(A)$ has a square root. Observe that $Q=X_{2} X_{1}^{-1} \oplus\left(X_{2} X_{1}^{-1}\right)^{-T}$ and

$$
\begin{equation*}
R=f(Q)=f\left(X_{2} X_{1}^{-1}\right) \oplus f\left(\left(X_{2} X_{1}^{-1}\right)^{-T}\right) \tag{3.9}
\end{equation*}
$$

for some polynomial $f(t)$. Now,

$$
\begin{equation*}
E=A Q_{1}^{-1}=B X_{1}^{-1} \oplus C X_{1}^{T} \tag{3.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\phi_{S}(E)=X_{1} C^{T} \oplus X_{1}^{-T} B^{T} \tag{3.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
U=\left(f\left(X_{2} X_{1}^{-1}\right)\right)^{-1}\left(B X_{1}^{-1}\right) \text { and } P=X_{1} C^{T} f\left(X_{2} X_{1}^{-1}\right) \tag{3.12}
\end{equation*}
$$

Note that U is the $(1,1)$ block of $R^{-1} E$, while P is the $(1,1)$ block of $\phi_{S}(E) R$. Since $E Q^{-1}=\phi_{S}(E)$, we have $E R^{-1}=\phi_{S}(E) R$. Moreover, because R commutes with E and $\phi_{S}(E)$, we have $U=P$. Therefore,

$$
\begin{equation*}
B=f\left(X_{2} X_{1}^{-1}\right) U X_{1} \quad \text { and } C=X_{1}^{-1} U\left(f\left(X_{2} X_{1}^{-1}\right)\right)^{-1} \tag{3.13}
\end{equation*}
$$

so that $\left(B, C^{T}\right) \sim(U, U)$.
Suppose that $\left(B, C^{T}\right) \sim(U, U)$. Then there are $X_{3}, X_{4} \in G L_{n}$ such that $B=$ $X_{3}^{-1} U X_{4}$ and $C^{T}=X_{4}^{-1} U X_{3}$. Let $V=U \oplus U^{T}, Q_{3}=X_{3}^{-1} \oplus X_{3}^{T}$, and $Q_{4}=X_{4} \oplus$ X_{4}^{-T}. Then $A=Q_{3} V Q_{4}$, where V is ϕ_{S} symmetric and Q_{3}, Q_{4} are ϕ_{S} orthogonal.

Suppose that there is a ϕ_{S} symmetric V and ϕ_{S} orthogonal matrices Q_{3}, Q_{4} such that $A=Q_{3} V Q_{4}$. Set $Q=Q_{3} Q_{4}$ and $L=Q_{4}^{-1} V Q_{4}$. Then Q is ϕ_{S} orthogonal, L is ϕ_{S} symmetric, and $A=Q L$.

Suppose that $A=Q L$ for some ϕ_{S} orthogonal Q and ϕ_{S} symmetric L. Then $Q^{-1} A=L=\phi_{S}(L)=\phi_{S}\left(Q^{-1} A\right)=\phi_{S}(A) Q$ so that $A=Q \phi_{S}(A) Q$.

Suppose that there is a ϕ_{S} orthogonal $Q=X \oplus X^{-T}$ such that $A=Q \phi_{S}(A) Q$. Then $B=X C^{T} X^{-1}$ and $C=X^{-T} B^{T} X^{T}$, that is $C^{T}=X B X^{-1}$. Hence, $\left(B, C^{T}\right) \sim$ $\left(C^{T}, B\right)$.

The following theorem is from [6, Corollary 11].
Theorem 3.6. Let $A, B, C, D \in M_{n}$. Then $(A, B) \sim(C, D)$ if and only if

1. $A B$ is similar to $C D$,
2. $\left[\begin{array}{cc}0 & A \\ B & 0\end{array}\right]$ is similar to $\left[\begin{array}{cc}0 & C \\ D & 0\end{array}\right]$, and
3. $\operatorname{rank}\left((A B)^{k} A\right)=\operatorname{rank}\left((C D)^{k} C\right)$ for all $k \in \mathbb{N} \cup\{0\}$.

Let $A=B \oplus C \in \mathcal{C}\left(S^{-T} S\right)$ and suppose that $A \phi_{S}(A)$ is similar to $\phi_{S}(A) A$ via a matrix in $\mathcal{C}\left(S^{-T} S\right)$. One computes that $B C^{T}$ is similar to $C^{T} B$. By Theorem 3.6, $\left(B, C^{T}\right) \sim\left(C^{T}, B\right)$, and so by Theorem 3.5, A has a ϕ_{S} polar decomposition.

Conversely, if A has a ϕ_{S} polar decomposition, then $A \phi_{S}(A)$ is similar to $\phi_{S}(A) A$ via a ϕ_{S} orthogonal matrix, and hence via a matrix in $\mathcal{C}\left(S^{-T} S\right)$.

Theorem 3.7. Let $S=H_{2 n}(\mu)$, where $\mu \in \mathbb{C} \backslash\{-1,0,1\}$ and $A \in M_{2 n}$. Then A has a ϕ_{S} polar decomposition if and only if A commutes with $S^{-T} S$ and $A \phi_{S}(A)$ is similar to $\phi_{S}(A) A$ via a matrix that commutes with $S^{-T} S$.

Acknowledgment. The work of R.J. de la Cruz was funded by the UP System Emerging Inter-Disciplinary Research Program (OVPAA-EIDR-C06-36).

REFERENCES

[1] R.J. de la Cruz, D.I. Merino, and A.T. Paras. The ϕ_{S} polar decomposition of matrices. Linear Algebra Appl., 434:4-13, 2011.
[2] D.Q. Granario, D.I. Merino, and A.T. Paras. The ϕ_{S} polar decomposition. Linear Algebra Appl., 438:609-620, 2013.
[3] D.Q. Granario, D.I. Merino, and A.T. Paras. The ϕ_{S} polar decomposition when the cosquare of S is normal. Linear Algebra Appl., 467:75-85, 2015.
[4] D.Q. Granario, D.I. Merino, and A.T. Paras. The ψ_{S} polar decomposition when the cosquare of S is normal. Linear Algebra Appl., 495:51-66, 2016.
[5] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, New York, 1991.
[6] R.A. Horn and D.I. Merino. Contragredient equivalence: A canonical form and some applications. Linear Algebra Appl., 214:43-92, 1995.
[7] R.A. Horn and D.I. Merino. A real-coninvolutory analog of the polar decomposition. Linear Algebra Appl., 190:209-227, 1993.
[8] R.A. Horn and V.V. Sergeichuk. Canonical forms for complex matrix congruence and *congruence. Linear Algebra Appl., 416:1010-1032, 2006.
[9] I. Kaplansky. Algebraic polar decomposition. SIAM J. Matrix Anal. Appl., 11(2):213-217, 1990.

[^0]: *Received by the editors on October 1, 2016. Accepted for publication on November 3, 2016. Handling Editor: Roger A. Horn.
 ${ }^{\dagger}$ Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines (rjdelacruz@math.upd.edu.ph).
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA (dqg0001@auburn.edu).

