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Abstract. For S ∈ GLn, define φS : Mn → Mn by φS(A) = S−1ATS. A matrix A ∈ Mn is

φS orthogonal if φS(A) = A−1; A is φS symmetric if φS(A) = A; A has a φS polar decomposition if

A = ZY for some φS orthogonal Z and φS symmetric Y . If A has a φS polar decomposition, then

A commutes with the cosquare S−TS. Conditions under which the converse implication holds for

the case where S−TS is nonderogatory, are obtained.
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1. Introduction. Denote by Mn the set of all n-by-n complex matrices and by

GLn the set of all n-by-n nonsingular complex matrices. If S ∈ GLn, define the

map φS : Mn → Mn by φS(A) = S−1ATS. We say that A ∈ Mn is φS orthogonal

if φS(A) = A−1; A is φS symmetric if φS(A) = A; A is φS skew symmetric if

φS(A) = −A; and A has a φS polar decomposition if we can write A as a product

A = ZY , where Z is φS orthogonal and Y is φS symmetric.

Every matrix A ∈Mn has a classical polar decomposition, that is, A = QR, where

Q is unitary and R is positive semidefinite. The algebraic polar decomposition or the

orthogonal-symmetric polar decomposition is the φS polar decomposition when S = I.

Kaplansky [9] showed that a matrix A ∈ Mn has an algebraic polar decomposition

if and only if AAT is similar to ATA. In particular, every nonsingular matrix has

an algebraic polar decomposition. Horn and Merino [7, Theorem 2.3] showed that

a matrix A ∈ Mn has a circular polar decomposition, that is A = QR for some

real matrix Q (Q = Q) and coninvolutory R (R = R−1), if and only if A and A

have the same range. In particular, every nonsingular matrix has a circular polar

decomposition. Let S ∈ GLn. A matrix A ∈ Mn has a ψS polar decomposition

if A = QR, where Q is ψS orthogonal (S−1Q
−1
S = Q−1 if Q is nonsingular or

∗Received by the editors on October 1, 2016. Accepted for publication on November 3, 2016.

Handling Editor: Roger A. Horn.
†Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines

(rjdelacruz@math.upd.edu.ph).
‡Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

(dqg0001@auburn.edu).

754

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 754-764, November 2016

http:/repository.uwyo.edu/ela



ELA

The φS Polar Decomposition When the Cosquare of S is Nonderogatory 755

equivalently S−1QS = Q if Q is singular) and R is ψS symmetric (S−1R
−1
S = R).

When S = I, the ψS polar decomposition is the circular polar decomposition. If

S−TS is normal, Granario, Merino, and Paras [4, Corollary 16] showed that a matrix

A ∈ Mn has a ψS polar decomposition if and only if A commutes with SS, rankA

and rank(SS−λI)A have the same parity for every negative eigenvalue λ of SS, and

the ranges of SA and A are the same. In particular, a nonsingular matrix A has a

ψS polar decomposition if and only if A commutes with SS.

Let S ∈ GLn. If Q is φS orthogonal and R is φS symmetric, then

φS(φS(Q)) = φS(Q
−1) = φS(Q)−1 = Q (1.1)

and

φS(φS(R)) = φS(R) = R. (1.2)

One checks that φS(φS(A)) = A if and only if A commutes with S−TS. Thus, every

φS orthogonal matrix and φS symmetric matrix commutes with S−TS, which implies

that

if A has a φS polar decomposition, then A commutes with S−TS. (1.3)

IfA is nonsingular, we show that the converse of (1.3) is true (see Theorem 2.1). Under

certain assumptions on S, necessary and sufficient conditions for a (not necessarily

nonsingular) matrix A ∈ Mn to have a φS polar decomposition are given in the

following.

1. If S ∈ GLn is symmetric, then A has a φS polar decomposition if and only if

AφS(A) is similar to φS(A)A [6, Theorem 28].

2. If S ∈ GLn is skew symmetric, then A has a φS polar decomposition if and

only if AφS(A) is similar to φS(A)A and rank([AφS(A)]
kA) is even for each

nonnegative integer k [1, Corollary 10].

3. If S ∈ GLn is a real involution, then A has a φS polar decomposition if and

only if A commutes with S−TS, A = X−1φS(A)Y and φS(A) = Y −1AX

for some X,Y ∈ GLn satisfying φS(φS(X)) = X and φS(φS(Y )) = Y [2,

Theorem 11].

4. If S ∈ GLn is a real skew involution, then A has a φS polar decomposition if

and only if A commutes with S−TS, A = X−1φS(A)Y and φS(A) = Y −1AX

for some X,Y ∈ GLn satisfying φS(φS(X)) = X and φS(φS(Y )) = Y , and

rank([AφS(A)]
kA) is even for each nonnegative integer k [2, Theorem 12].

5. If S ∈ GLn and S−TS is normal, then A has a φS polar decomposition

if and only if A commutes with S−TS, A = X−1φS(A)Y and φS(A) =

Y −1AX for some X,Y ∈ GLn satisfying φS(φS(X)) = X and φS(φS(Y )) =

Y , and rank[(S−TS − I)(AφS(A))
kA] is even for each nonnegative integer k

[3, Theorem 9].
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A matrix A ∈ Mn is nonderogatory if for every eigenvalue λ of A, there is only

one Jordan block corresponding to λ in the Jordan canonical form of A. If S ∈ GLn

and S is symmetric or skew symmetric, then S−TS = ±I is far from nonderogatory.

In this paper we study the φS polar decomposition when S−TS is nonderogatory. We

use the following notation for the statement of our main theorem.

Definition 1.1. Let S ∈ GLn and let µ1, µ
−1
1 , . . . , µk, µ

−1
k be the distinct eigen-

values of S−TS that are not 1 and −1. We define

S(S,±) :=

(

k
∏

i=1

(S−TS − µiI)
n(S−TS − µ−1

i I)n

)

(S−TS ± I)n.

The following theorem is the main result of this paper.

Theorem 1.2. Let S ∈ GLn and suppose that S−TS is nonderogatory. Then A

has a φS polar decomposition if and only if

1. A commutes with S−TS,

2. AφS(A) is similar to φS(A)A via a matrix that commutes with S−TS,

3. rank(S(S,+)A) is zero or odd, and

4. rank(S(S,−)A) is even.

In Section 2, we give some preliminary results. In particular, we give properties of

the operator φS and we give a canonical form of matrices in GLn under congruence.

In Section 3, we prove Theorem 1.2.

2. Preliminaries. We denote by σ(A) the spectrum of the matrix A ∈Mn. Let

f :Mn →Mn be a linear operator such that σ(f(A)) = σ(A) and f(AB) = f(B)f(A)

for all A,B ∈ Mn. By [5, Theorem 4.5.7], there exists S ∈ GLn such that f(A) =

φS(A). Conversely, the operator φS satisfies the two conditions σ(φS(A)) = σ(A) and

φS(AB) = φS(B)φS(A) for all A,B ∈ Mn. If, in addition, we have φS(φS(A)) = A

for all A ∈Mn, we can choose S to be symmetric or skew-symmetric [6, Lemma 15]. If

A ∈Mn and p is an element of C[x], the set of polynomials with complex coefficients,

then p(φS(A)) = φS(p(A)). This implies that the set of φS symmetric and the set of

φS skew symmetric matrices are subspaces of Mn.

Define the set

C(S−TS) = {A ∈Mn : A(S−TS) = (S−TS)A},

the centralizer of the cosquare S−TS. Then φS(φS(A)) = A if and only if A ∈

C(S−TS). One also checks that the cosquare of S is φS orthogonal.

Let S ∈ GLn and let A ∈ C(S−TS) be nonsingular. The matrix φS(A)A is φS
symmetric. Since A is nonsingular, it follows that φS(A)A is nonsingular and has a
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square root R such that R = f(φS(A)A) for some f ∈ C[x]. Observe that

φS(R) = φS(f(φS(A)A)) = f(φS(φS(A)A)) = f(φS(A)A) = R,

that is, R is φS symmetric. Now, let Q ≡ AR−1. Note that

QφS(Q) = AR−1(R−1φS(A)) = A(R2)−1φS(A) = A(φS(A)A)
−1φS(A) = I,

that is, Q is φS orthogonal. Finally, since A = QR, the matrix A has a φS polar

decomposition.

Theorem 2.1. Let S,A ∈ GLn. Then A has a φS polar decomposition if and

only if A commutes with S−TS.

Let A,B ∈ Mn. We say that A is congruent to B if there exists X ∈ GLn such

that A = XTBX . Given congruent matrices S, S0 ∈ GLn, we have the following

properties.

Proposition 2.2. Let X,S, S0 ∈ GLn, and suppose that S = XTS0X. Let

A ∈Mn and set A0 = XAX−1. Then the following hold:

1. A ∈ C(S−TS) if and only if A0 ∈ C(S−T
0 S0).

2. A is φS orthogonal if and only if A0 is φS0
orthogonal.

3. A is φS skew symmetric if and only if A0 is φS0
skew symmetric.

4. A is φS symmetric if and only if A0 is φS0
symmetric.

5. XS(S,±)AX−1 = S(S0,±)A0.

Under the assumptions of Proposition 2.2, a matrix A has a φS polar decomposi-

tion if and only if XAX−1 has a φS0
polar decomposition. Whenever it is convenient,

we may replace a nonsingular matrix S by a matrix that is congruent to it. The fol-

lowing theorem gives a canonical form of nonsingular matrices under congruence. For

λ ∈ C, we denote by Jk(λ) the k-by-k upper triangular Jordan block corresponding

to λ.

Theorem 2.3. [8, Theorem 1.1] Let A ∈ Mn. Then there exist X ∈ GLn and

nonnegative integers ni, mj, pr, and µr such that

XTAX =

(

α
⊕

i=1

Jni
(0)

)

⊕





β
⊕

j=1

Γmj



⊕

(

γ
⊕

r=1

H2pr
(µr)

)

, (2.1)
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where each Γmj
is of the form

Γmj
=



















0 (−1)mj+1

... (−1)mj

1
...

−1 −1

1 1 0



















for mj > 1 and Γ1 = [1],

each H2pr
(µr) is of the form

H2pr
(µ) =

[

0 Ipr

Jpr
(µ) 0

]

, 0 6= µ 6= (−1)pr+1,

and µ is determined up to replacement by µ−1. Moreover, the direct sum in (2.1) is

determined uniquely up to permutation of the direct summands.

Let A,B ∈ GLn. If A = XTBX for some X ∈ GLn, then

A−TA = (XTBX)−T (XTBX) = X−1B−TBX.

That is, the cosquares of A and B are similar. The converse is also true [8, Lemma

2.1].

Let S ∈ GLn and let S−TS be nonderogatory. Then S−TS is similar to

J =
k
⊕

j=1

(

Jmj
(µj)⊕ Jmj

(µ−1
j )
)

⊕ J2a+1(1)⊕ J2b(−1), (2.2)

where µ1, µ2, . . . , µk ∈ C\{−1, 0, 1} are such that µj 6= µr, µ
−1
r if j 6= r. By the

uniqueness assertion of Theorem 2.3, S is congruent to

S0 =





k
⊕

j=1

H2mj
(µj)



 ⊕ Γ2a+1 ⊕ Γ2b, (2.3)

where the cosquare of S0 is

k
⊕

j=1

(

Jmj
(µj)⊕ J−T

mj
(µj)

)

⊕G2a+1 ⊕G2b, (2.4)

and Gk is similar to Jk((−1)k+1).

Set P(A) ≡ {p(A) | p ∈ C[x]}. It is known that if A is nonderogatory, then

C(A) = P(A) [5, Corollary 4.4.18].
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Let S ∈Mn be a direct sum of the form (2.3), and let A ∈ C(S−TS). Since S−TS

is nonderogatory, it follows that C(S−TS) = P(S−TS). Hence, if A ∈ C(S−TS), then

A = f(S−TS) for some f ∈ C[x]. Now,

A = f(S−TS)

=

k
⊕

j=1

(

f(Jmj
(µj))⊕ f(J−T

mj
(µj))

)

⊕ f(G2a+1)⊕ f(G2b),

which is block diagonal conformal to S. Moreover,

φS(A) = φS(f(S
−TS)) = f(φS(S

−TS))) = f(S−1ST ) = f((S−TS)−1).

For j ∈ {1, 2, . . . , k}, let Aj = f(Jmj
(µj)) ⊕ f(Jmj

(µj)
−T ), let A− = f(G2a+1) and

A+ = f(G2b) so that

A =

k
⊕

j=1

Aj ⊕A− ⊕A+. (2.5)

In particular, every φS orthogonal or φS symmetric matrix is a matrix of the form

(2.5). Hence, if A is a matrix of the form (2.5) and A has a φS polar decomposition,

say A = QR, where Q is φS orthogonal and R is φS symmetric, then

Q =
⊕k

j=1Qj ⊕Q− ⊕Q+ and R =
⊕k

j=1 Rj ⊕R− ⊕R+

are partitioned conformal to A. Since each Q∗ and R∗ are respectively φS∗
orthogonal

and φS∗
symmetric, where ∗ ∈ {1, 2, . . . , k} ∪ {+,−}, it follows that A∗ has a φS∗

polar decomposition. The converse is also true.

Lemma 2.4. Let S and A be the direct sum of the form (2.3) and (2.5), re-

spectively. Then A has a φS polar decomposition if and only if Aj has a φSj
polar

decomposition for all j ∈ {1, 2, . . . , k} ∪ {−,+}.

3. Proof of Theorem 1.2. Let S ∈ GLn and suppose that S−TS is nonderoga-

tory. Suppose that A commutes with S−TS. Then there exists X ∈ GLn such that

S0 = X−TSX−1 is the direct sum in (2.3). Assume that A0 = XAX−1 is the direct

sum in (2.5), that is, A0 ∈ C(S−T
0 S0). Using (2.4), one computes

S(S0,+) = 0n−(2a+1+2b) ⊕ (G2a+1 + I2a+1)
n ⊕ 02b (3.1)

and

S(S0,−) = 02n−2b ⊕ (G2b − I2b)
n. (3.2)

Since σ(G2a+1) = {1} and σ(G2b) = {−1}, we have

rank(S(S0,+)A0) = rankA+ and rank(S(S0,−)A0) = rankA−. (3.3)
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Now A0 has a φS0
polar decomposition if and only if Aj has a φH2mj

(µj) polar

decomposition for all j ∈ {1, 2, . . . , k}, A+ has a φΓ2a+1
polar decomposition, and A−

has a φΓ2b
polar decomposition, due to Lemma 2.4. This is equivalent to the following

set of conditions (see Theorem 3.4 and Theorem 3.7, which we prove in the succeeding

subsections):

(a) For all j ∈ {1, 2, . . . , k}, AjφH2mj
(µj)(Aj) is similar to φH2mj

(µj)(Aj)Aj via a

matrix in C(H2mj
(µj)

−TH2mj
(µj)).

(b) rankA+ is zero or is odd and rankA− is even.

Since C(Gn) is a commutative algebra, we have A−φΓ2b
(A−) = φΓ2b

(A−)A− and

A+φΓ2a+1
(A+) = φΓ2a+1

(A+)A+ . Therefore, condition (a) above is equivalent to

(a∗) A0φS0
(A0) is similar to φS0

(A0)A0 via a matrix in C(S−T
0 S0).

By (3.3), condition (b) is equivalent to

(b∗) rank(S(S0,+)A0) is zero or odd and rank(S(S0,−)A0) is even.

One checks that (a∗) and (b∗) are satisfied and A0 ∈ C(S−T
0 S0) if and only if

S and A satisfy the conditions in Theorem 1.2 (see Proposition 2.2). This proves

Theorem 1.2, subject to verification of our claims about (a) (S = H2n(µ)) and (b)

(S = Γn) which we address in the succeeding subsections.

3.1. The case S = Γn. Let S = Γn. If n = 1, then every matrix has a φS polar

decomposition since every 1-by-1 matrix is φS symmetric. Let n > 1. We can write

Gn = S−TS as a polynomial in Jn(0):

Gn = (−1)nIn + 2(−1)n
n−1
∑

k=1

Jn(0)
k.

Therefore, for all A ∈ C(Gn), we have A = f(Jn(0)) for some f ∈ C[x] with degf < n

if A 6= 0.

Lemma 3.1. Let n > 1. Then φΓn
(Jn(0)) = −Jn(0).

It follows from Lemma 3.1 that A ∈Mn is φS symmetric if and only if f is an even

polynomial. Now, if A and B are φS symmetric, then there exist even polynomials p

and q such that p(Jn(0)) = A and q(Jn(0)) = B. Hence, C = AB = r(Jn(0)) where

r = pq is even, that is, C is also φS symmetric.

Lemma 3.2. Let A,B ∈ C(Gn).

(a) If A and B are φS symmetric, then AB is φS symmetric.

(b) If A and B have φS polar decompositions, then AB has a φS polar decompo-

sition.
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Proof. The first statement is done. The second statement follows from the first

and the fact that C(Gn) is a commuting family.

Let

A =

m
∑

i=0

a2i(Jn(0))
2i (3.4)

be φS symmetric. Let 2j be the minimum integer in (3.4) such that a2j 6= 0. Then

rankA = rank(Jn(0))
2j = n− 2j. Thus, the rank of A has the same parity as n.

Lemma 3.3. Let A be nonzero and φΓn
symmetric. Then rankA has the same

parity as n. In particular, if a matrix has a φΓn
polar decomposition, then its rank

has the same parity as n.

Let A ∈ C(Gn) be nonzero. If A is nonsingular, then A has a φS polar decompo-

sition. Assume that A = f(Jn(0)) for some f ∈ C[x] with degf < n. If A is singular,

then A = Jn(0)
sB for some B ∈ GLn ∩ C(Gn) and 0 < s ≤ degf . Now if rankA

has the same parity as n, then rankJn(0)
s = n − s has the same parity as n; this

happens only if s is even. Thus, Jn(0)
s is φS symmetric, and since B has a φS polar

decomposition, A has a φS polar decomposition.

Theorem 3.4. Let S ∈ GLn and let S be congruent to Γn. Let A ∈ Mn be

nonzero. Then A has a φS polar decomposition if and only if A ∈ C(S−TS) and

rankA has the same parity as n.

3.2. The case S = H2n(µ). Let S = H2n(µ), where µ ∈ C\{−1, 0, 1}. Let

A ∈ C(S−TS) be given. Then A = B ⊕ C where B,C ∈ Mn and B,CT are upper

triangular Toeplitz. Conversely, if A = B ⊕ C for some B,C ∈ Mn such that B,CT

are upper triangular Toeplitz, then A ∈ C(S−TS). Moreover, φS(A) = CT ⊕ BT so

A is φS symmetric if and only if C = BT ; A is φS orthogonal if and only if B is

nonsingular and C = B−T .

Let A,B,C,D ∈Mn. We say that the pair (A,B) is contragrediently equivalent to

the pair (C,D) if there exist X,Y ∈ GLn such that A = X−1CY and B = Y −1DX .

In this case, we write (A,B) ∼ (C,D). The following theorem gives equivalent con-

ditions for a matrix to have a φS polar decomposition if S = H2n(µ). Similar results

were proved by Horn and Merino [6, Theorem 28] if S ∈ GLn is symmetric, and by

Granario, Merino, and Paras [3, Theorem 8] if S ∈ GLn and S−TS is normal. Our

proof is parallel to those in [6] and [3].

Theorem 3.5. Let S = H2n(µ), where µ ∈ C\{−1, 0, 1}. Let B,C ∈ Mn.

Suppose that A = B ⊕ C ∈ C(S−TS). The following are equivalent:

1. (B,CT ) ∼ (CT , B).
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2. (A, φS(A)) ∼ (φS(A), A) and the equivalence can be achieved using φS or-

thogonal matrices.

3. (A, φS(A)) ∼ (φS(A), A) and the equivalence can be achieved using matrices

in C(S−TS).

4. There are φS orthogonal matrices Q1 and Q2 such that A = Q1φS(A)Q2.

5. There is a U ∈Mn such that (B,CT ) ∼ (U,U).

6. There are φS orthogonal matrices Q3, Q4 and a φS symmetric matrix V such

that A = Q3V Q4.

7. There is a φS orthogonal matrix Q and a φS symmetric matrix L such that

A = QL.

8. There is a φS orthogonal matrix Q such that A = QφS(A)Q.

Proof. Let A = B⊕C, where B,CT ∈Mn are upper triangular Toeplitz. Suppose

that there exist a φS orthogonal Z = Z1 ⊕ Z−T
1 and a φS symmetric Y = Y1 ⊕ Y T

1

such that A = ZY . Then B = Z1Y1 and CT = Y1Z
−1
1 , that is, (B,CT ) ∼ (Y1, Y1).

Note that (B,CT ) ∼ (Y1, Y1) implies (B,CT ) ∼ (CT , B) and in turn, (B,CT ) ∼

(CT , B) implies that (A, φS(A)) ∼ (φS(A), A) and the equivalence is achieved using

φS orthogonal matrices.

If (A, φS(A)) ∼ (φS(A), A) and the equivalence is achieved using φS orthogonal

matrices, then (A, φS(A)) ∼ (φS(A), A) and the equivalence is achieved using matrices

in C(S−TS). The converse is also true [3, Lemma 4].

Suppose that (A, φS(A)) ∼ (φS(A), A) and the equivalence is achieved using φS
orthogonal matrices. By [3, Lemma 4], there are φS orthogonal matrices

Q1 = X1 ⊕X−T
1 and Q2 = X2 ⊕X−T

2 (3.5)

such that A = Q1φS(A)Q2. Set

E = AQ−1
1 = Q1φS(A)Q2Q

−1
1 and Q = Q2Q

−1
1 . (3.6)

Then E = φS(E)Q. Notice that

EQ−1 = φS(E) = φS(φS(E)Q) = Q−1E. (3.7)

Hence, E commutes with Q−1. Consequently, E commutes with Q. Also, φS(E)

commutes with Q. Let R be a square root of Q that is polynomial in Q. Then

R ∈ C(S−TS) and R commutes with both E and φS(E). Now,

(ER−1)2 = E2(R2)−1 = E2Q−1 = EφS(E) = AφS(A), (3.8)

that is, AφS(A) has a square root. Observe that Q = X2X
−1
1 ⊕ (X2X

−1
1 )−T and

R = f(Q) = f(X2X
−1
1 )⊕ f((X2X

−1
1 )−T ) (3.9)
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for some polynomial f(t). Now,

E = AQ−1
1 = BX−1

1 ⊕ CXT
1 , (3.10)

so that

φS(E) = X1C
T ⊕X−T

1 BT . (3.11)

Let

U = (f(X2X
−1
1 ))−1(BX−1

1 ) and P = X1C
T f(X2X

−1
1 ). (3.12)

Note that U is the (1, 1) block of R−1E, while P is the (1, 1) block of φS(E)R. Since

EQ−1 = φS(E), we have ER−1 = φS(E)R. Moreover, because R commutes with E

and φS(E), we have U = P . Therefore,

B = f(X2X
−1
1 )UX1 and C = X−1

1 U(f(X2X
−1
1 ))−1, (3.13)

so that (B,CT ) ∼ (U,U).

Suppose that (B,CT ) ∼ (U,U). Then there are X3, X4 ∈ GLn such that B =

X−1
3 UX4 and CT = X−1

4 UX3. Let V = U ⊕ UT , Q3 = X−1
3 ⊕XT

3 , and Q4 = X4 ⊕

X−T
4 . Then A = Q3V Q4, where V is φS symmetric and Q3, Q4 are φS orthogonal.

Suppose that there is a φS symmetric V and φS orthogonal matrices Q3, Q4 such

that A = Q3V Q4. Set Q = Q3Q4 and L = Q−1
4 V Q4. Then Q is φS orthogonal, L is

φS symmetric, and A = QL.

Suppose that A = QL for some φS orthogonal Q and φS symmetric L. Then

Q−1A = L = φS(L) = φS(Q
−1A) = φS(A)Q so that A = QφS(A)Q.

Suppose that there is a φS orthogonal Q = X ⊕X−T such that A = QφS(A)Q.

Then B = XCTX−1 and C = X−TBTXT , that is CT = XBX−1. Hence, (B,CT ) ∼

(CT , B).

The following theorem is from [6, Corollary 11].

Theorem 3.6. Let A,B,C,D ∈Mn. Then (A,B) ∼ (C,D) if and only if

1. AB is similar to CD,

2.

[

0 A

B 0

]

is similar to

[

0 C

D 0

]

, and

3. rank((AB)kA) = rank((CD)kC) for all k ∈ N ∪ {0}.

Let A = B ⊕ C ∈ C(S−TS) and suppose that AφS(A) is similar to φS(A)A via

a matrix in C(S−TS). One computes that BCT is similar to CTB. By Theorem

3.6, (B,CT ) ∼ (CT , B), and so by Theorem 3.5, A has a φS polar decomposition.
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Conversely, if A has a φS polar decomposition, then AφS(A) is similar to φS(A)A via

a φS orthogonal matrix, and hence via a matrix in C(S−TS).

Theorem 3.7. Let S = H2n(µ), where µ ∈ C\{−1, 0, 1} and A ∈M2n. Then A

has a φS polar decomposition if and only if A commutes with S−TS and AφS(A) is

similar to φS(A)A via a matrix that commutes with S−TS.
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