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THE ¢s POLAR DECOMPOSITION WHEN THE COSQUARE
OF S IS NONDEROGATORY™

RALPH JOHN DE LA CRUZ' AND DARYL Q. GRANARIO?#

Abstract. For S € GLy, define ¢g : My, — My by ¢s(A) = S—1ATS. A matrix A € M, is
¢s orthogonal if pg(A) = A™1; Ais ¢g symmetric if ps(A) = A; A has a ¢g polar decomposition if
A = ZY for some ¢g orthogonal Z and ¢g symmetric Y. If A has a ¢g polar decomposition, then
A commutes with the cosquare S~7'S. Conditions under which the converse implication holds for
the case where S—7'S is nonderogatory, are obtained.

Key words. ¢g Orthogonal matrices, ¢g Symmetric matrices, ¢g Polar decomposition,
Nonderogatory.
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1. Introduction. Denote by M, the set of all n-by-n complex matrices and by
GL, the set of all n-by-n nonsingular complex matrices. If S € GL,, define the
map ¢gs : M,, — M, by ¢s(A) = STTATS. We say that A € M, is ¢s orthogonal
if ps(A) = A7L; A is ¢g symmetric if ¢ps(A) = A; A is ¢g skew symmetric if
¢s(A) = —A; and A has a ¢g polar decomposition if we can write A as a product
A =Z7Y, where Z is ¢g orthogonal and Y is ¢g symmetric.

Every matrix A € M, has a classical polar decomposition, that is, A = QR, where
@ is unitary and R is positive semidefinite. The algebraic polar decomposition or the
orthogonal-symmetric polar decomposition is the ¢g polar decomposition when S = 1.
Kaplansky [9] showed that a matrix A € M,, has an algebraic polar decomposition
if and only if AAT is similar to AT A. In particular, every nonsingular matrix has
an algebraic polar decomposition. Horn and Merino [7, Theorem 2.3] showed that
a matrix A € M, has a circular polar decomposition, that is A = QR for some
real matrix Q (Q = Q) and coninvolutory R (R = R™1'), if and only if A and A
have the same range. In particular, every nonsingular matrix has a circular polar
decomposition. Let S € GL,. A matrix A € M, has a g polar decomposition
if A = QR, where Q is ¥g orthogonal (5*16_15 = Q! if Q is nonsingular or
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equivalently S™'QS = Q if Q is singular) and R is 1s symmetric (S_IR%S = R).
When S = I, the ¥g polar decomposition is the circular polar decomposition. If
S~TS is normal, Granario, Merino, and Paras [4, Corollary 16] showed that a matrix
A € M, has a 1g polar decomposition if and only if A commutes with S, rank A
and rank(SS — AI) A have the same parity for every negative eigenvalue \ of S, and
the ranges of SA and A are the same. In particular, a nonsingular matrix A has a
1hg polar decomposition if and only if A commutes with SS.

Let S € GL,,. If Q is ¢g orthogonal and R is ¢g symmetric, then
95(0s(Q) = ¢s(Q7") = ¢s(Q) ' = Q (1.1)

and

¢s(¢s(R)) = ¢s(R) = R. (1.2)

One checks that ¢s5(¢s(A)) = A if and only if A commutes with S~7S. Thus, every
¢s orthogonal matrix and ¢g symmetric matrix commutes with S~7'S, which implies
that

if A has a ¢g polar decomposition, then A commutes with S~7S. (1.3)

If A is nonsingular, we show that the converse of (I3) is true (see Theorem[21]). Under
certain assumptions on S, necessary and sufficient conditions for a (not necessarily
nonsingular) matrix A € M, to have a ¢g polar decomposition are given in the
following.

1. If S € GL,, is symmetric, then A has a ¢g polar decomposition if and only if
Aps(A) is similar to ¢ps(A)A [0, Theorem 28].

2. If S € GL,, is skew symmetric, then A has a ¢g polar decomposition if and
only if Apg(A) is similar to ¢5(A)A and rank([Aps(A)]*A) is even for each
nonnegative integer k [1l Corollary 10].

3. If S € GL,, is a real involution, then A has a ¢g polar decomposition if and
only if A commutes with S™7S, 4 = X 1¢5(A)Y and ¢s(A) = Y 1AX
for some X,Y € GL, satisfying ¢s(¢ds(X)) = X and ¢s(¢ps(Y)) =Y [2
Theorem 11].

4. If S € GL, is a real skew involution, then A has a ¢g polar decomposition if
and only if A commutes with S™7'S, A = X 1¢5(A)Y and ¢5(A) = Y 1AX
for some X,Y € GL, satisfying ¢s(¢s(X)) = X and ¢s(¢ps(Y)) =Y, and
rank([A¢s(A)]* A) is even for each nonnegative integer k [2, Theorem 12].

5. If S € GL, and S~7S is normal, then A has a ¢g polar decomposition
if and only if A commutes with S™7S, A = X 1¢5(A)Y and ¢g(A) =
Y1AX for some X,Y € GL, satisfying ¢5(¢s(X)) = X and ¢s(ds(Y)) =
Y, and rank[(S™TS — I)(A¢s(A))FA] is even for each nonnegative integer k
[3, Theorem 9].
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A matrix A € M, is nonderogatory if for every eigenvalue A\ of A, there is only
one Jordan block corresponding to A in the Jordan canonical form of A. If S € GL,,
and S is symmetric or skew symmetric, then S~7S = 1 is far from nonderogatory.
In this paper we study the ¢5 polar decomposition when S~7'S is nonderogatory. We
use the following notation for the statement of our main theorem.

DEFINITION 1.1. Let S € GL,, and let uq, ufl, e M, ,ul;l be the distinct eigen-
values of S~7S that are not 1 and —1. We define
k
S(S,+) := (H(S‘TS — i D)"(S7TS — ufl)fl) (S~TS+ 1)

i=1

The following theorem is the main result of this paper.

THEOREM 1.2. Let S € GL,, and suppose that S~T'S is nonderogatory. Then A
has a ¢g polar decomposition if and only if

1. A commutes with S~TS,

2. Aps(A) is similar to ¢s(A)A via a matriz that commutes with S=TS,
3. rank(S(S,+)A) is zero or odd, and

4. rank(S(S, —)A) is even.

In Section 2, we give some preliminary results. In particular, we give properties of
the operator ¢s and we give a canonical form of matrices in GL,, under congruence.
In Section 3, we prove Theorem

2. Preliminaries. We denote by o(A) the spectrum of the matrix A € M,,. Let
f: M, = M, be alinear operator such that o(f(A)) = o(A) and f(AB) = f(B)f(A)
for all A,B € M,,. By [5, Theorem 4.5.7], there exists S € GL,, such that f(A) =
¢s(A). Conversely, the operator ¢g satisfies the two conditions o(¢g(A)) = o(A) and
¢s(AB) = ¢ps(B)ps(A) for all A, B € M,,. If, in addition, we have ¢g(¢s(A)) = A
for all A € M,,, we can choose S to be symmetric or skew-symmetric [6, Lemma 15]. If
A € M, and p is an element of Clz], the set of polynomials with complex coefficients,
then p(¢s(A)) = ¢s(p(A)). This implies that the set of ¢g symmetric and the set of
¢s skew symmetric matrices are subspaces of M,,.

Define the set
C(S7TS)={Aec M, AS™TS)=(5S"T8)A},

the centralizer of the cosquare S~TS. Then ¢g(ps(A)) = A if and only if A €
C(S~TS). One also checks that the cosquare of S is ¢g orthogonal.

Let S € GL, and let A € C(S~1S) be nonsingular. The matrix ¢g(A)A is ¢g
symmetric. Since A is nonsingular, it follows that ¢s(A)A is nonsingular and has a
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square root R such that R = f(¢s(A)A) for some f € C[z]. Observe that

#s(R) = ¢s(f(ds(A)A)) = f(Ps(ps(A)A)) = f(ps(A)A) = R,

that is, R is ¢g symmetric. Now, let Q = AR™!. Note that
Q9s(Q) = ARTH(R™¢s(A)) = A(R*) "' ps(A) = A(ds(A)A) ' ps(A) = 1,

that is, @ is ¢g orthogonal. Finally, since A = @R, the matrix A has a ¢g polar
decomposition.

THEOREM 2.1. Let S,A € GL,,. Then A has a ¢g polar decomposition if and
only if A commutes with S~TS.

Let A, B € M,,. We say that A is congruent to B if there exists X € GL,, such
that A = XTBX. Given congruent matrices S, Sy € GL,, we have the following
properties.

PROPOSITION 2.2. Let X,S,8) € GL,, and suppose that S = XTSyX. Let
A€ M, and set Ag = XAX~'. Then the following hold:

. AeC(S7TS) if and only if Ay € C(Sy 7T Sp).

. A is ¢s orthogonal if and only if Ay is ¢s, orthogonal.

. A is ¢s skew symmetric if and only if Ao is ¢s, skew symmetric.
. A is ¢s symmetric if and only if Aoy is ¢s, symmetric.

. XS(S,£)AX 1 = 8(Sp, 1) Ap.

Gr I o v ~

Under the assumptions of Proposition 2.2 a matrix A has a ¢g polar decomposi-
tion if and only if X AX ! has a ¢g, polar decomposition. Whenever it is convenient,
we may replace a nonsingular matrix S by a matrix that is congruent to it. The fol-
lowing theorem gives a canonical form of nonsingular matrices under congruence. For
A € C, we denote by Ji(A) the k-by-k upper triangular Jordan block corresponding
to A.

THEOREM 2.3. [8, Theorem 1.1] Let A € M,,. Then there exist X € GL,, and
nonnegative integers n;, m;, pr, and p,. such that

B Y
XTAX = <@ Jm(o)> ® @ij o <@ Hzpr(ur)>, (2.1)

i=1 =
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where each T'y,; is of the form

0 (71)mj+1_
S
Cipy = S form; > 1 and T'y = [1],
-1 -1
_1 1 0 |

each Hap, (11r) is of the form

0
Ip, (1)

and p is determined up to replacement by u=t. Moreover, the direct sum in (Z1) is
determined uniquely up to permutation of the direct summands.

Hop ) = | Sy o] 02 1

Let A,B € GL,. If A= XTBX for some X € GL,, then
ATA=(XT"BX)" ' (X"BX)=X"'BTBX.

That is, the cosquares of A and B are similar. The converse is also true [8, Lemma
2.1].

Let S € GL, and let S~7'S be nonderogatory. Then S~7S is similar to
k
T = @) (o, (113) © o, (15 )) ® s (1) & Jop(—1), (22)
Jj=1

where p1, pio, ..., € C\{—1,0,1} are such that p; # pr,p. ' if j # r. By the
uniqueness assertion of Theorem .3 S is congruent to

@ Hopm, (1) | ©T2av1 @ Las, (2.3)

where the cosquare of Sy is

é ( my (147) @ o (1 )) ® Gaat1 ® Gap, (2.4)

j=1
and Gy, is similar to Ji((—1)**+1).

Set P(A) = {p(A)|p € Clz]}. It is known that if A is nonderogatory, then
C(A) =P(A) |5, Corollary 4.4.18].



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 31, pp. 754-764, November 2016
http:/repository.uwyo.edu/ela

The ¢g Polar Decomposition When the Cosquare of S is Nonderogatory 759

Let S € M, be a direct sum of the form (23], and let A € C(S~TS). Since S~T'S
is nonderogatory, it follows that C(S=7S) = P(S~TS). Hence, if A € C(S™S), then
A= f(8~18) for some f € Clz]. Now,

A= f(S7TS)

B (o, (1)) @ F Il (1)) @ F(Goar1) & F(Gon),

j=1
which is block diagonal conformal to S. Moreover,

¢s(A) = ¢s(f(S71S)) = fos(S7T8)) = F(S7'ST) = f((STT9)™H).
For j € {1,2, . ..,k’}, let A; = f(ij (Mj)) (&) f(Jm] (,uj)_T), let A_ = f(G2a+1) and
Ay = f(Ggp) so that

k
A=PAoA oA, (2.5)

Jj=1

In particular, every ¢g orthogonal or ¢g symmetric matrix is a matrix of the form
23). Hence, if A is a matrix of the form (Z3]) and A has a ¢g polar decomposition,
say A = QR, where @ is ¢g orthogonal and R is ¢g symmetric, then

Q=@",0;9Q Q, and R=@}_ RjoR oR,

are partitioned conformal to A. Since each Q. and R, are respectively ¢g, orthogonal
and ¢g, symmetric, where x € {1,2,..., k} U{+,—}, it follows that A, has a ¢g,
polar decomposition. The converse is also true.

LEMMA 2.4. Let S and A be the direct sum of the form (Z3) and (2Z3), re-
spectively. Then A has a ¢s polar decomposition if and only if A; has a ¢s, polar

decomposition for all j € {1,2,...,k}U{—,+}.

3. Proof of Theorem Let S € GL,, and suppose that S~7'S is nonderoga-
tory. Suppose that A commutes with S~7S. Then there exists X € GL,, such that
So = X~ TSX ! is the direct sum in ([Z3). Assume that A9 = X AX ! is the direct
sum in (Z3), that is, Ay € C(Sy ' Sp). Using ([4), one computes

S(50;:+) = On—2a+1420) ® (G2a+1 + L2a41)" @ 02 (3.1)
and
8(50, =) = O2p—20 & (Gav — I2p)". (3.2)
Since 0(Gaq+1) = {1} and 0(Ga) = {—1}, we have

rank(S(So, +)Ap) =rank Ay and rank(S(Sp, —)Ag) = rank A_. (3.3)
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Now Aj has a ¢g, polar decomposition if and only if A; has a ¢H2m,~ (u;) Polar
decomposition for all j € {1,2,...,k}, Ay has a ¢r,,,, polar decomposition, and A_
has a ¢r,, polar decomposition, due to Lemmal[ZZ4l This is equivalent to the following
set of conditions (see Theorem 34 and Theorem [377, which we prove in the succeeding
subsections):

(a) Forall j € {1,2,...,k}, A;bn,,, (u;)(Aj) is similar to PHa,, (uy)(Aj)Aj via a
matrix in C(Ham, (1) ™" Ham, (11;))-
(b) rank A, is zero or is odd and rank A_ is even.

Since C(Gy,) is a commutative algebra, we have A_¢r,, (A_) = ¢r,, (A_)A_ and
Ay dry,,, (Ay) = ¢r,,,, (AL) AL . Therefore, condition (a) above is equivalent to

(a*) Aops,(Ap) is similar to ¢g,(Ao)Ap via a matrix in C(SO_TSO).
By 3), condition (b) is equivalent to
(b*) rank(S(So,+)Ao) is zero or odd and rank(S(So, —)Aop) is even.

One checks that (a*) and (b*) are satisfied and Ag € C(S; ' Sp) if and only if
S and A satisfy the conditions in Theorem (see Proposition 22). This proves
Theorem [[2] subject to verification of our claims about (a) (S = Ha, (1)) and (b)
(S =T,) which we address in the succeeding subsections.

3.1. The case S =T,. Let S =T,. If n = 1, then every matrix has a ¢g polar
decomposition since every 1-by-1 matrix is ¢g symmetric. Let n > 1. We can write
G, = S~TS as a polynomial in J,,(0):

n—1

Gn = (=1)"In +2(-1)" Z Jn(o)k-

k=1
Therefore, for all A € C(G,,), we have A = f(J,(0)) for some f € C[z] with degf < n
if A#0.
LEMMA 3.1. Let n > 1. Then ¢r, (Jn(0)) = —J,(0).

It follows from Lemma B that A € M, is ¢ symmetric if and only if f is an even
polynomial. Now, if A and B are ¢g symmetric, then there exist even polynomials p
and ¢ such that p(J,(0)) = A and ¢(J,(0)) = B. Hence, C = AB = r(J,(0)) where
r = pq is even, that is, C' is also ¢g symmetric.

LEMMA 3.2. Let A, B € C(G,).

(a) If A and B are ¢s symmetric, then AB is ¢g symmetric.
(b) If A and B have ¢g polar decompositions, then AB has a ¢g polar decompo-
sition.
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Proof. The first statement is done. The second statement follows from the first
and the fact that C(G,,) is a commuting family. O

Let
A= as(Ja(0)* (3.4)

be ¢s symmetric. Let 25 be the minimum integer in (3.4]) such that ag; # 0. Then
rank A = rank(./J,,(0))% = n — 2j. Thus, the rank of A has the same parity as n.

LEMMA 3.3. Let A be nonzero and ¢r, symmetric. Then rank A has the same
parity as n. In particular, if a matriz has a ¢r, polar decomposition, then its rank
has the same parity as n.

Let A € C(G,,) be nonzero. If A is nonsingular, then A has a ¢g polar decompo-
sition. Assume that A = f(J,(0)) for some f € Clz] with degf < n. If A is singular,
then A = J,(0)°B for some B € GL, NC(G,) and 0 < s < degf. Now if rank A
has the same parity as n, then rank.J,(0)®* = n — s has the same parity as n; this
happens only if s is even. Thus, J,,(0)® is ¢s symmetric, and since B has a ¢g polar
decomposition, A has a ¢g polar decomposition.

THEOREM 3.4. Let S € GL, and let S be congruent to I',,. Let A € M, be
nonzero. Then A has a ¢s polar decomposition if and only if A € C(S~TS) and
rank A has the same parity as n.

3.2. The case S = Ha,(u). Let S = Ho,(u), where € C\{—1,0,1}. Let
A € C(S7TS) be given. Then A = B @ C where B,C € M,, and B,CT are upper
triangular Toeplitz. Conversely, if A = B @ C for some B,C € M, such that B,C”
are upper triangular Toeplitz, then A € C(S~1S). Moreover, ¢5(A) = CT @ BT so
A is ¢g symmetric if and only if C = B”; A is ¢5 orthogonal if and only if B is
nonsingular and C = B~ 7.

Let A, B,C, D € M,,. We say that the pair (A, B) is contragrediently equivalent to
the pair (C, D) if there exist X,Y € GL,, such that A = X~!CY and B=Y !DX.
In this case, we write (4, B) ~ (C, D). The following theorem gives equivalent con-
ditions for a matrix to have a ¢g polar decomposition if S = Ha, (1). Similar results
were proved by Horn and Merino [0, Theorem 28] if S € GL,, is symmetric, and by
Granario, Merino, and Paras [3, Theorem 8] if S € GL,, and S~7S is normal. Our
proof is parallel to those in [6] and [3].

THEOREM 3.5. Let S = Ha,(u), where p € C\{-1,0,1}. Let B,C € M,.
Suppose that A = B @& C € C(S~TS). The following are equivalent:

1. (B,CT) ~ (CT,B).
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2. (A, ¢s(A)) ~ (ps(A), A) and the equivalence can be achieved using ¢g or-
thogonal matrices.

3. (A, ¢s(A)) ~ (ps(A), A) and the equivalence can be achieved using matrices
in C(S~TS).

4. There are ¢g orthogonal matrices Q1 and Q2 such that A = Q1¢5(A)Q2.

5. There is a U € M, such that (B,CT) ~ (U,U).

6. There are ¢g orthogonal matrices Q3, Q4 and a ¢g symmetric matriz V such
that A = Q3VQ4.

7. There is a ¢g orthogonal matrix @ and a ¢s symmetric matriz L such that
A=QL.

8. There is a ¢s orthogonal matriz Q such that A = Qds(A)Q.

Proof. Let A = B®&C, where B,CT € M,, are upper triangular Toeplitz. Suppose
that there exist a ¢g orthogonal Z = 77 & Zl_T and a ¢g symmetric Y = Y; & YIT
such that A = ZY. Then B = Z;Y; and CT = YlZl_l, that is, (B,C7T) ~ (Y1,Y1).
Note that (B,CT) ~ (Y1,Y;) implies (B,CT) ~ (CT,B) and in turn, (B,CT) ~
(CT, B) implies that (A4, ¢s(A)) ~ (¢s(A), A) and the equivalence is achieved using
¢s orthogonal matrices.

If (A, ¢s(A)) ~ (¢s(A), A) and the equivalence is achieved using ¢g orthogonal
matrices, then (A, ¢s(A)) ~ (¢ps(A), A) and the equivalence is achieved using matrices
in C(S~TS). The converse is also true [3, Lemma 4].

Suppose that (A, ¢s(A)) ~ (¢s(A), A) and the equivalence is achieved using ¢g
orthogonal matrices. By [3, Lemma 4], there are ¢g orthogonal matrices

Q=X10X;" and Q=X ®X; " (3.5)

such that A = Q1¢s(A)Qq. Set
E=AQ7" = Qi¢s(A)Q2Q7" and Q = Q2Q7 " (3.6)

Then E = ¢5(E)Q. Notice that
EQ™ = ¢s5(E) = ¢5(6s(E)Q) = Q™' E. (3.7)

Hence, E commutes with Q~!. Consequently, E commutes with Q. Also, ¢s(FE)
commutes with Q). Let R be a square root of @) that is polynomial in ). Then
R e€C(S™TS) and R commutes with both E and ¢s(E). Now,

(ER™)? = B*(R*)™! = B°Q ™" = E¢s(E) = A¢s(A), (3.8)
that is, Aps(A) has a square root. Observe that Q@ = XX, ' @ (XX, 1)~7 and

R=f(Q)=f(X2X; )& f(X2X7 1)) (3.9)
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for some polynomial f(¢). Now,

E=AQ;'=BX;'acCcXT, (3.10)
so that
os(F) = X, 0" @ X; " BT. (3.11)
Let
U= (f(Xo X)) N (BX;') and P=XCTf(XoX1). (3.12)

Note that U is the (1,1) block of R™'E, while P is the (1, 1) block of ¢5(E)R. Since
EQ~! = ¢s(FE), we have ER™! = ¢s(E)R. Moreover, because R commutes with F
and ¢g(FE), we have U = P. Therefore,

B=f(XoX;HUX, and C = X[ 'U(f(XoX7 )7, (3.13)
so that (B,CT) ~ (U,U).

Suppose that (B,CT) ~ (U,U). Then there are X3, X4 € GL,, such that B =
X;'UX,and OT = X[ 'UX;. Let V=UaUT, Q3 =X;'®X], and Qs = X4 @
X;T. Then A = Q3VQ4, where V is ¢g symmetric and @3, Q4 are ¢g orthogonal.

Suppose that there is a ¢g symmetric V' and ¢g orthogonal matrices @3, Q4 such
that A = Q3V Q4. Set Q = Q3Q4 and L = QllVQél. Then @ is ¢s orthogonal, L is
¢s symmetric, and A = QL.

Suppose that A = QL for some ¢g orthogonal Q and ¢g symmetric L. Then
Q'A=L=¢s(L) = ¢s(Q"A) = $s(A)Q so that A = Q¢s(A)Q.

Suppose that there is a ¢5 orthogonal Q = X @ X7 such that A = Q¢s(4)Q.
Then B = XCTX ! and C = X" TBTXT that is CT = XBX~!. Hence, (B,CT) ~
(CT,B). O

The following theorem is from [6 Corollary 11].
THEOREM 3.6. Let A,B,C,D € M,,. Then (A, B) ~ (C, D) if and only if
1. AB is similar to CD,
0o Al . 0 C
2. [B 0] is similar to [D 0
3. rank((AB)* A) = rank((CD)*C) for all k € NU {0}.

}, and

Let A= B®C € C(S™TS) and suppose that Apg(A) is similar to ¢pg(A)A via
a matrix in C(S~TS). One computes that BCT is similar to CT B. By Theorem
B8 (B,CT) ~ (CT,B), and so by Theorem [3.5] A has a ¢g polar decomposition.
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Conversely, if A has a ¢g polar decomposition, then Agg(A) is similar to ¢pg(A)A via
a ¢g orthogonal matrix, and hence via a matrix in C(S~715).

THEOREM 3.7. Let S = Hap (1), where pn € C\{—1,0,1} and A € Ms,,. Then A
has a ¢s polar decomposition if and only if A commutes with S~T.S and Aps(A) is
similar to ¢s(A)A via a matriz that commutes with ST 5.
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