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CONTROLLABILITY AND NONSINGULAR SOLUTIONS

OF SYLVESTER EQUATIONS∗
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Abstract. The singularity problem of the solutions of some particular Sylvester equations is

studied. As a consequence of this study, a good choice of a Sylvester equation which is associated to a

linear continuous time system can be made such that its solution is nonsingular. This solution is then

used to solve an eigenstructure assignment problem for this system. From a practical point view,

this study can also be applied to automatic control when the system is subject to input constraints.

Key words. Stabilizability, Controllability indices, Sylvester equation, Nilpotent matrices,

Eigenstructure assignment.

AMS subject classifications. 15A06, 15A24.

1. Introduction. Sylvester equations play a central role in many areas of ap-

plied mathematics especially in systems and control theory. In [1, 7, 13, 17] among

other references, the solution of a Sylvester equation has been used to deal with

the probem of (partial) eigenstructure assignment for linear continuous time systems

especially when this solution is nonsingular. The existence of the feedback matrix

allowing this (partial) eigenstructure assignment is based on the non-singularity of

the solution of the Sylvester equation.

In order to clarify the objective which first motivates the present work and also for

a use in the sequel, we shall give an outline of the eigenstructure assignment method

described in [1] or in its generalization in [13] which fails when the solution of some

Sylvester equation is singular. The method presented in this paper can then be used

to overcome this failure. Let

ẋ(t) = Ax(t) +Bu(t) (1.1)

be a linear continuous time system. The matrices A and B are real and constant:

A ∈ Rn×n and B ∈ Rn×m with 1 ≤ m ≤ n. The vector x(t) ∈ Rn represents the state

vector of the system and u(t) ∈ Rm is the control vector.

We suppose that the spectrum of the matrix A has n − m desirable or stable

∗Received by the editors on September 8, 2015. Accepted for publication on October 26, 2016.

Handling Editor: Christian Mehl.
†Modeling and Combinatorics Laboratory, Department of Mathematics and Computer Sciences,

Poly-Disciplinary Faculty of Safi, Cadi Ayyad University, Morocco (maarouforama@gmail.com).

721

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 721-739, November 2016

http:/repository.uwyo.edu/ela



ELA

722 H. Maarouf

eigenvalues and m undesirable or unstable eigenvalues. As a consequence of this

assumption, we get a decomposition of the state space Rn in two complementary

subspaces Fs and Fu called, respectively, stable and unstable.

In this method, we prescribe a matrix H ∈ Rm×m with stable eigenvalues and

we look for a full rank feedback matrix F ∈ Rm×n such that FA + FBF = HF.

If such a matrix exists, then the eigenvalues of A + BF are those of H together

with the stable eigenvalues of A. According to [13], one first computes V ∈ Rm×n

so that its rows span the orthogonal complement F
⊥
s of the stable subspace Fs and

Λ = V AV ⊤ (V V ⊤)−1
. Then the feedback matrix F exists if and only if the solution

X of the Sylvester equation

ΛX −XH = C (1.2)

is nonsingular, where C = −V B. The feedback matrix F is then given by the formula

F = X−1V . The method can then be used to solve a pole placement problem if

there is a way to prescribe a suitable matrix H so that the solution of the Sylvester

equation (1.2) is nonsingular. The singularity problem of the solutions of Sylvester

equations has been studied in [9, 12, 15] and necessary conditions related to the

controllability of the pair (Λ, C) and the observability of the pair (C,H) have been

provided. It has also been shown [15] that the non-singularity of the solution of the

Sylvester equation (1.2) is a generic property when Λ andH are fixed and C is generic.

It is true that there was a stream of literature that employed the Sylvester equa-

tion for the solution of pole placement problems. The just described method is par-

ticularly important in automatic control [1, 3, 4, 5] when the system (1.1) is subject

to input constraints

−umin ≤ u(t) ≤ umax, (1.3)

where umin and umax denote column matrices with positive components umin,i and

umax,i for i = 1, . . . ,m. Constraints (1.3) mean that −umin,i ≤ ui(t) ≤ umax,i, where

ui(t) are the components of u(t) for i = 1, . . . ,m. The linear feedback controller

u(t) = Fx(t) asymptotically stabilizes (1.1). In order to respect constraints (1.3), the

matrix H should be suitably chosen [5] so that H̃U ≤ 0, where

U =

(
umax

umin

)
∈ R

2m, H̃ =

(
H1 H2

H2 H1

)
∈ R

2m×2m,

[H1]i,j =

{
Hi,i if i = j

max (Hi,j , 0) if i 6= j
and [H2]i,j =

{
0 if i = j

max (−Hi,j , 0) if i 6= j.

In this paper, we solve the singularity problem of the solution of the Sylvester

equation (1.2) in the particular case where the matrix H has only one eigenvalue
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µ which is not an eigenvalue of Λ, where Λ, C ∈ Km×m, µ ∈ K and K is a given

field. More precisely, we show how to find the matrix H = µIm +N , where Im is the

identity matrix and N is a nilpotent matrix, such that the solution of the Sylvester

equation (1.2) is nonsingular. It is true that the choice of the matrix H with only one

eigenvalue is restrictive, but it allows us to solve the constrained problem because of

the simple formula that links the matrices H̃ and Ñ . The constrained problem will also

be solved through the prescription of a suitable matrix H or N such that the solution

of the Sylvester equation (1.2) is nonsingular and H̃U ≤ 0. We also show that the

non-singularity of the solution of the Sylvester equation (1.2) is a generic property

when Λ and C are fixed and N = H − µIm is generic in the cone N of nilpotent

matrices. In the particular case of m = 2 and in order to illustrate the genericity

property, we show that N can be identified to R2 and, under the controllability of the

pair (Λ, C), the set N0 of nilpotent matrices for which the solution of the Sylvester

equation (1.2) is singular is either empty or exactly a conic of R2.

2. A nonsingular solution of a Sylvester equation. Throughout this sec-

tion, we will consider the two matrices Λ, C ∈ Km×m and a scalar µ which is not an

eigenvalue of the matrix Λ and we will study the singularity problem of the solution

of the Sylvester equation

ΛX −X(µIm +N) = C, (2.1)

where N ∈ N is a nilpotent matrix.

A general Sylvester equation FX −XG = H , for appropriate matrices F , G and

H , has a unique solution X whenever the spectra σ(F ) and σ(G) of F and G are

disjoint. If K = R or C, there are many ways to express the solution X . For example,

X =

∞∑

j=0

F−1−jHGj , (2.2)

where σ(G) ⊂ {z : |z| < r} and σ(F ) ⊂ {z : |z| > r} for some r > 0 [2].

If G is nilpotent, we do not have to worry about the convergence of the above

series or specify the field K.

Proposition 2.1. The unique solution of the Sylvester equation (2.1) is

X =

m−1∑

j=0

(Λ− µIm)
−1−j

CN j . (2.3)

Proof. As the spectra of the matrices Λ and µIm +N are disjoint, the Sylvester

equation (2.1) has a unique solution. We just check that the matrix X given by (2.3)
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is a solution of (2.1):

ΛX −X (µIm +N) = (Λ− µIm)X −XN

=

m−1∑

j=0

(Λ− µIm)
−j

CN j −
m−1∑

j=0

(Λ− µIm)
−1−j

CN j+1

= C − (Λ− µIm)−m
CNm

= C.

The last equality follows from the fact that N ∈ K
m×m is nilpotent.

In the following proposition, we give a lower bound of the rank of nilpotent

matrices N for which the solution of the Sylvester equation (2.1) is nonsingular.

Proposition 2.2. If the solution of the Sylvester equation (2.1) is nonsingular,

then m− rank(C) ≤ rank(N).

Proof. Let y be in Rm and let X be the Sylvester equation (2.1). If y belongs

to ker

(
C

N

)
= kerC ∩ kerN , then Xy = 0. As X is nonsingular, we get y = 0

and then rank

(
C

N

)
= m. The desired inequality follows from the fact that

(
C

N

)
≤

rank(C) + rank(N).

Even though the controllability of the pair (Λ, C) is only a necessary condition for

the solution X to be nonsingular [12], it will help us find a nilpotent matrix N with a

minimum rank such that the solution of the Sylvester equation (2.1) is nonsingular.

Recall first that the controllability matrix of the pair (Λ, C) is the m × m2 matrix

C =
[
C,ΛC, . . . ,Λm−1C

]
.

If the pair (Λ, C) is controllable, then the rank of C is m. Let Ci be the ith

column of C and r be its rank. By eliminating the columns depending linearly on the

previous ones from the left in the matrix C we get, after reordering the vectors, the

nonsingular m×m matrix

L =
[
Cσ(1), . . . ,Λ

α1−1Cσ(1), . . . , Cσ(r), . . . ,Λ
αr−1Cσ(r)

]

where σ is a permutation of {1, . . . ,m}. The integers of the list {α1, . . . , αr} are called
the controllability indices of the pair (Λ, C) and the integer α, which is the maximum

of the controllability indices, is called the controllability index of the pair (Λ, C) and

is the smallest integer such that the rank of the matrix
[
C,ΛC, . . . ,Λα−1C

]
is m.

These controllability indices are unique up to permutations of the elements. The

permutation σ can be chosen such that α1 ≥ · · · ≥ αr. In this case, we have [6, 16]

the dual relations:

αj = card ({i : α′
i ≥ j}) and α′

j = card ({i : αi ≥ j}) . (2.4)
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where α′
1 = dimS1, α

′
j = dimSj − dimSj−1 for j ≥ 2 and where Sj is the linear

subspace spanned by the vectors

C1, . . . , Cm, . . . ,Λj−1C1, . . . , . . . ,Λ
j−1Cm.

The subspace Sj is also the span of the Krylov subspaces Kj(Λ, Ci) for i = 1, . . . ,m,

where Kj(Λ, Ci) = span(Ci, . . . ,Λ
j−1Ci).

The following proposition establishes the link between the controllability indices

of the pairs (Λ, C) and
(
M−1,Mm−1C

)
, where M = Λ − µIm.

Proposition 2.3. If the pair (Λ, C) is controllable, then the pair (M−1,Mm−1C)

is controllable, where M = Λ− µIm. Moreover, the two pairs have the same control-

lability indices.

Proof. From the well-known fact that Krylov subspaces are translation invariant;

Kj(Λ, Ci) = Kj(Λ − µIm, Ci), one can see that the subspace Sj introduced above is

also spanned by the vectors

C1, . . . , Cm, . . . ,M j−1C1, . . . , . . . ,M
j−1Cm.

The dual relations (2.4) show that the pairs (Λ, C) and (M,C) have the same con-

trollability indices and, in particular, the pair (M,C) is controllable. Besides, the

controllability matrix of the pair
(
M−1,Mm−1C

)
is

C′ =
[
Mm−1C,Mm−2C, . . . , C

]

which is of rankm because the pair (M,C) is controllable. The pair
(
M−1,Mm−1C

)
is

then controllable. Let us denote the controllability indices of the pair
(
M−1,Mm−1C

)

by βi. Let also Tj be the subspace spanned by the following vectors

Mm−1C1, . . . ,M
m−1Cm, . . . ,Mm−jC1, . . . ,M

m−jCm,

β′
1 = dimT1 and β′

j = dimTj − dimTj−1. One can see that Tj = Mm−jSj and,

since M is nonsingular, β′
j = α′

j . The dual relations (2.4) show again that αj =

βj . Therefore, the controllability indices {α1, . . . , αr} of the pair (Λ, C) are also the

controllability indices of the pair
(
M−1,Mm−1C

)
.

The just introduced controllability indices are used to establish to following result

which is the key to find the nilpotent matrix N discussed previously.

Theorem 2.4. Let M ∈ Km×m be a nonsingular matrix such that the pair (M,C)

is controllable. Then, there is a nilpotent matrix N ∈ Km×m such that the following

matrix

K =

m−1∑

j=0

Mm−1−jCN j
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is nonsingular. Moreover, N can be chosen so that its rank is m−r and its nilpotency

index is α, where r is the rank of C and α is the controllability index of the pair

(M,C).

Proof. Let {α1, . . . , αr} be the controllability indices of the pair (M,C). We

know that they are also the controllability indices of the of the
(
M−1,Mm−1C

)
. One

can extract columns from the controllability matrix C′ of the pair
(
M−1,Mm−1C

)
so

that the following matrix

L =
[
Mm−1Cσ(1), . . . ,M

m−α1Cσ(1), . . . ,M
m−1Cσ(r), . . . ,M

m−αrCσ(r)

]

is nonsingular. For 1 ≤ i ≤ r, let us take ei ∈ K
m such that Ci = Cei. We then

choose the following matrix

Y = [yα1,1, . . . , y1,1, . . . , yαr ,r, . . . , y1,r]

such that yαj ,j = eσ(j) for 1 ≤ j ≤ r and B = {yi,j ; 1 ≤ j ≤ r, 1 ≤ i ≤ αj − 1} is a

basis for kerC. This is possible because B contains m− r = dim kerC vectors. From

the way the matrix Y is defined, it is nonsingular. In fact, let

z = (zα1,1, . . . , z1,1, . . . , zαr,r, . . . , z1,r)
⊤ ∈ K

m

such that Y z = 0, then CY z = 0. We have

CY =
[
eσ(1), 0, . . . , 0, eσ(2), 0, . . . , 0, eσ(r), 0, . . . , 0

]

and, from CY z = 0, we get zαj ,j = 0 since eσ(1), . . . , eσ(r) are linearly independent.

Then Y z is a linear combination of the vectors in the basis B and therefore zi,j = 0

for 1 ≤ j ≤ r and i ≤ αj − 1. Now, we define the matrix N such that:

{
Nyα1,1 = 0, . . . , Nyαr,r = 0

Nyi,j = γi,jyi+1,j for 1 ≤ j ≤ r, 1 ≤ i ≤ αj − 1,
(2.5)

where γi,j is a nonzero element in K. More generally, for 1 ≤ k ≤ r and 1 ≤ i ≤ αk,

we have

N jyi,k =

{
0 if i+ j > αk,

γi,k · · · γi+j−1,kyi+j,k if i+ j ≤ αk

for every j ≥ 0, where we let γ0,k = 1. In particular, we have Nαkyi,k = 0 and

Nαk−1y1,k = γ1,k · · · γαk−1,kyαk,k 6= 0. This shows that the matrix N is nilpotent and

that its nilpotency index is equal to α = max(α1, . . . , αr). It is also easy to see that

the rank of NY is m − r which shows that the rank of N is m − r. From another
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hand, we have

Kyi,k =

m−1∑

j=0

Mm−1−jCN jyi,k

=

αk−i∑

j=0

Mm−1−jCN jyi,k +

m−1∑

j=αk−i+1

Mm−1−jCN jyi,k

= γi,k · · · γαk−1,kM
m−1−αk+iCyαk,k

+

αk−i−1∑

j=0

γi,k · · · γi+j−1,kM
m−1−jCyi+j,k

= γi,k · · · γαk−1,kM
m−1−αk+iCσ(k).

The last equality follows from the fact that yi+j,k ∈ kerC for i+ j < αk. This means

that KY = LDγ , where Dγ is the diagonal matrix whose diagonal elements are the

nonzero scalars γi,k · · · γαk−1,k. This proves that the matrix K is nonsingular.

We point out again that the nilpotent matrix N obtained in Theorem 2.4 is of

minimal rank. We now show that it is also of minimal nilpotency index.

Proposition 2.5. Let M ∈ Km×m be a nonsingular matrix such that the pair

(M,C) is controllable and let N ∈ Km×m be a nilpotent matrix such that the matrix

K =

m−1∑

j=0

Mm−1−jCN j

is nonsingular. Then, the nilpotency index of N is at least α, where α is the control-

lability index of the pair (M,C).

Proof. Suppose that K is nonsingular and let β ≥ 1 be the nilpotency index of

N . Then, the columns of K =
∑β−1

j=0 Mm−1−jCN j belong to the subspace S which is

spanned by the columns of the matrix Cβ =
[
Mm−1C,Mm−2C, . . . ,Mm−βC

]
. Since

the matrix K is nonsingular, we have S = Km and the rank of Cβ is m. This shows

that β ≥ α.

The goal of this section is reached by the following theorem.

Theorem 2.6. If the pair (Λ, C) is controllable, then there is a nilpotent matrix

N such that the unique solution of the Sylvester equation (2.1) is nonsingular. More-

over, the rank of N is m − r and its nilpotency index is the controllability index of

the pair (Λ, C), where r is the rank of C.

Proof. In the proof of Proposition 2.3, we have seen that the subspace Sj is also

spanned by the vectors

C1, . . . , Cm, . . . , (Λ− µIm)
j−1

C1, . . . , . . . , (Λ− µIm)
j−1

Cm.
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This shows that the pairs (Λ, C) and (Λ−µIm, C) have the same controllability index

and, in particular, the (Λ− µIm, C) is controllable.

From the fact that the matrix Λ − µIm is nonsingular and the the fact that the

pair (Λ−µIm, C) is controllable, Theorem 2.4 ensures that there is a nilpotent matrix

N of rank m − r and nilpotency index which is equal to the controllability index of

the pair (Λ− µIm, C) such that the matrix

K =
m−1∑

j=0

(Λ− µIm)m−1−j
CN j

is nonsingular. Finally, Proposition 2.1 shows that X = (Λ− µIm)−m
K, which is

nonsingular, is the unique solution of the Sylvester equation (2.1).

3. Application toward an eigenstructure assignment. In this section, we

will be interested in the linear continuous time system (1.1) with the same assump-

tions and notations used in the introduction section. We first make precise some of

these notations. Let the n − m desirable or stable eigenvalues of A be denoted by

λm+1, . . . , λn and the m undesirable or unstable eigenvalues be denoted λ1, . . . , λm.

That is Re(λi) ≥ 0 for 1 ≤ i ≤ m and Re(λi) < 0 for m + 1 ≤ i ≤ n, where Re(λ)

stands for the real part of some complex number λ. To these eigenvalues partitioning,

we associate the polynomials

P (x) = (x− λ1) · · · (x− λm) and Q(x) = (x − λm+1) · · · (x− λn)

that are factors of the characteristic polynomial of the matrix A and the two subspaces

Fu = kerP (A) and Fs = kerQ(A) of Rn. The matrices Λ and V satisfy the following

properties [13]:

• V A = ΛV ,

• the eigenvalues of H are the unstable eigenvalues of A, and

• kerV = Fs.

If µ is a negative real number and H = µIm+N for some nilpotent matrix N ∈ Rm×m

such that the unique solution X of the Sylvester equation (2.1) is nonsingular, then

the eigenvalues of A + BF are µ, λm+1, . . . , λn, where F = X−1V [13]. The linear

feedback controller u(t) = Fx(t) asymptotically stabilizes then the system (1.1). To

effectively prescribe the suitable nilpotent matrix N , we shall suppose that the pair

(Λ,−V B) is controllable in order to use Theorem 2.6. The pair (Λ,−V B) represents

the unstable part of the system (1.1) and its controllability is a consequence of the

stabilizability of the pair (A,B). So, under the assumption of the stabilizability of

the original pair (A,B) which is a natural assumption for pole placement methods,

Theorem 2.6 can be used to solve the singularity problem encountered in the methods
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described in [1, 13] at least in the particular case of only one eigenvalue. This method

has the advantage to deal with the problem of the constraints on the inputs. In fact,

let us suppose that the system (1.1) is subject to input constraints (1.3). Then our

aim is to asymptotically stabilize this system through a linear feedback controller

u(t) = Fx(t) without violating constraints (1.3). If we keep the notations used in the

proof of Theorem 2.4, the equalities (2.5) can be stated as NY = Y J(γ), where

J(γ) =




J1,γ 0 . . . 0

0 J2,γ
. . .

...
...

. . .
. . . 0

0 . . . 0 Jr,γ




and Ji,γ =




0 γi,αi−1 0 . . . 0

0
. . . γi,αi−2

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 0 γi,1

0 . . . 0 0 0




.

It can be seen that we have H̃ = µI2m + Ñ , where H̃ or Ñ is the matrix defined

in the introduction section. The inequality H̃U ≤ 0 becomes then ÑU ≤ −µU.

As the coefficients of the matrix Ñ are obtained from those of N = Y J(γ)Y −1

using the continuous functions min and max, the matrix Ñ depends continuously

on the coefficients γi,ℓ. If we choose the coefficients γi,ℓ small enough, the equality

ÑU ≤ −µU will be satisfied since −µ and the components of U are positive. The

constrained problem can then be solved. This will be illustrated through the following

example.

Example 3.1. Let the system (1.1) be given with

A =




−4 −9 −9

3 14 15

1 −6 −7



 and B =




2 2

0 −2

−1 1



 .

The eigenvalues of the matrix A are λ1 = λ2 = 2 and λ3 = −1 and the stable subspace

Fs = ker(A + I3) is spanned the vector (0,−1, 1)⊤. If we take V =

(
1 1 1

0 1 1

)
,

then the columns of V ⊤ span F⊥
s and Λ = V AV ⊤ (V V ⊤)−1

=

(
0 −1

4 4

)
. We

also have C = −V B =

( −1 −1

1 1

)
. According to (2.5), the nilpotent matrix N is

defined by Ne1 = 0 and Ny = γe1, where e1 = (1, 0)⊤, γ is a nonzero real number

and y = (−1, 1)⊤ ∈ kerC. This means that N =

(
0 γ

0 0

)
. If µ = −1, then the

solution of the Sylvester equation ΛX −X(−I2 +N) = C is

X = (Λ + I2)
−1C + (Λ + I2)

−2CN =
1

27

(−12 −5γ − 12

15 7γ + 15

)
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which is nonsingular since its determinant is − γ
81 . One can check that the only

eigenvalue of the matrix

A+BF =
1

γ




−46γ −81γ −81γ

3γ − 90 14γ − 162 15γ − 162

22γ + 90 30γ + 162 29γ + 162





is λ = −1 (multiplicity 3), where

F = X−1V =
1

γ

(−21γ − 45 −36γ − 81 −36γ − 81

45 81 81

)
.

Then the linear controller u(t) = Fx(t) which depends on the nonzero scalar γ

asymptotically stabilizes the system (1.1). Let us now suppose that the input vector

u(t) =
(
u1(t), u2(t)

)⊤
is constrained to evolve in the polyhedral set

D =
{
u =

(
u1, u2

)⊤ ∈ R
2 : −1 ≤ u1 ≤ 2 and − 2 ≤ u2 ≤ 3

}
.

That is umin =
(
1, 2
)⊤

and umax =
(
2, 3
)⊤

. If x(0) = x0 is an initial state such that

u(0) = Fx0 belongs to D, then u(t) = Fx(t) should remain in D for all future time

t ≥ 0, where x(t) is the solution of the system (1.1) with x(0) = x0. This will be

satisfied if H̃U ≤ 0. We have U =
(
2, 3, 1, 2

)⊤
and as N =

(
0 γ

0 0

)
, we also have

H̃ =




−1 max(γ, 0) 0 min(−γ, 0)

0 −1 0 0

0 min(−γ, 0) −1 max(γ, 0)

0 0 0 −1


 .

Then

H̃U ≤ 0 ⇐⇒





3max(γ, 0) + 2min(−γ, 0) ≤ 2

3min(−γ, 0) + 2max(γ, 0) ≤ 1

which is satisfied for |γ| ≤ 1
3 .

4. Genericity of the solution. The system (1.1) or equivalently the pair (A,B)

can be considered as a point of the space Rn×(m+n). If some property of the sys-

tem (1.1) is preserved in an open and dense set of Rn×(m+n), we say that this property

is generic. A lot of classical properties of linear systems can be studied in terms of

genericity [10]. The properties of the controllability or the stabilizability of the sys-

tem (1.1) are known to be generic, see [18] in which the notion of genericity is discussed

in Kℓ, where K is a given field and ℓ is an appropriate integer. Also, the property of
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the solution of the Sylvester equation (1.2) of being nonsingular is generic [15] with

Λ, H fixed and C generic in Km×m.

In this section, we will be interested in the genericity of the property of the

solution of the Sylvester equation (2.1) of being nonsingular with Λ, C fixed and N

generic in the set N of all nilpotent matrices of Km×m. The space Km×m will then

be seen as an affine space of the coordinate ring

K[x1,1, . . . , x1,m, . . . , xm,1, . . . , xm,m] = K[xi,j ],

where the variable xi,j stands for the (i, j) row-column of matrices in Km×m and the

set N will be seen as the set of the commons zeros in Km×m of the m polynomials

tr(N), . . . , tr(Nm), (4.1)

where tr(M) is the trace of some square matrix M in Km×m. In order to give a precise

definition of the a generic property in N , some notions from the algebraic geometry

theory and one can see [8] for more details. This paragraph is divided into two

subparagraphs. In the first subparagraph, we will recall the necessary notions from

the algebraic geometry theory and then show that, under the controllability condition

of the pair (Λ, C), the non-singularity of the solution of the Sylvester equation (2.1)

is generic which means that for “almost every” nilpotent matrix N , the matrix

X(N) =
m−1∑

j=0

(Λ− µIm)−1−j
CN j

is nonsingular. The second subparagraph will be devoted to the particular case of

m = 2. In this particular case, it is possible to parametrize nilpotent matrices which

helps us to give explicit and precise characterizations of generic nilpotent matrices.

4.1. An overview of the general case. The set of the commons zeros of a

family of polynomials in K[xi,j ] is called an affine variety or a Zariski closed set of

Km×m according to the Zariski topology. An affine variety is irreducible if it cannot

be the union of proper subvarieties. Any affine variety is a union of finitely many

irreducible varieties. The dimension of an irreducible variety is given by the length

of the longest decreasing chain of irreducible subvarieties. The dimension of an affine

variety is the largest dimension of its irreducible components.

Definition 4.1. Let Z be an affine variety. A subset S ⊂ Z is called generic if

it contains a Zariski dense open subset of Z. A property is generic if the set of points

on which it holds is a generic set.

We shall point out that the affine variety Z inherits its Zariski topology from

Km×m and the subset S is Zariski dense in Z if its closure is Z. Furthermore, if Z is

irreducible and S ⊂ Z is Zariski open and nonempty, then S is Zariski dense [11].
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When K = C is the complex field [14], the set N is an affine irreducible variety

of dimension m2 −m. Let N0 be the subset of N of the matrices N such that X(N)

is singular. In other words, N0 is the affine variety of the common zeros of the

polynomials

tr(N), . . . , tr(Nm), det(X(N))

which is a subvariety of N .

Proposition 4.2. If the pair (Λ, C) is controllable and K = C, then, in the

affine variety N , the property “X(N) is nonsingular” is generic. In other words, the

solution of the Sylvester equation (2.1) is nonsingular for almost every choice of a

nilpotent matrix N .

Proof. Let N ′ be the subset of N of matrices N on which the property holds.

That is N ′ = N \N0 and is then Zariski open. According to Theorem 2.6, the subset

N ′ is nonempty. As mentioned before, the affine variety N is irreducible. The subset

N ′ is then generic.

4.2. Particular case of m = 2. In this section, we will discuss the case when

m = 2. In the particular case of m = 2, the solution of the Sylvester equation (2.1)

is nonsingular if and only if the matrix

K(N) = (Λ− µI2)C + CN

is nonsingular. The following result shows that the map N 7→ K(N) is the restriction

to N of an affine map.

Proposition 4.3. Suppose that the field K is infinite, then for N ∈ N , one has

det(K(N)) = tr(Y N) + det(C) det (Λ− µI2) , (4.2)

where Y = (C − tr(C)I2) (Λ − µI2)C.

Proof. If C = I2, one should show that

det [Λ− µI2 +N ] = det(Λ− µI2)− tr(ΛN). (4.3)

If Λ−µI2 =

(
a1 a2

a3 a4

)
and N =

(
b1 b2

b3 b4

)
, then direct computation shows that both

the two quantities present in equality (4.3) are equal to

b1b4 − a1b1 − a4b4 + a4a1 − a2a3 − a2b3 − a3b2 − b2b3.

If now C is nonsingular, then

det [(Λ− µI2)C + CN ] = det(C) det
[
C−1(Λ− µI2)C +N

]
.
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Using the previous case, linearity of the trace and the fact that

det(C)C−1 = tr(C)I2 − C,

which is a consequence of Cayley-Hamilton theorem, one gets

det [K(N)] = det(C)
(
det(Λ− µI2)− tr(C−1(Λ − µI2)CN)

)

= det(C) det(Λ− µI2)− tr ((tr(C)I2 − C)(Λ − µI2)CN)

= det(C) det(Λ− µI2) + tr(Y N).

Then the two polynomial functions

C 7→ det [(Λ − µI2)C + CN ] and C 7→ tr(Y N) + det(C) det (Λ− µI2)

are equal on GL2(K), the set of all nonsingular matrices in K2×2. This set is dense

in K2×2 according to the Zariski topology or the usual topology when K = R or C.

These two polynomial functions are then equal everywhere.

Remark 4.4. Let the matrices Y = (C − tr(C)I2) (Λ− µI2)C and the nilpotent

matrix N be written as

Y =

(
a c

b d

)
and N =

(
x z

y −x

)

where x2 + yz = 0. The equality (4.2) becomes

det(K(N)) = (a− d)x+ cy + bz + det(C)∆Λ(µ), (4.4)

where ∆Λ is the characteristic polynomial of Λ. The affine variety N can be seen as

the cone of K3 defined by x2 + yz = 0 and its subset N0 is the intersection of N and

the “plane” P defined by

(a− d)x+ cy + bz + det(C)∆Λ(µ) = 0. (4.5)

This shows that N0 is a conic, may be degenerate or even empty, of P and that its

dimension is at most one. This justifies why for almost everyN ∈ N , one has N 6∈ N0.

We should then provide conditions under which P is in fact a plane. That is, at least

one of the scalars a− d, b or c is nonzero.

In the following proposition, we make precise the statements in Remark 4.4.

Recall that a matrix is said to be scalar if it can be written as λI2 for some scalar λ.

Proposition 4.5. If the pair (Λ, C) is controllable, then

1. a = d and b = c = 0 if and only if the matrix Λ scalar;

2. if the matrix Λ scalar, then the matrix C is nonsingular and P is empty.
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Proof. Let C = [C, (Λ − µI2)C] be the controllability matrix of the pair (Λ −
µI2, C). The rank of C is two. Suppose that a = d and b = c = 0. The matrix Y is then

Y = aI2. Suppose for a moment that a = 0. If C is nonsingular, then C = tr(C)I2
which is impossible. The matrix C is then singular. Since C2 − tr(C)C = 0, we get

(C − tr(C)I2)C =
[
C2 − tr(C)C, Y

]
= [0, 0]

and then again C = tr(C)I2 because C is of full rank. As C is singular, we get C = 0

and this is not true since the pair (Λ, C) is controllable. So a is nonzero. Now from

the fact that a is nonzero and aI2 = Y = (C − tr(C)I2) (Λ − µI2)C, the matrix C is

nonsingular and

aI2 = (C − tr(C)I2) (Λ− µI2)C

= − det(C)C−1 (Λ− µI2)C

and then Λ =
(
µ− a

det(C)

)
I2 is a scalar matrix. Suppose now that Λ = λI2 is a

scalar matrix, where λ ∈ K \ {µ}. Then,

Y = (C − tr(C)I2) (Λ− µI2)C

= (λ− µ)(C2 − tr(C)C)

= − det(C)(λ − µ)I2.

In particular, a = d = − det(C)(λ − µ) and b = c = 0. Since the rank of

C = [C, (Λ − µI2)C] = [C, (λ − µ)C]

is two, the matrix C is nonsingular. The set P is defined by:

det(C)∆Λ(µ) = 0

which is impossible since C is nonsingular and µ is not an eigenvalue of Λ.

Proposition 4.5 shows that if the pair (Λ, C) is controllable and Λ is not a scalar

matrix, then the set P is a plane. The subset N0 is then a conic of P .

The nature of N0 depends on the matrix Y and information on its coefficients

can help to figure out the nature of N0. The following result establishes the relation

between the coefficients of Y , det(C) and the eigenvalues λ1 and λ2 of Λ.

Proposition 4.6. We have

(a− d)2 + (b + c)2 − (b− c)2 = det(C)2(λ1 − λ2)
2. (4.6)
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Proof. From the equality C2 − tr(C)C = − det(C)I2, we get

tr(Y ) = tr [(C − tr(C)I2) (Λ− µI2)C]

= tr
[
(C2 − tr(C)C) (Λ− µI2)

]

= − det(C)tr (Λ− µI2) .

For the same reason, we also have det(Y ) = det(C)2∆Λ(µ). Then,

(a− d)2 + (b+ c)2 − (b− c)2 = (a+ d)2 + 4(ad− bc)

= tr(Y )2 − 4 det(Y )

= det(C)2
[
tr(Λ − µI2)

2 − 4 det(Λ− µI2)
]

= det(C)2
[
(λ1 + λ2 − 2µ)2 − 4(λ1 − µ)(λ2 − µ)

]

= det(C)2(λ1 − λ2)
2

which is the desired equality.

In the sequel, we will be interested in particular case when K = R and discuss

the nature of subset N0. We first need to parametrize the cone N .

Using the linear transformation u = x, v =
√
2
2 (y + z) and w =

√
2
2 (y − z), the

equation x2 + yz = 0 becomes

u2 +
1

2
v2 − 1

2
w2 = 0. (4.7)

The cone N can then be parametrized as follows






u = α cosβ,

v =
√
2α sinβ,

w =
√
2α,

or






x = α cosβ,

y = α(1 + sinβ),

z = α(−1 + sinβ)

where α and β are arbitrary real numbers. In other words, one can identify N with

R2. That is, one can identify any (x, y) = α(cos β, sinβ) ∈ R2 to the matrix

N = α

(
cosβ −1 + sinβ

1 + sinβ − cosβ

)
.

Also the equation (4.5) allows us to identify the subset N0 to the curve of the R2

which is defined by the polar equation

α [(a− d) cosβ + (c+ b) sinβ + c− b] + det(C)∆Λ(µ) = 0. (4.8)

Proposition 4.7. Suppose that the pair (Λ, C) is controllable and Λ is not a

scalar matrix.

1. If λ1 = λ2 or C is singular, then b 6= c and N0 is a line of R2.
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2. If λ1 and λ2 are different real numbers and C is nonsingular, then

(a) N0 is a line of R2 if Y is symmetric;

(b) N0 is a hyperbola of R2 if Y is non-symmetric.

3. If λ1 and λ2 are not real numbers and C is nonsingular, then

(a) N0 is a circle of R2 if Y is a matrix of a similitude of R2;

(b) N0 is an ellipse of R2 if Y is not a matrix of a similitude of R2.

Proof. Let ∆ =
√
(a− d)2 + (b+ c)2.

1. Suppose that λ1 = λ2 or C is singular. From (4.6), we have ∆ = |b − c|.
If b = c, then a = d and b = c = 0 which is not possible because the pair

(Λ, C) is controllable and Λ is not a scalar matrix. The equality ∆ = |b− c|
shows that there is γ ∈ R such that cos(γ) = a−d

b−c
and sin(γ) = b+c

b−c
. The

equation (4.8) becomes α [cos(β − γ)− 1] = 0. This shows that N0 can be

identified to the line that passes trough the origin and makes the angle γ

with the x axis.

2. Suppose that λ1 and λ2 are different real numbers and C is nonsingular.

From (4.6), we have ∆ > |b− c|. The equation (4.8) can be written as

α [∆ cos(β − γ) + c− b] = − det(C)∆Λ(µ) (4.9)

where γ ∈ R is such that cos(γ) = a−d
∆ and sin(γ) = b+c

∆ .

(a) If the matrix Y is symmetric, that is b = c, then α = − det(C)∆Λ(µ)
∆ cos(β−γ) which

represents the polar equation of a line in R2.

(b) If the matrix Y is non-symmetric, that is b 6= c, then

α =
− 1

c−b
det(C)∆Λ(µ)

1 + ∆
c−b

cos(β − γ)

which represents the polar equation of a hyperbola in R2 since
∣∣∣ ∆
c−b

∣∣∣ > 1.

3. Suppose that λ1 and λ2 are not real numbers and C is nonsingular. Since

the matrix Λ is real, its eigenvalues λ1 and λ2 are complex conjugate. Then,

(λ1−λ2)
2 = −4Im(λ1)

2 < 0, where Im(λ1) is the imaginary part of λ1. Using

again (4.6), we get ∆ < |b− c|.
(a) If Y is the matrix of a similitude of R2, that is a = d and b = −c, then by

the equation (4.8), we have −2bα+ det(C)∆Λ(µ) = 0 which represents

the circle of radius
∣∣∣det(C)∆Λ(µ)

2b

∣∣∣ with center at the origin. Note that

b 6= 0 otherwise the matrix Y is zero.

(b) If Y is not the matrix of a similitude of R2, then as (2b) we have

α =
− 1

c−b
det(C)∆Λ(µ)

1 + ∆
c−b

cos(β − γ)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 721-739, November 2016

http:/repository.uwyo.edu/ela



ELA

Controllability and Nonsingular Solutions of Sylvester Equations 737

which represents the polar equation of an ellipse in R2 since
∣∣∣ ∆
c−b

∣∣∣ < 1.

Again, note that b 6= c since ∆ < |b − c|.

In the following proposition, we give more information on the nature of N0 when

the matrix C is singular.

Proposition 4.8. Suppose that the pair (Λ, C) is controllable, Λ is not a scalar

matrix and C is singular. Let θ be the angle between the vector (1, 0) and a nonzero

row vector of the matrix C. Then, N0 is the line passing through the origin and

making the angle 2θ with the y axis.

Proof. Using (4.6) and the fact that C is singular, we get (a − d)2 + (b + c)2 =

(b−c)2. If w = (u, v) is a nonzero row vector which is collinear to the row vectors of C,

then there are real numbers x and y that are not all zero such that C =

(
xu xv

yu yv

)
=

(
x

y

)(
u v

)
. Since C − tr(C)I2 =

(−v

u

)(
y −x

)
, we get

Y = r

(−v

u

)(
u v

)
= r

(−uv −v2

u2 uv

)

where r =
(
y −x

)
(Λ−µI2)

(
x

y

)
. In particular, we have






a− d = −2 uvr

b− c =
(
u2 + v2

)
r

b+ c =
(
u2 − v2

)
r.

From the proof of Proposition 4.7, we know that b 6= c and then a−d
c−b

= 2uv
u2+v2 and

b+c
b−c

= u2−v2

u2+v2 . If we write the nonzero complex number u + iv as u + iv = ρeiθ, we

get u+iv
u−iv = e2iθ. This shows that cos(2θ) = u2−v2

u2+v2 = b+c
b−c

and sin(2θ) = 2uv
u2+v2 = a−d

c−b
.

The equation (4.8) becomes now α [sin(β − 2θ)− 1] = 0. This shows that N0 is the

line passing through the origin and making the angle 2θ with the y axis.

Remark 4.9. Let us consider the same conditions of Proposition 4.8.

1. If both the two row vectors of C are nonzero, the value of θ depends on the

choice of the row vector, but the value of the angle 2θ is the same modulo

2π.

2. Proposition 4.8 can be explained as follows: the solution of the Sylvester

equation ΛX −X(µI2 +N) = C is singular if and on only if there is α ∈ R

such that

N = α

( − sin(2θ) −1 + cos(2θ)

1 + cos(2θ) sin(2θ)

)
.

3. Proposition 4.8 also shows that N0 is independent from Λ and µ when the

matrix C is singular.
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In Example 3.1, we used Theorem 2.6 to find the nilpotent matrix N =

(
0 γ

0 0

)

such that the solution X(N) of the Sylvester equation ΛX − X(µI2 + N) = C is

nonsingular. In the following example, we will use Proposition 4.8 to find all nilpotent

matrices N such that X(N) is nonsingular; that is to describe the elements of N \N0.

Example 4.10. Let Λ =

(
0 −1

4 4

)
and C =

(−1 −1

1 1

)
as in Example 3.1.

According to this Proposition 4.8 and to the parametrization of N , we have

N \ N0 =

{
α

(
cosβ −1 + sinβ

1 + sinβ − cosβ

)
: α, β ∈ R, α 6= 0, β 6≡ 2θ +

π

2
(mod 2π)

}

where θ = π
4 is the angle between vector (1, 0) and the vector (1, 1). In other words

N0 =

{
α

( − sin(2θ) −1 + cos(2θ)

1 + cos(2θ) sin(2θ)

)
= α

(−1 −1

1 1

)
: α ∈ R

}
.

This means that, for any nilpotent matrix N which is not of the form α

(−1 −1

1 1

)
,

the solution X(N) of the Sylvester equation ΛX −X(µI2 +N) = C is nonsingular.

5. Conclusion. We studied the singularity problem of the solutions of some

particular Sylvester equations. This study was motivated by the eigenstructure as-

signment method presented in [1, 13] and in particular when this method fails. The

singularity problem is solved if the unstable eigenvalues are to be assigned to only

one stable eigenvalue using some properties of nilpotent matrices. The problem is still

unsolved if the unstable eigenvalues are to be assigned to some given stable spectrum.

An advantage of this study is its suitability to deal with the problem of the input

constraints.

REFERENCES

[1] A. Baddou, H. Maarouf, and A. Benzaouia. Partial eigenstructure assignement problem and its

application to the constrained linear problem. International Journal of Systems Science,

5:908–915, 2013.

[2] R. Bhatia and P. Rosenthal. How and why to solve the operator equation AX − XB = Y .

Bulletin of the London Mathematical Society, 29:1–21, 1997.

[3] A. Benzaouia. The resolution of the equation XA + XBX = HX and the pole assignment

problem. IEEE Transactions on Automatic Control, 40:2091–2095, 1994.

[4] A. Benzaouia and C. Burgat. Regulator problem for linear discrete-time systems with non-

symmetrical constrained control. International Journal of Control, 48:2441–2451, 1988.

[5] A. Benzaouia and A. Hmamed. Regulator problem for linear continuous-time systems with

nonsymmetrical constrained control. IEEE Transactions on Automatic Control, 38:1556–

1560, 1993.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 721-739, November 2016

http:/repository.uwyo.edu/ela



ELA

Controllability and Nonsingular Solutions of Sylvester Equations 739

[6] P. Brunovsky. A classification of linear controllable systems. Kybernetica, 3:173–187, 1970.

[7] J.W. Choi. Left eigenstructure via Sylvester equation. KSM International Journal, 12:1034–

1040, 1998.

[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms: An Introduction to Com-

putational Algebraic Geometry and Commutative Algebra. Springer-Verlag, Berlin, 1992.

[9] K. Datta. The matrix equation XA − BX = R and its applications. Linear Algebra and its

Applications, 109:91–105, 1988.

[10] J-M. Dion, C. Commault, J. Van Der Woude. Generic properties and control of linear structured

systems: A survey. Automatica, 39(7):1125–1144, 2003.

[11] E.L. Allgower and G. Kurt (editors). Computational Solution of Nonlinear Systems of Equa-

tions. Lectures in Applied Mathematics, Vol. 26, American Mathematical Society, 1990.

[12] J.Z. Hearon. Nonsingular solutions of TA − BT = C. Linear Algebra and its Applications,

16:57–63, 1977.

[13] H. Maarouf and A. Baddou. Eigenstructure Assignment Method and Its Applications to the

Constrained Problem. World Journal of Engineering and Technology, 2:159–170, 2014.
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