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Abstract. An n×n sign pattern A is said to be potentially nilpotent (PN) if there exists some

nilpotent real matrix B with sign pattern A. In [M. Arav, F. Hall, Z. Li, K. Kaphle, and N. Manzagol.

Spectrally arbitrary tree sign patterns of order 4. Electronic Journal of Linear Algebra, 20:180–197,

2010.], the authors gave some open questions, and one of them is the following: For the class of 4×4

tridiagonal sign patterns, is PN (together with positive and negative diagonal entries) equivalent to

being SAP? In this paper, a positive answer for this question is given.
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1. Introduction. Our goal is to answer a question raised in [1]. We start with

some definitions, terminologies, and some backgrounds of the problem.

A sign pattern (matrix) is a matrix whose entries are from the set {+,−, 0}. For
a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive

(resp., negative) entry of B by + (resp., −). For a sign pattern A of order n, the

sign pattern class of A, denoted Q(A), is defined as Q(A) = {B = [bij ] ∈ Mn(R) |
sgn(B) = A}.

The inertia of a square real matrix B is the ordered triple i(B) = (i+(B), i−(B),

i0(B)), in which i+(B), i−(B) and i0(B) are the numbers of eigenvalues (counting

multiplicities) of B with positive, negative and zero real parts, respectively.

Let A be a sign pattern of order n ≥ 2. If for any given real monic polynomial

f(λ) of degree n, there is a real matrix B ∈ Q(A) having characteristic polynomial

f(λ), then A is a spectrally arbitrary sign pattern (SAP); if for every ordered triple

(n+, n−, n0) of nonnegative integers with n+ + n− + n0 = n, there exists a real

matrix B ∈ Q(A) such that i(B) = (n+, n−, n0), then A is an inertially arbitrary

pattern (IAP); if there is some matrix B ∈ Q(A) being nilpotent, then A is potentially
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nilpotent (PN); if there is some matrix B ∈ Q(A) being stable, then A is potentially

stable (PS); if every matrix B ∈ Q(A) being nonsingular, then A is sign nonsingular

(SNS).

A sign pattern A is a minimal spectrally arbitrary pattern if A is a SAP, but is

not a SAP if one or more nonzero entries is replaced by zero.

It is easy to see that the class of n×n SAPs (IAPs, PN patterns) is closed under

negation, transposition, permutation similarity, and signature similarity. We say that

two sign patterns are equivalent if one can be obtained from the other by using a

sequence of such operations.

Recent work (for example, see [1–7] and their references) have examined PN

patterns and their relationships with SAPs, IAPs. The following basic relationships

on SAPs, IAPs and PN patterns are well known:

• A is a SAP ⇒ A is an IAP.

• A is a SAP ⇒ A is PN.

• The converse of each of the above implications does not hold in general.

In [7], it is shown that all potentially nilpotent full sign patterns are spectrally

arbitrary. For tree sign patterns, some notable results have been obtained. For

example, in [6], it is shown that for an n × n (n ≥ 2) star sign pattern A, the

following are equivalent: (1) A is spectrally arbitrary; (2) A is inertially arbitrary;

(3) A is potentially stable and potentially nilpotent. In [1, 5], it is also shown that for

a 4× 4 tree sign pattern A, the above three results are equivalent. In [1], the authors

gave some open questions and one of them is “For the class of 4 × 4 tridiagonal sign

patterns, is PN (together with positive and negative diagonal entries) equivalent to

being SAP?”

In this paper, we prove that for a 4 × 4 irreducible tridiagonal sign pattern A,

PN is equivalent to being SAP.

2. Preliminaries. Up to equivalence, a 4×4 irreducible tridiagonal sign pattern

has the following form









∗0 + 0 0

∗ ∗0 + 0

0 ∗ ∗0 +

0 0 ∗ ∗0









,(2.1)

where ∗ ∈ {+,−}, and ∗0 ∈ {+,−, 0}.

In this section, we determine all 4×4 irreducible potentially nilpotent tridiagonal

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 706-720, November 2016

http:/repository.uwyo.edu/ela



ELA

708 Y. Gao and Y. Shao

sign patterns. We utilise the following lemmas.

Lemma 2.1 ([1]). An n×n complex matrix B is nilpotent if and only if tr(B) =

0, tr(B2) = 0, tr(B3) = 0, . . . , tr(Bn) = 0. The result remains valid when the last

condition tr(Bn) = 0 is replaced by det(B) = 0.

Lemma 2.2 ([1]). A 4 × 4 irreducible tridiagonal sign pattern is a SAP if and

only if it is a superpattern of a sign pattern equivalent to one of the following minimal

irreducible tridiagonal SAPs:

H1 =









− + 0 0

− 0 + 0

0 − 0 +

0 0 − +









, H2 =









− + 0 0

+ 0 + 0

0 − 0 +

0 0 + +









, H3 =









+ + 0 0

− − + 0

0 + 0 +

0 0 − −









,

H4 =









+ + 0 0

− 0 + 0

0 − − +

0 0 − +









, H5 =









+ + 0 0

− 0 + 0

0 + − +

0 0 − +









, H6 =









− + 0 0

− + + 0

0 − − +

0 0 − 0









,

H7 =









0 + 0 0

− − + 0

0 + − +

0 0 − +









, H8 =









0 + 0 0

+ + + 0

0 − − +

0 0 + −









.

Lemma 2.3. Let A be a 4× 4 tridiagonal sign pattern having the form (2.1). If

A has at most one nonzero diagonal entry, then A is not potentially nilpotent.

Proof. If all diagonal entries of A are zero, then A is SNS, and so A is not PN.

If A has exactly one nonzero diagonal entry, then tr(A) 6= 0, and A is not PN.

Some calculations in the following proofs are accomplished using Matlab.

Lemma 2.4. Let A be a 4 × 4 tridiagonal sign pattern having the form (2.1).

If A has exactly two nonzero diagonal entries, then A is potentially nilpotent if and

only if A is equivalent to one of the following two sign patterns:

A1 =









+ + 0 0

+ 0 + 0

0 − 0 +

0 0 + −









, A2 =









+ + 0 0

− 0 + 0

0 − 0 +

0 0 − −









.
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Proof. For sufficiency, noticing that A1 is equivalent to H2, and A2 is equivalent

to H1, we see that A1 and A2 are SAPs and therefore they are PN (or see [4], for

example).

For necessity, let A have exactly two nonzero diagonal entries and be potentially

nilpotent. By Lemma 2.1, A has one positive diagonal entry and one negative diagonal

entry. Up to equivalence, we consider the following three cases.

Case 1. The pattern

A =









+ + 0 0

∗ − + 0

0 ∗ 0 +

0 0 ∗ 0









,

where ∗ ∈ {+,−}.

For any B ∈ Q(A), we may assume that

B =









1 1 0 0

a −b 1 0

0 c 0 1

0 0 d 0









,

where a, b, c, d 6= 0, and b > 0.

Suppose B is nilpotent. By Lemma 2.1,

tr(B) = 1− b = 0,

tr(B2) = 1 + b2 + 2a+ 2c+ 2d = 0,

tr(B3) = 1 + 3a− 3ab− 3bc− b3 = 0,

det(B) = d(a+ b) = 0.

From the first equation, we have b = 1. Substituting b = 1 in the third equation, we

obtain c = 0, contradicting the assumption B ∈ Q(A).

Case 2. The pattern

A =









+ + 0 0

∗ 0 + 0

0 ∗ − +

0 0 ∗ 0









or









0 + 0 0

∗ + + 0

0 ∗ − +

0 0 ∗ 0









,

where ∗ ∈ {+,−}. Note that A is SNS. So A is not PN.
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Case 3. The pattern

A =









+ + 0 0

∗ 0 + 0

0 ∗ 0 +

0 0 ∗ −









,

where ∗ ∈ {+,−}.

For any B ∈ Q(A), we may assume that

B =









1 1 0 0

a 0 1 0

0 b 0 1

0 0 c −d









,

where a, b, c, d 6= 0 and d > 0.

If B is nilpotent, then by Lemma 2.1,

tr(B) = 1− d = 0,

tr(B2) = 1 + 2a+ d2 + 2b+ 2c = 0,

tr(B3) = 1 + 3a− d3 − 3cd = 0,

det(B) = bd+ ac = 0.

From the first and third equations, we have d = 1 and c = a. Substitution in the

second and fourth equations obtains

2a+ 1 + b = 0, b+ a2 = 0.

Taking a, b as unknowns and solving the system of equations, we have

a = (1±
√
2), b = −(3± 2

√
2).

These two solutions for a, b, c, d correspond to two forms for A, A1 and A2.

The lemma now follows.

Lemma 2.5. Let A be a 4 × 4 tridiagonal sign pattern having the form (2.1).

If A has exactly three nonzero diagonal entries, then A is potentially nilpotent if and

only if it is equivalent to one of the following ten sign patterns:

A3 =









+ + 0 0

− − + 0

0 − + +

0 0 − 0









, A4 =









+ + 0 0

− − + 0

0 + − +

0 0 − 0









, A5 =









+ + 0 0

+ + + 0

0 − − +

0 0 + 0









,
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A6 =









+ + 0 0

− − + 0

0 − 0 +

0 0 − +









, A7 =









+ + 0 0

− − + 0

0 − 0 +

0 0 − −









, A8 =









+ + 0 0

− + + 0

0 − 0 +

0 0 − −









,

A9 =









+ + 0 0

− − + 0

0 + 0 +

0 0 − +









, A10 =









+ + 0 0

− − + 0

0 + 0 +

0 0 − −









, A11 =









+ + 0 0

+ − + 0

0 − 0 +

0 0 + −









,

A12 =









+ + 0 0

+ + + 0

0 − 0 +

0 0 + −









.

Proof. Check the following table, where A7,A8 corresponding H1 means that

A7,A8 are equivalent to some superpatterns of H1, and the others are similar. Then

the sufficiency is clear by Lemma 2.2.

H1 H2 H3 H4 H5 H6 H7 H8

A7,A8 A11,A12 A10 A6 A9 A3 A4 A5

For necessity, let A have exactly three nonzero diagonal entries and be potentially

nilpotent. By Lemma 2.1, A has at least one positive diagonal entry and one negative

diagonal entry. Up to equivalence, we consider the following two cases.

Case 1. The pattern

A =









+ + 0 0

∗ ∗ + 0

0 ∗ ∗ +

0 0 ∗ 0









,

where ∗ ∈ {+,−}, and A has at least one negative diagonal entry.

For any B ∈ Q(A), we may assume that

B =









1 1 0 0

a b 1 0

0 c d 1

0 0 e 0









,

where a, b, c, d, e 6= 0 and at least one of b and d is negative.
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If B is nilpotent, then by Lemma 2.1,

tr(B) = 1 + b+ d = 0,

tr(B2) = 1 + 2a+ b2 + 2c+ d2 + 2e = 0,

tr(B3) = 1 + 3a+ 3ab+ b3 + 3bc+ 3cd+ d3 + 3de = 0,

det(B) = (a− b)e = 0.

From the first and fourth equations, we have

d = −1− b, a = b.

Substitution in the second and third equations obtains

1 + 2b+ b2 + c+ e = 0, c+ e+ be = 0.

So b 6= −1, and

c = − (b+ 1)3

b
, e =

(b + 1)2

b
.

Therefore, the signs of a, c, d, e are determined by the value of b according to the

following table.

b a c d e

b < −1 − − + −
−1 < b < 0 − + − −

0 < b + − − +

The three possibilities for the value of b correspond to A3, A4 and A5.

Case 2. The pattern

A =









+ + 0 0

∗ ∗ + 0

0 ∗ 0 +

0 0 ∗ ∗









,

where ∗ ∈ {+,−}, and A has at least one negative diagonal entry.

We determine the form of A according to the signs of the subdiagonal. We only

need to verify that if there exists the form which is not equivalent to one of the A3

through A12, then it is not PN. Up to equivalence, we consider the following cases:

Subcase 2.1. The signs of the subdiagonal are (−,−,−).

In this case, there are three sign patterns A6,A7 and A8.
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Subcase 2.2. The signs of the subdiagonal are (+,−,−).

In this case, there are the following forms

X1 =









+ + 0 0

+ − + 0

0 − 0 +

0 0 − +









, X2 =









+ + 0 0

+ − + 0

0 − 0 +

0 0 − −









, X3 =









+ + 0 0

+ + + 0

0 − 0 +

0 0 − −









.

Note that sign patterns X1 and X3 are equivalent to the 11th and 10th patterns of

Theorem 3.6 in [1], respectively, and sign pattern X2 is SNS. So they are not PN.

Subcase 2.3. The signs of the subdiagonal are (−,+,−).

In this case, there are sign patterns A9, A10 and

X4 =









+ + 0 0

− + + 0

0 + 0 +

0 0 − −









.

Sign pattern X4 is SNS, and so it is not PN.

Subcase 2.4. The signs of the subdiagonal are (−,−,+).

In this case, there are the following forms

X5 =









+ + 0 0

− − + 0

0 − 0 +

0 0 + +









, X6 =









+ + 0 0

− − + 0

0 − 0 +

0 0 + −









, X7 =









+ + 0 0

− + + 0

0 − 0 +

0 0 + −









.

Note that sign pattern X5 is equivalent to the 9th pattern of Theorem 3.6 in [1], and

sign pattern X7 is SNS. So X5 and X7 are not PN.

For X6, taking any B ∈ Q(X6), we may assume that

B =









1 1 0 0

−a −b 1 0

0 −c 0 1

0 0 d −e









,

where a, b, c, d, e are all positive.

Suppose B is nilpotent. By Lemma 2.1,

tr(B) = 1− b− e = 0,
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tr(B2) = 1− 2a+ b2 − 2c+ e2 + 2d = 0,

tr(B3) = 1− 3a+ 3ab− b3 + 3bc− e3 − 3ed = 0,

det(B) = −ce− ad+ bd = 0.

From the fourth equation, we obtain b > a. So 1 − 2a+ b2 > 0. Thus, c > d by the

second equation. From the fourth equation again, we obtain b > e. From the second

equation again, we obtain

c = d− a+
1 + b2 + e2

2
.

Then

tr(B3)= 1− 3a+ 3ab− b3 + 3bc− e3 − 3ed

= 1− 3a+
3b

2
+

b3

2
+ 3bd− 3de+

3be2

2
− e3

> 1− 3a+
3a

2
+

a3

2
+ 3ed− 3de+

3e3

2
− e3

> 1− 3a

2
+

a3

2
≥ 0.

So B is not nilpotent, and X6 is not PN.

Subcase 2.5. The signs of the subdiagonal are (−,+,+).

In this case, there are the following forms

X8 =









+ + 0 0

− − + 0

0 + 0 +

0 0 + +









, X9 =









+ + 0 0

− − + 0

0 + 0 +

0 0 + −









, X10 =









+ + 0 0

− + + 0

0 + 0 +

0 0 + −









.

It is shown that (B4)44 > 0 for any B ∈ Q(X8) or B ∈ Q(X10). Sign pattern X9 is

the 8th pattern of Theorem 3.6 in [1]. So X8 through X10 are not PN.

Subcase 2.6. The signs of the subdiagonal are (+,−,+).

In this case, there are sign patterns X11, A11, and A12, where

X11 =









+ + 0 0

+ − + 0

0 − 0 +

0 0 + +









.

Sign pattern X11 is SNS, and so it is not PN.

Subcase 2.7. The signs of the subdiagonal are (+,+,−).
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In this case, there are the following forms

X12 =









+ + 0 0

+ − + 0

0 + 0 +

0 0 − +









, X13 =









+ + 0 0

+ − + 0

0 + 0 +

0 0 − −









, X14 =









+ + 0 0

+ + + 0

0 + 0 +

0 0 − −









.

Sign pattern X12 is SNS. For X13, taking any B ∈ Q(X13) with tr(B) = 0, then

(B4)11 > 0. For X14, taking any B ∈ Q(X14), then (B4)11 > 0. So X12 through X14

are not PN.

Subcase 2.8. The signs of the subdiagonal are (+,+,+).

In this case, there are the following forms

X15 =









+ + 0 0

+ − + 0

0 + 0 +

0 0 + +









, X16 =









+ + 0 0

+ − + 0

0 + 0 +

0 0 + −









, X17 =









+ + 0 0

+ + + 0

0 + 0 +

0 0 + −









.

Note that for any B ∈ Q(Xi), i = 15, 16, 17, all diagonal entries of B2 are positive,

and so tr(B2) > 0. Then X16 through X17 are not PN.

Above discussions show that sign patterns A3 through A12 match the conditions.

The lemma now follows.

Lemma 2.6. Let A be a 4× 4 tridiagonal sign pattern having the form (2.1). If

all diagonal entries of A are nonzero, then A is potentially nilpotent if and only if it

is equivalent to one of the following thirteen sign patterns:

A13 =









+ + 0 0

− − + 0

0 − − +

0 0 − −









, A14 =









+ + 0 0

− − + 0

0 − + +

0 0 − −









, A15 =









+ + 0 0

− + + 0

0 − − +

0 0 − −









,

A16 =









+ + 0 0

− − + 0

0 − − +

0 0 − +









, A17 =









+ + 0 0

− − + 0

0 − + +

0 0 − +









, A18 =









+ + 0 0

− − + 0

0 + − +

0 0 − −









,

A19 =









+ + 0 0

− − + 0

0 + + +

0 0 − −









, A20 =









+ + 0 0

− − + 0

0 + − +

0 0 − +









, A21 =









+ + 0 0

− − + 0

0 + + +

0 0 − +









,
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A22 =









+ + 0 0

+ − + 0

0 − + +

0 0 + −









, A23 =









+ + 0 0

+ + + 0

0 − − +

0 0 + −









, A24 =









+ + 0 0

+ + + 0

0 − + +

0 0 + −









,

A25 =









+ + 0 0

+ + + 0

0 − − +

0 0 + +









.

Proof. Check the following table, where A13,A14,A15 corresponding H1 means

that A13, A14, A15 are equivalent to some superpatterns of H1, and the others are

similar. Then the sufficiency is clear by Lemma 2.2.

H1 H2 H3 H4 H5 H8

A13,A14,A15 A22,A23,A24 A18,A19 A16,A17 A20,A21 A25

For necessity, let A have four nonzero diagonal entries and be potentially nilpo-

tent. By Lemma 2.1, A has at least one positive diagonal entry and one negative

diagonal entry. We determine the form of A according to the signs of the subdiago-

nal. We only need to verify that if there exists the form which is not equivalent to

one of the A13 through A25, then it is not PN. Up to equivalence, we consider the

following cases:

Case 1. The signs of the subdiagonal are (−,−,−).

Denote

Y1 =









∗ + 0 0

− ∗ + 0

0 − ∗ +

0 0 − ∗









.

If (Y1)11 and (Y1)44 have different signs, up to equivalence, letting (Y1)11 = +,

then the corresponding sign patterns are A13, A14 and A15.

If (Y1)11 and (Y1)44 have the same sign, up to equivalence, letting (Y1)11 =

(Y1)44 = +, then at least one of (Y1)22 and (Y1)33 is negative. The corresponding

sign patterns are A16 and A17.

Case 2. The signs of the subdiagonal are (−,+,−).
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Denote

Y2 =









∗ + 0 0

− ∗ + 0

0 + ∗ +

0 0 − ∗









.

If (Y2)11 and (Y2)44 have different signs, up to equivalence, letting (Y2)11 = +,

then the corresponding sign patterns are A18, A19 and Y2−1, where

Y2−1 =









+ + 0 0

− + + 0

0 + − +

0 0 − −









.

Note that Y2−1 is SNS. So it is not PN.

If (Y2)11 and (Y2)44 have the same sign, up to equivalence, letting (Y2)11 =

(Y2)44 = +, then at least one of (Y2)22 and (Y2)33 is negative. The corresponding

sign patterns are A20 and A21.

Case 3. The signs of the subdiagonal are (+,−,−).

Denote

Y3 =









∗ + 0 0

+ ∗ + 0

0 − ∗ +

0 0 − ∗









.

If (Y3)11 and (Y3)44 have different signs, up to equivalence, letting (Y3)11 = +,

then the corresponding patterns are as follows.

Y3−1 =









+ + 0 0

+ − + 0

0 − − +

0 0 − −









, Y3−2 =









+ + 0 0

+ − + 0

0 − + +

0 0 − −









,

Y3−3 =









+ + 0 0

+ + + 0

0 − − +

0 0 − −









, Y3−4 =









+ + 0 0

+ + + 0

0 − + +

0 0 − −









.

Note that sign pattern Y3−1 is SNS, and sign patterns Y3−2, Y3−3 and Y3−4 are

equivalent to the 8th, 3rd and 6th patterns of Theorem 3.7 in [1], respectively. So

Y3−1 through Y3−4 are not PN.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 706-720, November 2016

http:/repository.uwyo.edu/ela



ELA

718 Y. Gao and Y. Shao

If (Y3)11 and (Y3)44 have the same sign, up to equivalence, letting (Y3)11 =

(Y3)44 = +, then at least one of (Y3)22 and (Y3)33 is negative. The corresponding

patterns are as follows.

Y3−5 =









+ + 0 0

+ − + 0

0 − − +

0 0 − +









,Y3−6 =









+ + 0 0

+ − + 0

0 − + +

0 0 − +









,Y3−7 =









+ + 0 0

+ + + 0

0 − − +

0 0 − +









.

Note that sign patterns Y3−5, Y3−6 and Y3−7 are equivalent to the 7th, 4th and 5th

patterns of Theorem 3.7 in [1], respectively. So Y3−5 through Y3−7 are not PN.

Case 4. The signs of the subdiagonal are (+,−,+).

Denote

Y4 =









∗ + 0 0

+ ∗ + 0

0 − ∗ +

0 0 + ∗









.

If (Y4)11 and (Y4)44 have different signs, up to equivalence, letting (Y4)11 = +,

then the corresponding sign patterns are A22, A23 and A24.

If (Y4)11 and (Y4)44 have the same sign, up to equivalence, letting (Y4)11 =

(Y4)44 = +, then at least one of (Y4)22 and (Y4)33 is negative. The corresponding

sign patterns are A25 and Y4−1, where

Y4−1 =









+ + 0 0

+ − + 0

0 − − +

0 0 + +









.

Note that Y4−1 is SNS. So it is not PN.

Case 5. The signs of the subdiagonal are (−,+,+).

Denote

Y5 =









∗ + 0 0

− ∗ + 0

0 + ∗ +

0 0 + ∗









.

If (Y5)11 and (Y5)44 have different signs, up to equivalence, letting (Y5)11 = +,
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then the corresponding patterns are as follows.

Y5−1 =









+ + 0 0

− − + 0

0 + − +

0 0 + −









, Y5−2 =









+ + 0 0

− − + 0

0 + + +

0 0 + −









,

Y5−3 =









+ + 0 0

− + + 0

0 + − +

0 0 + −









, Y5−4 =









+ + 0 0

− + + 0

0 + + +

0 0 + −









.

Note that Y5−1 and Y5−2 are the 1st and 2nd patterns of Theorem 3.7 in [1], re-

spectively. For Y5−3, taking any B ∈ Q(Y5−3), it is shown that (B4)44 > 0. For

Y5−4, taking any B ∈ Q(Y5−4) with tr(B) = 0, it is shown that (B4)44 > 0. So Y5−1

through Y5−4 are not PN.

If (Y5)11 and (Y5)44 have the same sign, up to equivalence, letting (Y5)11 =

(Y5)44 = +, then at least one of (Y5)22 and (Y5)33 is negative. The corresponding

patterns are as follows.

Y5−5 =









+ + 0 0

− − + 0

0 + − +

0 0 + +









,Y5−6 =









+ + 0 0

− − + 0

0 + + +

0 0 + +









,Y5−7 =









+ + 0 0

− + + 0

0 + − +

0 0 + +









.

Note that Y5−5 is equivalent to the superpattern of A4,9 in [1, page 194], sign patterns

Y5−6 is equivalent to the 9th sign pattern of Theorem 3.7 in [1], and sign patterns

Y5−7 is SNS. So Y5−5 through Y5−7 are not PN.

Case 6. The signs of the subdiagonal are (+,+,+).

Denote

Y6 =









∗ + 0 0

+ ∗ + 0

0 + ∗ +

0 0 + ∗









.

Note that for any B ∈ Q(Y6), all diagonal entries of B2 is positive. Then Y6 is not

PN.

Above discussions show that sign patterns A13 through A25 match the conditions.

The lemma now follows.
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Combining Lemmas 2.3–2.6, we obtain the following theorem.

Theorem 2.7. A 4×4 irreducible tridiagonal sign pattern is potentially nilpotent

if and only if it is equivalent to one of the twenty-five sign patterns A1 through A25

defined in Lemmas 2.4–2.6.

3. Main result. Theorem 3.1. Let A be a 4 × 4 irreducible tridiagonal sign

pattern. Then A is a SAP if and only if A is potentially nilpotent.

Proof. The necessity is clear. For sufficiency, let A be a potentially nilpotent

4× 4 irreducible tridiagonal sign pattern. Then A is equivalent to one of A1 through

A25 by Theorem 2.7. Noting that each one of A1 through A25 is the superpattern of

some one of H1 through H8, A is a SAP by Lemma 2.2.
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