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OPTIMAL GERSGORIN-STYLE ESTIMATION OF THE LARGEST

SINGULAR VALUE, II∗

CH. R. JOHNSON† , J. M. PEÑA‡ , AND T. SZULC§

Abstract. In estimating the largest singular value in the class of matrices equiradial with a given

n-by-n complex matrix A, it was proved that it is attained at one of n(n − 1) sparse nonnegative

matrices (see C.R. Johnson, J.M. Peña and T. Szulc, Optimal Gersgorin-style estimation of the

largest singular value; Electronic Journal of Linear Algebra Algebra Appl., 25:48–59, 2011). Next,

some circumstances were identified under which the set of possible optimizers of the largest singular

value can be further narrowed (see C.R. Johnson, T. Szulc and D. Wojtera-Tyrakowska, Optimal

Gersgorin-style estimation of the largest singular value, Electronic Journal of Linear Algebra Algebra

Appl., 25:48–59, 2011). Here the cardinality of the mentioned set for n-by-n matrices is further

reduced. It is shown that the largest singular value, in the class of matrices equiradial with a given

n-by-n complex matrix, is attained at one of n(n − 1)/2 sparse nonnegative matrices. Finally, an

inequality between the spectral radius of a 3-by-3 nonnegative matrix X and the spectral radius of

a modification of X is also proposed.
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1. Introduction. Let Mn(C) be the set of all n-by-n complex matrices. For a

given matrix A = (aij) ∈ Mn(C), we set Pk(A) =
∑

j 6=k | ak,j |, k = 1, . . . , n, and

define the class Λ(A) of matrices equiradial with A by

Λ(A) = {B = (bi,j) ∈ Mn(C) : |D(B)| = |D(A)|, Pk(B) = Pk(A), k = 1, . . . , n},

where, for an X = (xi,j) ∈ Mn(C), D(X) = diag(x1,1, . . . , xn,n). In particular, we

will focus on the finite subset of Λ(A) that consists of n(n− 1) nonnegative matrices
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A(s,k) = (a
(s,k)
i,j ), in which s, k ∈ {1, . . . , n} and s 6= k, such that

a
(s,k)
i,j =















|ai,i| for i = j,

Pi(A) for i 6= j and j = s,

Ps(A) for (i, j) = (s, k),

0 otherwise.

So, in particular, for a given 3-by-3 complex matrix A = (aij), the mentioned

subset consists of the following 6 matrices:

A(1,2) =





|a1,1| P1(A) 0

P2(A) |a2,2| 0

P3(A) 0 |a3,3|



, A(2,1) =





|a1,1| P1(A) 0

P2(A) |a2,2| 0

0 P3(A) |a3,3|



,

A(1,3) =





|a1,1| 0 P1(A)

P2(A) |a2,2| 0

P3(A) 0 |a3,3|



, A(3,1) =





|a1,1| 0 P1(A)

0 |a2,2| P2(A)

P3(A) 0 |a3,3|



,

A(2,3) =





|a1,1| P1(A) 0

0 |a2,2| P2(A)

0 P3(A) |a3,3|



, A(3,2) =





|a1,1| 0 P1(A)

0 |a2,2| P2(A)

0 P3(A) |a3,3|



.

Remark 1. For our purposes, throughout this paper, it will be assumed that A

has at least one nonzero off-diagonal entry in each row and that all its diagonal entries

are nonzero. Then, it is easy to observe that any matrix A(s,k) (s, k ∈ {1, . . . , n} and

s 6= k) has exactly 2n nonzero entries, i.e. all diagonal entries, all off-diagonal entries

of the sth column and the (k, s)th entry.

We now describe how the matrices A(s,k) play an important role in estimation of

the largest singular value among matrices equiradial with A (see [3]). Upper bounds

for the largest singular value σ1(A) of a square matrix A in terms of possible simple

functions of the entries of a matrix have many potential theoretical and practical

applications. By simple functions we mean those which use “Gersgorin-type” data

related to a matrix, i.e., diagonal entries and sums of the moduli of off-diagonal en-

tries. Observe that for a given A ∈ Mn(C) all matrices from Λ(A) share this type of

information and therefore, from this point of view, they can be equal. So, the above

comment motivates us to state the following question, which was studied in [3] and

we refer to as the “motivating question”: Given a matrix A, what is the maximum

singular value among the matrices that are equivalent with A? I. e.,

“what is maxX∈Λ(A){σ1(X)},”

where σ1(X) is the largest singular value of an n-by-n complex matrix X (equiradial

with A). It was proved in [3] (Theorem 3) that one of the n(n − 1) matrices A(s,k)

attains this maximum.
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Here, we show that the number n(n − 1) of candidates for a maximum can be

reduced to n(n− 1)/2.

2. Results. We start with the main result of the paper.

Theorem 2. Consider n× n matrices A(k,l) and A(l,k) and suppose that

(1) |ak,k|2 + P 2
l (A) > |al,l|2 + P 2

k (A).

Then

σ1(A
(k,l)) > σ1(A

(l,k)).

Proof. Without loss of generality, we set (k, l) = (1, 2). Applying the Perron-

Frobenius theorem to the nonnegative matrix (A(2,1))TA(2,1), we can deduce that

there exists a nonnegative unit vector x = (x1, . . . , xn)
T such that ‖A(2,1)‖2 =

‖A(2,1)x‖2.

Let us consider two cases. First, we assume that x2 > x1. Then

(2) σ2
1(A

(2,1)) = ‖A(2,1)x‖22 =

(|a11|2 + P 2
2 (A))x

2
1 +

(

|a22|2 + P 2
1 (A) +

n
∑

i=3

P 2
i (A)

)

x2
2+

n
∑

i=3

|aii|2x2
i + 2(|a11P1(A) + |a22|P2(A))x1x2 + 2

n
∑

i=3

|aii|Pi(A)x2xi.

From (1) we have

(3) |a11|2 + P 2
2 (A) = α+ |a22|2 + P 2

1 (A),

where α is a positive number. So, by (3), (2) becomes

σ2
1(A

(2,1)) = (|a22|2 + P 2
1 (A) + α)x2

1 +

(

|a11|2 + P 2
2 (A)− α+

n
∑

i=3

P 2
i (A)

)

x2
2+

n
∑

i=3

|aii|2x2
i + 2(|a11P1(A) + |a22|P2(A))x1x2 + 2

n
∑

i=3

|aii|Pi(A)x2xi,

which can be written as

(|a22|2 + P 2
1 (A))x

2
1 + α(x2

1 − x2
2) +

(

|a11|2 + P 2
2 (A) +

n
∑

i=3

P 2
i (A)

)

x2
2 +

n
∑

i=3

|aii|2x2
i+

2(|a11P1(A) + |a22|P2(A))x1x2 + 2

n
∑

i=3

|aii|Pi(A)x2xi,
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from which, keeping in mind that x2 > x1, we obtain

(4) σ2
1(A

(2,1)) <

(

|a11|2 + P 2
2 (A) +

n
∑

i=3

P 2
i (A)

)

x2
2+

(|a22|2 + P 2
1 (A))x

2
1 +

n
∑

i=3

|aii|2x2
i+

2(|a11P1(A) + |a22|P2(A))x1x2 + 2

n
∑

i=3

|aii|Pi(A)x2xi = ‖A(1,2)Px‖22,

where P is the permutation matrix P = (e2, e1, e3, . . . , en)
T with ei the i-th row of

the identity n× n matrix. So, from (4), we obtain

σ2
1(A

(2,1)) < ‖A(1,2)Px‖22 ≤ max
‖x̃‖2

2
=1

‖A(1,2)P x̃‖22 = σ2
1(A

(1,2)P )

and, as P is a unitary matrix, we finally get

(5) σ2
1(A

(2,1)) < σ2
1(A

(1,2)).

To prove the remaining case, assume that x1 ≥ x2. Then we have

‖A(1,2)x‖22 =

(

|a11|2 +
n
∑

i=2

P 2
i (A)

)

x2
1 + (|a22|2 + P 2

1 (A))x
2
2 +

n
∑

i=3

|aii|2x2
i+

2(|a11P1(A) + |a22|P2(A))x1x2 + 2
n
∑

i=3

|aii|Pi(A)x1xi,

which, as x1 ≥ x2, becomes

(6) ‖A(1,2)x‖22 ≥ (|a11|2 + P 2
2 (A))x

2
1 +

(

|a22|2 + P 2
1 (A) +

n
∑

i=3

P 2
i (A)

)

x2
2+

n
∑

i=3

|aii|2x2
i + 2(|a11P1(A) + |a22|P2(A))x1x2 + 2

n
∑

i=3

|aii|Pi(A)x2xi =

‖A(2,1)x‖22 = ‖A(2,1)‖22 = σ2
1(A

(2,1)).

So, from (6), we get

σ2
1(A

(1,2)) ≥ ‖A(1,2)x‖22 ≥ σ2
1(A

(2,1)),

which, together with (5), completes the proof.
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Clearly, in the case that

|all|2 + Pl(A)
2 6= |akk|2 + Pk(A)

2 (l, k ∈ {1, 2, . . . , n}, l 6= k),

then the number n(n−1) of possible optimizers for the largest singular value, obtained

in [3], can be reduced to the number n(n − 1)/2. The reduction of the number of

possible optimisers for the largest singular value to n(n − 1)/2 is also valid in the

case when |all|2 + Pk(A)
2 = |akk|2 + Pl(A)

2 for some l and k because in this case

the singular values of A(k,l) and A(l,k) are equal. To see it assume, without loss of

generality, that |a11|2 + P2(A)
2 = |a22|2 + P1(A)

2 and let P = [e2, e1, e3, ..., en] be

a permutation n-by-n matrix, where ei is the ith unit vector in Rn. Observing that

matrices A(1,2) and A(2,1)P differ only in the upper left 2-by-2 block, and by a direct

calculation and our assumption, we get

(A(1,2))TA(1,2) = PT (A(2,1))TA(2,1)P,

which implies the equality of singular values of A(1,2) and A(2,1).

Example 3. [3]. Let

A =





3 1 1

4 7 1

2 1 4



 .

Then (see Theorem 3 in [3]) the candidates for a solution of the“Motivating question”

of the Introduction are the matrices

A(1,2) =





3 2 0

5 7 0

3 0 4



, A(2,1) =





3 2 0

5 7 0

0 3 4



,

A(1,3) =





3 0 2

5 7 0

3 0 4



, A(3,1) =





3 0 2

0 7 5

3 0 4



,

A(2,3) =





3 2 0

0 7 5

0 3 4



, A(3,2) =





3 0 2

0 7 5

0 3 4



.

For matrices A(1,2) and A(2,1), A(1,3) and A(3,1), and A(2,3) and A(3,2), by Theo-

rem 2 we get 32+52 < 72+22, 32+32 < 22+42 and 72+32 > 52+42, respectively, and

therefore σ1(A
(1,2)) < σ1(A

(2,1)), σ1(A
(1,3)) < σ1(A

(3,1)) and σ1(A
(2,3)) > σ1(A

(3,2)).

So, we may reduce the number of candidates for a solution of the “Motivating ques-

tion” to the three matrices A(2,1), A(3,1), A(2,3) (in fact we have: σ1(A
(1,2)) = 9.4957,

σ1(A
(2,1)) = 9.6217, σ1(A

(1,3)) = 9.1407, σ1(A
(3,1)) = 9.1892, σ1(A

(2,3)) = 9.995,

σ1(A
(3,2)) = 9.9559).
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We also give a result on the spectral radius of a 3-by-3 nonnegative matrix that is

similar in character to the 3-by-3 case of Theorem 2 (note that for the case n = 3 the

assertion of Theorem 2 can be delivered by considering a relation between the largest

roots of characteristic polynomials of A(k,l) and A(l,k)).

Lemma 4. Let f1(x) = x3 − a1x
2 + a2x− a3 and f2(x) = x3 − a1x

2 + a2x− b3 be

real polynomials such that their maximum modulus roots x̃1 and x̂1, respectively, are

real and positive and let

(7) a3 > b3.

Then we have x̃1 > x̂1.

Proof. It is easy to see that both f1 and f2 are increasing functions either for any

x if a21 − 3a2 < 0 or for x ≥ a1+
√

a2

1
−3a2

3 , otherwise. Then, by (7) and the forms of f1
and f2, we get f2(x̃1) = a3 − b3 > 0 which, by the monotonicity of f2, completes the

proof.

Theorem 5. Let A = (ai,j) be a 3-by-3 nonnegative matrix and let Ã = (ãi,j)

be obtained from A by replacing an off-diagonal entry ai,j by aj,i and vice versa. If

detA > det Ã then

ρ(A) > ρ(Ã),

where ρ(X) denotes the spectral radius of a square matrix X.

Proof. We first observe that characteristic polynomials of A and Ã differ at most

in the constant term. So, using the Perron-Frobenius theory [1], the assertion follows

by applying Lemma 4.

Example 6. Let

A =





2 1 5

2 2 4

3 5 0



 .

Then, since A is nonnegative with row sums 8, ρ(A) = 8 (see also [4]). In this case

we have

Ã1 =





2 2 5

1 2 4

3 5 0



, Ã2 =





2 1 3

2 2 4

5 5 0



, Ã3 =





2 1 5

2 2 5

3 4 0



.

A direct calculation yields: detA = −8, det Ã1 = −21, det Ã2 = −20, and det Ã3 =

−15. So, following Theorem 5, we have the following inequalities:

ρ(A) > ρ(Ã3) > ρ(Ã2) > ρ(Ã1).

In fact we have: ρ(Ã3) = 7.92514, ρ(Ã2) = 7.870156, ρ(Ã1) = 7.859002.
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