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Abstract. In this paper, an iterative method to solve one kind of nonlinear matrix equation

is discussed. For each initial matrix with some conditions, the matrix sequences generated by the

iterative method are shown to lie in a fixed open ball. The matrix sequences generated by the

iterative method are shown to converge to the only solution of the nonlinear matrix equation in the

fixed closed ball. In addition, the error estimate of the approximate solution in the fixed closed ball,

and a numerical example to illustrate the convergence results are given.
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1. Introduction. We consider the nonlinear matrix equation

X +A∗X−nA = Q,(1.1)

where Q is an m×m positive definite matrix, A is an arbitrary real m×m matrix,

and n is a positive integer greater than 1.

The solution of the matrix equation (1.1) is a problem of practical importance. In

many physical applications, one must solve the system of the linear equation Mx = f ,

where the positive definite matrix M arises from a finite difference approximation to

an elliptic partial differential operator (e.g. see [2]). As an example, let

M =

(
I A

A∗ Q

)
.

Then M = M̃ + diag(I −Xn, 0), where

M̃ =

(
Xn A

A∗ Q

)
.
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If X is a positive solution to (1.1), then the LU decomposition of M̃ is

(
Xn A

A∗ Q

)
=

(
I 0

A∗X−n I

)(
Xn A

0 X

)
,

the system Mx = f is transformed to

[ (
I 0

A∗X−n I

)(
Xn A

0 X

)
+

(
I −Xn 0

0 0

) ]
x = f,

and the Sherman-Morrison-Woodbury formula [25] can be applied to compute the

solution of Mx = f directly, or based on the iterative formula

(
I 0

A∗X−n I

)(
Xn A

0 X

)
xk+1 = f −

(
I −Xn 0

0 0

)
xk, k = 0, 1, 2, . . .

to solve the system Mx = f . Another example is in control theory, see the references

given in [9].

Several authors have studied the existence, the rate of convergence as well as the

necessary and sufficient conditions of the positive definite solutions of (1.1) or similar

matrix equations. For example, the fixed point iteration methods to solve (1.1) have

been investigated in [6, 7, 14, 26]. The properties of the positive definite solutions of

(1.1) and the perturbation analysis of the solutions have been introduced in [23, 27].

Some special cases of (1.1) have been investigated. Fixed point iteration methods to

solve (1.1) in cases n = 2 and Q = I have been studied in [14, 28, 29, 36]. For the

case n = 1 or cases n = 1 and Q = I, fixed point iteration methods are considered

in [1, 4, 5, 11, 12, 15, 17, 19, 20, 22, 24, 32]. The inversion free variant of the basic

fixed point iteration methods are considered in [10, 16, 38]. Cyclic reduction methods

are considered in [18, 19, 32]. Properties of the positive definite solutions of (1.1)

and perturbation analysis of the solutions have been discussed in [20, 22, 24]. More

general cases have also been analyzed [3, 8, 21, 30, 33, 34, 35, 37].

In this paper, we consider Newton’s iterative method to solve the nonlinear matrix

equation (1.1). We show, for the given the initial matrixX0, that the matrix sequences

{Xk}
∞
k=0 generated by the iterative method are included in a fixed open ball B(X0, δ).

We also show that the {Xk}
∞
k=0 generated by the iterative method converges to the

only solution of the nonlinear matrix equation (1.1) in the fixed closed ball B(X0, δ).

In addition, the error estimate of the approximate solution in the fixed closed ball

B(X0, δ) is presented, and a numerical example to illustrate the convergence results

is given.

We use ‖A‖F and ‖A‖ to denote the Frobenius norm and the spectral norm of

the matrix A, respectively. The notation R
m×n and H

n×n denotes, respectively, the

set of all complex m × n matrices and all n × n Hermitian matrices. A∗ stands for
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the conjugate transpose of the matrix A. A⊗B stands for the Kronecker product of

the matrices A and B.

2. Covergence of the iterative methods. In this section, we discuss New-

ton’s iteration method to solve the nonlinear matrix equation (1.1), and show that

the iterates converge to the only solution of the nonlinear matrix equation (1.1) in a

fixed closed ball.

Let

F (X) = X +A∗X−nA−Q,

the matrix function F (X) is Frechet-differentiable at the nonsingular matrix X and

the Frechet-derivate is given by

F ′
X(E) = E −

n∑

i=1

A∗X−iEX−n−1+iA.(2.1)

We have the following lemmas.

Lemma 2.1. Let X be a nonsingular with n‖X−1‖n+1‖A‖2 < 1. Then the linear

operator F ′
X is nonsingular, and

‖(F ′
X)−1‖ ≤

1

1− n‖X−1‖n+1‖A‖2
.

Proof. The inequality

‖F ′
X(E)‖ = ‖E −

n∑

i=1

A∗X−iEX−n−1+iA‖

≥ ‖E‖ − ‖
n∑

i=1

A∗X−iEX−n−1+iA‖

≥ ‖E‖ − n‖X−1‖n+1‖A‖2‖E‖

and the assumption n‖X−1‖n+1‖A‖2 < 1 imply that F ′
X(E) = 0 if and only if E = 0,

that is, the operator F ′
X is an injection. Since F ′

X is a operator on the finite dimension

linear space Cn×n, F ′
X is a surjection. Therefore, F ′

X is nonsingular, and

‖(F ′
X)−1‖ =

1

min{‖F ′
X(H)‖/‖H‖ : H 6= 0}

≤
1

1− n‖X−1‖n+1‖A‖2
.

Lemma 2.2. For nonsingular matrices X and Y, we have

‖F ′
X − F ′

Y ‖ ≤ n‖A‖2(

n+1∑

i=1

‖X−1‖n+2−i‖Y −1‖i)‖X − Y ‖.(2.2)
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Proof. For an arbitrary matrix E, we have

‖(F ′
X − F ′

Y )(E)‖ = ‖
n∑

i=1

A∗X−iEX−n−1+iA−
n∑

i=1

A∗Y −iEY −n−1+iA‖

= ‖

n∑

i=1

A∗X−iEX−n−1+iA−

n∑

i=1

A∗X−iEY −n−1+iA

+
n∑

i=1

A∗X−iEY −n−1+iA−
n∑

i=1

A∗Y −iEY −n−1+iA‖

= ‖

n∑

i=1

A∗X−iE(X−n−1+i − Y −n−1+i)A+

n∑

i=1

A∗(X−i − Y −i)EY −n−1+iA‖

= ‖

n∑

i=1

A∗X−iE[

n−i∑

k=0

X−(n−i−k)(X−1 − Y −1)Y −k]A

+

n∑

i=1

A∗[

i−1∑

k=0

X−k(X−1 − Y −1)Y −(i−1−k)]EY −n−1+iA‖

= ‖

n∑

i=1

A∗X−iE[

n−i∑

k=0

X−(n−i−k+1)(Y −X)Y −k−1]A

+

n∑

i=1

A∗[

i−1∑

k=0

X−k−1(Y −X)Y −(i−k)]EY −n−1+iA‖

≤ ‖A‖2
n∑

i=1

(

n−i∑

k=0

‖X−1‖n−k+1‖Y −1‖k+1)‖X − Y ‖‖E‖

+‖A‖2
n∑

i=1

(

i−1∑

k=0

‖X−1‖k+1‖Y −1‖n−k+1)‖X − Y ‖‖E‖

= ‖A‖2
n∑

i=1

(
n−i∑

k=0

‖X−1‖n−k+1‖Y −1‖k+1)‖X − Y ‖‖E‖

+‖A‖2
n∑

i=1

(

n∑

k=n−i+1

‖X−1‖n−k+1‖Y −1‖k+1)‖X − Y ‖‖E‖

= ‖A‖2
n∑

i=1

(

n∑

k=0

‖X−1‖n−k+1‖Y −1‖k+1)‖X − Y ‖‖E‖

= n‖A‖2(

n+1∑

i=1

‖X−1‖n+2−i‖Y −1‖i)‖X − Y ‖‖E‖.

Therefore, (2.2) holds.
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The following lemma from [13, 31] will be useful to prove the next theoretical

results.

Lemma 2.3. Let A,B ∈ R
n×n and assume that A is invertible with ‖A−1‖ ≤ α.

If ‖A−B‖ ≤ β and αβ < 1, then B is also invertible, and ‖B−1‖ ≤ α/(1− αβ).

Applying Newton’s method to solve the nonlinear matrix equation (1.1), we have

Xk+1 = Xk − (F ′
Xk

)−1(F (Xk)), k = 0, 1, 2, . . .(2.3)

or equivalently,

Ek −

n∑

i=1

A∗X−i
k EkX

−n−1+i
k A = −F (Xk),(2.4)

Xk+1 = Xk + Ek, k = 0, 1, 2, . . .(2.5)

Letting

H(X) = (F ′
X0

)−1(F (X)),

we see that the Newton iterates for the matrix function H(X) coincide with those of

the matrix function F (X) since

Xk+1 −Xk = −(H ′
Xk

)−1(H(Xk)) = −(F ′
Xk

)−1(F (Xk)).(2.6)

Lemma 2.4. Let X0 be a nonsingular matrix such that

0 < δ =
(n+ 1)(‖X−1

0 ‖n‖A‖2 + ‖Q−X0‖)

1− n‖X−1
0 ‖n+1‖A‖2

<
1− (n‖X−1

0 ‖2δ2)1/(n+2)

‖X−1
0 ‖

(2.7)

holds, and let

B(X0, δ) = {X |‖X −X0‖ < δ}.

Then

(i) ‖H(X0)‖ ≤ δ
n+1 ;

(ii) ‖H ′
X −H ′

Y ‖ ≤ 1
δ ‖X − Y ‖ for all X,Y ∈ B(X0, δ);

(iii) ‖(H ′
X)−1‖ ≤ 1

1−‖X−X0‖/δ
for all X ∈ B(X0, δ);

(iv) ‖H(X)−H(Y )−H ′
Y (X − Y )‖ ≤ 1

2δ‖X − Y ‖2 for all X,Y ∈ B(X0, δ).

Proof. (i) By the definition of δ and the estimate obtained by Lemmas 2.1 and

2.2, we have

‖H(X0)‖ = ‖(F ′
X0

)−1(F (X0))‖
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≤ ‖(F ′
X0

)−1‖‖F (X0)‖

≤
1

1− n‖X−1
0 ‖n+1‖A‖2

.(‖X−1
0 ‖n‖A‖2 + ‖Q−X0‖)

=
‖X−1

0 ‖n‖A‖2 + ‖Q−X0‖

1− n‖X−1
0 ‖n+1‖A‖2

=
δ

n+ 1
.

(ii) Using the estimates obtained by Lemma 2.1 and 2.2, we have

‖H ′
X −H ′

Y ‖ = ‖(F ′
X0

)−1F ′
X − (F ′

X0
)−1F ′

Y ‖

≤ ‖(F ′
X0

)−1‖‖F ′
X − F ′

Y )‖

≤
1

1− n‖X−1
0 ‖n+1‖A‖2

.n‖A‖2(

n+1∑

i=1

‖X−1‖n+2−i‖Y −1‖i)‖X − Y ‖.

Since ‖X −X0‖ < δ, ‖Y −X0‖ < δ and ‖X−1
0 ‖δ < 1 − (n‖X−1

0 ‖2δ2)1/n+2 < 1, we

have by Lemma 2.3 that X and Y are both nonsingular, and ‖X−1‖ ≤
‖X−1

0
‖

1−‖X−1

0
‖δ
,

‖Y −1‖ ≤
‖X−1

0
‖

1−‖X−1

0
‖δ
. Therefore,

‖H ′
X −H ′

Y ‖ ≤
1

1− n‖X−1
0 ‖n+1‖A‖2

.
n(n+ 1)‖X−1

0 ‖n+2‖A‖2

(1− ‖X−1
0 ‖δ)n+2

.‖X − Y ‖

≤
1

1− n‖X−1
0 ‖n+1‖A‖2

.
n(n+ 1)‖X−1

0 ‖2(‖X−1
0 ‖n‖A‖2 + ‖Q−X0‖)

(1 − ‖X−1
0 ‖δ)n+2

.‖X − Y ‖

=
1

δ
.

n‖X−1
0 ‖2δ2

(1 − ‖X−1
0 ‖δ)n+2

.‖X − Y ‖

≤
1

δ
‖X − Y ‖.

(iii) According to the definition of the matrix function H(X), it is easy to get

‖(H ′
X0

)−1‖ = 1. The estimate (ii) implies that ‖H ′
X − H ′

X0
‖ ≤ 1

δ ‖X − X0‖ < 1

for all X ∈ B(X0, δ). Thus, we have by Lemma 2.3 that ‖(H ′
X)−1‖ ≤ 1

1−‖X−X0‖/δ

for all X ∈ B(X0, δ).

(iv) Using the Newton-Leibniz formula and (iii), we have

‖H(X)−H(Y )−H ′
Y (X − Y )‖ = ‖

∫ 1

0

(H ′
(1−t)Y +tX −H ′

Y )(X − Y )dt‖

≤ ‖X − Y ‖

∫ 1

0

‖H ′
(1−t)Y+tX −H ′

Y ‖dt

≤ ‖X − Y ‖2
∫ 1

0

tdt =
1

2δ
‖X − Y ‖2.

Lemma 2.5. Assume that the initial matrix X0 satisfies (2.7). Then the Newton’s

iterates Xk, k ≥ 0, for the matrix function H(X), and hence for the matrix function
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F (X), belong to the open ball B(X0, δ), and furthermore,

‖Xk −Xk−1‖ ≤
δ

2k−1(n+ 1)
, ‖Xk −X0‖ ≤ δ(1−

1

2k−1(n+ 1)
),

‖(H ′
Xk

)−1‖ ≤ 2k−1(n+ 1), ‖H(Xk)‖ ≤
δ

22k−1(n+ 1)2
.

hold for all k ≥ 1.

Proof. First, let us check that the above estimates hold for k = 1. Clearly,

the point X1 = X0 − (H ′
X0

)−1(H(X0)) = X0 − H(X0) is well defined since H ′
X0

is

invertible. Also

‖X1 −X0‖ = ‖H(X0)‖ ≤
δ

n+ 1
< δ(1−

1

n+ 1
),

and by (iii) of Lemma 2.4,

‖(H ′
X1

)−1‖ ≤
1

1− ‖X1 −X0‖/δ
≤ n+ 1.

By definition of X1, and by (iv) of Lemma 2.4 again,

‖H(X1)‖ = ‖H(X1)−H(X0)−H ′
X0

(X1 −X0)‖ ≤
1

2δ
‖X1 −X0‖

2 ≤
δ

2(n+ 1)2
.

Assume that the estimates hold for k = 1, 2, . . . ,m for some integer m ≥ 1. The

point Xm+1 = Xm − (H ′
Xm

)−1(H(Xm)) is thus well defined since H ′
Xm

is invertible.

Moreover, by the induction hypothesis and by estimates of (iii) of Lemma 2.4 (for the

third and fourth estimates),

‖Xm+1 −Xm‖ ≤ ‖(H ′
Xm

)−1‖‖H(Xm)‖ ≤
δ

2m(n+ 1)
,

‖Xm+1 −X0‖ ≤ ‖Xm −X0‖+ ‖Xm+1 −Xm‖

≤ δ(1−
1

2m−1(n+ 1)
) +

δ

2m(n+ 1)

= δ(1−
1

2m(n+ 1)
),

‖(H ′
Xm+1

)−1‖ ≤
1

1− ‖Xm+1 −X0‖/δ
≤ 2m(n+ 1),

‖H(Xm+1)‖ = ‖H(Xm+1)−H(Xm)−H ′
Xm

(Xm+1 −Xm)‖

≤
1

2δ
‖Xm+1 −Xm‖2 ≤

δ

22m+1(n+ 1)2
.
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Hence, the estimates also hold for k = m+ 1.

Lemma 2.6. Assume that the initial matrix X0 satisfies (2.7), then the Newton’s

iterates Xk, k ≥ 0, converges to a zero X̃ of H(X), and hence of F (X), which belongs

to the closed ball B(X0, δ). Moreover,

‖Xk − X̃‖ ≤
δ

2k−1(n+ 1)

for all k ≥ 0.

Proof. The estimates ‖Xk −Xk−1‖ ≤ δ
2k−1(n+1)

, k ≥ 1, established in Lemma 2.5

clearly imply that {Xk}
∞
k=1 is a Cauchy sequence. Since Xk ∈ B(X0, δ) ⊂ B(X0, δ)

and B(X0, δ) is a complete metric space (as a closed subset of the Banach space),

there exists X̃ ∈ B(X0, δ) such that

X̃ = lim
k→∞

Xk.

Since ‖H(Xk)‖ ≤ δ
22k−1(n+1)2 , k ≥ 1, by Lemma 2.5, and H(X) is a continuous

function,

H(X̃) = lim
k→∞

H(Xk) = 0.

Hence, the point X̃ is a zero of F (X).

Given integers k ≥ 1 and l ≥ 1, we have, again by Lemma 2.5,

‖Xk −Xk+l‖ ≤

l+p−1∑

j=k

‖Xj+1 −Xj‖ ≤
∞∑

j=k

δ

2j(n+ 1)
=

δ

2k−1(n+ 1)
,

so that, for each k ≥ 1,

‖Xk − X̃‖ = lim
k→∞

‖Xk −Xk+l‖ ≤
δ

2k−1(n+ 1)
.

Lemma 2.7. Assume that the initial matrix X0 satisfies (2.7), then the zero X̃

of H(X), and hence of F (X), in the closed ball B(X0, δ) unique.

Proof. We first show that, if Z̃ ∈ B(X0, δ) and H(Z̃) = 0, then

‖Xk − Z̃‖ ≤
δ

2k−1(n+ 1)

for all k ≥ 0. Clearly, this is true if k = 0; so assume that this inequality holds for

k = 1, 2, . . . ,m, for some integer m ≥ 0. Noting that we can write

Xm+1 − Z̃ = Xm − (H ′
Xm

)−1(H(Xm))− Z̃

= (H ′
Xm

)−1(H(Z̃)−H(Xm)−H ′
Xm

(Z̃ −Xm)),
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we infer from Lemma 2.4 and 2.5, and from induction hypothesis that

‖Xm+1 − Z̃‖ ≤ ‖(HXm
)−1‖

1

2δ
‖Z̃ −Xm‖2 ≤

δ

2m(n+ 1)
.

Hence, the inequality ‖Xk − Z̃‖ ≤ δ
2k−1(n+1)

holds for all k ≥ 1. Consequently,

lim
m→∞

‖Xm − Z̃‖ = ‖X̃ − Z̃‖ = 0,

which shows that Z̃ = X̃.

Lemmas 2.5-2.7 now imply the following.

Theorem 2.8. Assume that the initial matrix X0 satisfies (2.7). Then the

sequence {Xk}
∞
k=0 defined by (2.3) is such that Xk ∈ B(X0, δ) for all k ≥ 0 and con-

verges to a solution X̃ ∈ B(X0, δ) of the nonlinear matrix equation (1.1). Moreover,

for all k ≥ 0, ‖Xk − X̃‖ ≤ δ
2k−1(n+1)

, and the point X̃ is the only solution of the

nonlinear matrix equation (1.1) in B(X0, δ).

3. Numerical examples. In this section, we present a numerical example to

illustrate the convergence results of the Newton’s method to solve the equation (1.1).

Our computational experiments were performed on an IBM ThinkPad of mode T410

with 2.5 GHz and 3.0 RAM. All tests were performed in the MATLAB 7.1 with

a 32-bit Windows XP operating system. The following example we consider the

matrix equation (1.1) with n = 2, and use LSQR−M algorithm from [33] to solve the

subproblem (2.4) of the Newton’s method. For convenience, we let

A1 = −A∗X−1
k , A2 = −A∗X−2

k , B1 = X−2
k A,B2 = X−1

k A,C = −F (Xk).

Then the LSQR−M algorithm to solve the subproblem (2.4), that is,

E +A1EB1 +A2EB2 = C

can be described as follows.

LSQR−M:(Algorithm for solving the matrix equation (2.4) with n = 2)

(1) Initialization. Set initial matrix E0 ∈ Hn×n. Compute

β1 = ‖C − E0 −A1E0B1 −A2E0B2‖F ,

U1 = (C − E0 −A1E0B1 −A2E0B2)/β1,

α1 = ‖U1 +AT
1 U1B

T
1 +AT

2 U1B
T
2 ‖F ,

V1 = (U1 +AT
1 U1B

T
1 +AT

2 U1B
T
2 )/α1,

W1 = V1, φ̄1 = β1, ρ̄1 = α1.

(2) Iteration. For i = 1, 2, . . ., until the stopping criteria have been met
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(a) βi+1 = ‖Vi+A1ViB1+A2ViB2−αiUi‖F , Ui+1 = (Vi+A1ViB1+A2ViB2−

αiUi)/βi+1,

(b) αi+1 = ‖Ui+1 + AT
1 Ui+1B

T
1 + AT

2 Ui+1B
T
2 − βi+1Vi‖F , Vi+1 = (Ui+1 +

AT
1 Ui+1B

T
1 + AT

2 Ui+1B
T
2 − βi+1Vi)/αi+1.

(c) ρi = (ρ̄2i + β2
i+1)

1/2, ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1, ρ̄i+1 =

−ciαi+1, φi = ciφ̄i, φ̄i+1 = siφ̄i.

(d) Ei = Ei−1 + (φi/ρi)Wi,

(e) Wi+1 = Vi+1 − (θi+1/ρi)Wi.

The stopping criteria is used as |φk+1αk+1ck| ≤ 10−10 here. Other stopping criteria

can also be used, readers can see [33] for details.

Example 3.1. Let n = 2, and given matrices A and Q be as follows.

A =


−1.3963 1.9188 −0.0292 0.3194 0.1592 −1.1655 2.0658 −0.1693

0.7079 1.6776 −0.5023 1.6029 −0.6871 −0.9641 0.7161 −1.9080

−0.4926 1.3365 −0.3212 0.0105 −0.2489 0.6592 −0.2735 1.5914

−0.6207 0.3987 −0.6705 1.8185 −1.7459 −1.1328 0.8301 −0.8441

−0.7252 0.4953 −0.5459 1.4551 −1.5887 0.1873 −1.1764 1.0907

1.1012 −1.2551 0.6380 1.1176 −0.0156 1.7247 0.7847 0.4714

−2.1087 −1.4742 −1.4575 −0.7771 0.4571 0.4660 −0.2668 1.1529

1.8423 −0.9436 −0.7286 −0.9480 −0.5133 −0.3008 0.8891 −0.0295




,

Q =


11.5272 3.5007 1.8948 −0.5634 −0.0616 −1.8747 −3.6932 0.5252

3.5007 18.5143 3.5379 −1.9406 −2.7188 −5.8077 2.0738 −2.2306

1.8948 3.5379 10.4091 −0.8632 0.7259 −1.3282 −0.1856 0.0928

−0.5634 −1.9406 −0.8632 9.4153 −0.8946 0.4670 1.9463 1.0822

−0.0616 −2.7188 0.7259 −0.8946 11.5623 3.9067 −2.6642 1.8856

−1.8747 −5.8077 −1.3282 0.4670 3.9067 24.5212 −1.6249 −3.9570

−3.6932 2.0738 −0.1856 1.9463 −2.6642 −1.6249 20.0556 −2.3762

0.5252 −2.2306 0.0928 1.0822 1.8856 −3.9570 −2.3762 14.8961




.

By direct compute, we know that Q is a positive definite matrix, and the following

estimates hold:

δ =
(n+ 1)‖Q−1‖n‖A‖2

1− n‖Q−1‖n+1‖A‖2
= 1.7778 <

1− (n‖Q−1‖2δ2)1/(n+2)

‖Q−1‖
= 3.0523.

Hence, given matrices A and Q satisfy the condition of Theorem 2.8. Using Newton’s

method and iterate 4 steps, we have

X4 =
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11.3891 3.5530 1.8764 −0.5452 −0.0729 −1.8990 −3.6976 0.5792

3.5530 18.4520 3.5457 −1.9983 −2.6767 −5.7772 2.0723 −2.2291

1.8764 3.5457 10.3887 −0.8389 0.6987 −1.3395 −0.1831 0.0960

−0.5452 −1.9983 −0.8389 9.2778 −0.7866 0.5225 1.9495 1.1419

−0.0729 −2.6767 0.6987 −0.7866 11.4663 3.8653 −2.6763 1.8484

−1.8990 −5.7772 −1.3395 0.5225 3.8653 24.4734 −1.6015 −3.9995

−3.6976 2.0723 −0.1831 1.9495 −2.6763 −1.6015 19.9757 −2.3480

0.5792 −2.2291 0.0960 1.1419 1.8484 −3.9995 −2.3480 14.8018




,

with ‖X −A∗X−2A−Q‖F = 3.9450× 10−12, ‖X4 −Q‖ = 0.3142 < δ = 1.7778.

4. Conclusions. In this paper, Newton’s iterative method to solve the nonlinear

matrix equation X +A∗X−nA = Q is discussed. For the given initial matrix X0, the

results that the matrix sequences {Xk}
∞
k=0 generated by the iterative method are

included in the fixed open ball B(X0, δ)(Lemma 2.5) and that the matrix sequences

{Xk}
∞
k=0 generated by the iterative method converges to the only solution of the

matrix equation X + A∗X−nA = Q in the fixed closed ball B(X0, δ) (Lemmas 2.6

and 2.7) are proved. In addition, the error estimate of the approximate solution in

the fixed closed ball B(X0, δ) (Lemma 2.6), and a numerical example to illustrate the

convergence results are presented.

The advantage of Newton’s iterative method to solve the nonlinear matrix equa-

tion X + A∗X−nA = Q are that the fixed closed ball in which the unique solution

of the matrix equation included can be determined, the unique solution in the fixed

closed ball can be obtained, and the expression of the error estimate of the approxi-

mate solution in the fixed closed ball can be given.

Many tests show that, if the initial matrix X0 = Q, the sequence {Xk}
∞
k=0 defined

by (2.3) converges to the maximal positive definite solution XL of the nonlinear

matrix equation (1.1). If the initial matrixX0 = (AQ−1A∗)1/n, the sequence {Xk}
∞
k=0

defined by (2.3) converges to the minimal positive definite solutionXS of the nonlinear

matrix equation (1.1). Here the maximal (minimal) solution XL (XS) means that for

every positive definite solution Y of the nonlinear matrix equation (1.1) satisfiesXL ≥

Y (Y ≥ XS). That is, XL − Y (Y −XS) is a positive definite matrix. Unfortunately

these results can not be proved here.

The disadvantage is that the rate of convergence is relatively slower than some

existing fixed point iteration methods. This is because the inner iteration, that is,

LSQR−M algorithm may need to iterate many times to achieve the required accuracy.
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