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Abstra
t. In the present note, a new 
hara
terization of strong linearizations, 
orresponding

to a given regular polynomial matrix, is presented. A linearization of a regular polynomial matrix

is a matrix pen
il whi
h 
aptures the �nite spe
tral stru
ture of the original matrix, while a strong

linearization is one in
orporating its stru
ture at in�nity along with the �nite one. In this respe
t,

linearizations serve as a tool for the study of spe
tral problems where polynomial matri
es are

involved. In view of their appli
ations, many linearization te
hniques have been developed by several

authors in the re
ent years. In this note, a unifying approa
h is proposed for the 
onstru
tion of

strong linearizations aiming to serve as a bridge between approa
hes already known in the literature.
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1. Introdu
tion. Linearizations of polynomial matri
es play an important role

in the study of problems involving polynomial matri
es, whi
h arise naturally in

several �elds of engineering. For instan
e, in 
ontrol theory, analysis and synthesis

of a variety of 
ontrol problems 
an be addressed and solved using the polynomial

matrix framework (see for instan
e [4, 8, 16, 18℄). Me
hani
al systems are also a good

example of a topi
 where polynomial matri
es are involved (see e.g. [12℄) and the study

of the asso
iated polynomial eigenvalue problem plays a 
entral role. Despite the wide

development of polynomial matrix theory, most of the reliable numeri
al te
hniques

for the solution of su
h problems are available only for �rst order polynomial matri
es,

known in the literature as matrix pen
ils. A very 
ommon workaround to avoid this

di�
ulty, is the redu
tion of a higher order problem to an equivalent �rst order one.

This essentially involves the redu
tion of a given polynomial matrix to an �equivalent�

matrix pen
il, known as a linearization of the original one. The key property of a
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linearization is that it preserves 
ertain aspe
ts of the stru
tural invariants of the

original matrix, allowing this way its spe
tral stru
ture to be re
overed using well

established matrix pen
il te
hniques.

Having as a starting point a generalized, blo
k version of the well known Frobenius


ompanion forms (see [7℄), a variety of linearizations of a polynomial matrix 
an be

derived using linearization te
hniques, a �eld having re
eived the attention of many

authors in the re
ent years (see [1, 11, 13, 15, 19℄ and the referen
es therein). In

general, a linearization of a polynomial matrix, is a matrix pen
il whi
h 
an be usually


onstru
ted by inspe
tion from the 
oe�
ients of the polynomial matrix. Parti
ularly,

the standalone term �linearization�, refers to a matrix pen
il preserving only the

�nite eigenstru
ture of the the original matrix. However, polynomial matri
es possess

the unique feature of in
orporating eigenstru
ture at in�nity. In many appli
ations,

the stru
ture at in�nity models important aspe
ts of the systems in whi
h they are

involved. It is thus desired this type of stru
ture, to be present in the linearized

model. This justi�es the requirement for linearizations to preserve both the �nite and

in�nite eigenstru
ture of the polynomial matrix. Su
h linearizations are known in the

literature as strong linearizations. In the present paper, we attempt a uni�
ation of

existing strong linearization te
hniques, by generalizing the results presented in [3, 20℄

for the 2−D 
ase.

2. Mathemati
al ba
kground. In what follows R,C denote the �elds of real

and 
omplex numbers respe
tively, while F will be used to denote either of them. The

ring of polynomials in the indeterminate λ with 
oe�
ients from the �eld F, will be

denoted by F[λ] and the 
orresponding set of polynomial matri
es of dimensions p×q,

by F[λ]p×q
. The following de�nitions 
an be found in [18℄.

Definition 2.1. The degree of a polynomial matrix T (λ) ∈ F[λ]p×q
, denoted by

deg T (λ), is the highest among the degrees of the polynomial entries of T (λ).

Definition 2.2. A square polynomial matrix T (λ) ∈ F[λ]p×p
, is regular if there

exists λ0 ∈ C su
h that detT (λ0) 6= 0.

Moreover, if T (λ) is regular then T (λ) is invertible for almost all λ ∈ C. The �nite

eigenvalues or zeros of a regular T (λ) are the points λi ∈ C, for whi
h detT (λi) = 0.

Definition 2.3. A square polynomial matrix T (λ) ∈ F[λ]p×p
, is unimodular if

detT (λ) 6= 0, for all λ ∈ C.

Definition 2.4. The reverse or dual of a polynomial matrix T (λ) =
∑n

i=0 Tiλ
i ∈

F[λ]p×q
, with Tn 6= 0, is given by

revT (λ) = λnT (λ−1) =

n
∑

i=0

Tn−iλ
i. (2.1)
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It 
an be shown that if λ0 6= 0 is a �nite eigenvalue of revT (λ), then λ−1
0 is

a �nite eigenvalue of T (λ). In 
ase revT (λ) has a zero eigenvalue, the polynomial

matrix T (λ) is said to have an in�nite eigenvalue. The algebrai
, geometri
, and

partial multipli
ities of the in�nite eigenvalue of T (λ) are de�ned to be those of the

zero eigenvalue of revT (λ).

We re
all now some fa
ts related to the 
on
ept of linearization of a regular

polynomial matrix. A linearization is essentially a matrix pen
il, that is a �rst order

polynomial matrix, 
apturing the �nite eigenstru
ture of the polynomial matrix being

linearized. Its de�nition is given below.

Definition 2.5 (Linearization, [7℄). Let T (λ) =
∑n

i=0 Tiλ
i ∈ F[λ]p×p

, Tn 6= 0,

be a regular polynomial matrix. A matrix pen
il of the form L(λ) = λL1+L0, where

Li ∈ F
np×np

, i = 0, 1, is a linearization of T (λ), if there exist unimodular matri
es

U(λ), V (λ), of appropriate dimensions su
h that

U(λ)L(λ)V (λ) =

[

I(n−1)p 0

0 T (λ)

]

. (2.2)

It is worth noting that under 
ertain assumptions, namely when non-trivial in�-

nite eigenstru
ture is present in T (λ), it is possible to obtain matrix pen
ils L(λ) of

dimensions smaller than np× np, satisfying (2.2).

We now fo
us our attention on the blo
k versions of the well known �rst and

se
ond Frobenius 
ompanion forms, given by

C1(λ) = λ













Ip 0 · · · 0

0 Ip
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0 · · · 0 Tn













+











0 −Ip · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 −Ip

T0 T1 · · · Tn−1











, (2.3)

and

C2(λ) = λ













Ip 0 · · · 0

0 Ip
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0 · · · 0 Tn













+













0 · · · 0 T0

−Ip
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 Tn−2

0 · · · −Ip Tn−1













, (2.4)

respe
tively. These matrix pen
ils are known [7℄ to be linearizations of T (λ).

A linearization L(λ) and the original polynomial matrix T (λ) have identi
al (up

to trivial expansion) �nite eigenstru
tures. In the pro
ess of seeking linearizations of
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a polynomial matrix, it is often desired to obtain matrix pen
ils preserving both the

�nite and in�nite eigenstru
tures of the original matrix. This is the main feature of

strong linearizations introdu
ed below.

Definition 2.6 (Strong linearization, [14℄). A linearization L(λ) of T (λ) is a

strong linearization, if the matrix pen
il revL(λ) = L1 + λL0 is a linearization of the

polynomial matrix revT (λ) =
∑n

i=0 Tn−iλ
i
.

Both the �rst and se
ond Frobenius 
ompanion forms are known to be strong

linearizations of the polynomial matrix T (λ) (see for instan
e [17℄). Furthermore,

as a dire
t 
onsequen
e of the results in [17℄, every strong linearization is stri
tly

equivalent [6℄ to the �rst Frobenius 
ompanion form, that is, there exist 
onstant

invertible matri
es U, V su
h that

UL(λ)V = C1(λ). (2.5)

Clearly, sin
e a strong linearization L(λ) is an ordinary linearization as well, it

will preserve the �nite eigenstru
ture of the original polynomial matrix T (λ). The

preservation of the in�nite eigenstru
ture, is evident from the fa
t that revL(λ) is a

linearization of revT (λ) and the zero eigenvalue of revT (λ), gives rise to the in�nite

eigenvalue of T (λ).

A serious drawba
k of De�nition 2.6 is that in order to 
he
k whether a matrix

pen
il is a strong linearization of a given polynomial matrix, one has to verify that two

distin
t ordinary linearization de�nitions are satis�ed. A more 
ompa
t 
hara
teriza-

tion of pairs of polynomial matri
es sharing isomorphi
 �nite and in�nite elementary

divisors stru
tures 
an be found in [9℄ and [10℄, where the notion of divisor equiva-

len
e is introdu
ed. However, in the next se
tion we propose a new set of 
onditions,

whi
h turn out to be more 
onvenient for the purpose of 
hara
terizing the strong

linearizations of a regular polynomial matrix.

We 
on
lude this se
tion by introdu
ing the notation

Λk(λ) =
[

1 λ · · · λk
]T

⊗ Ip, (2.6)

for k = 0, 1, 2, . . . , and

Ek = ek ⊗ Ip, (2.7)

where ek, k = 1, 2, . . . , n, is the k-th 
olumn ve
tor of the identity matrix In and ⊗

denotes the Krone
ker produ
t.

3. Parametrization of strong linearizations. Our aim is to obtain a 
hara
-

terization of all strong linearizations 
orresponding to a regular polynomial matrix. In
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order to a

omplish this task, we introdu
e 
onditions relating a given regular poly-

nomial matrix T (λ) ∈ F[λ]p×p
with degT (λ) = n to a potential strong linearization,

that is a matrix pen
il L(λ) ∈ F[λ]np×np
.

Theorem 3.1. The matrix pen
il L(λ) = λL1 + L0, where Li ∈ Fnp×np
, is a

strong linearization of a regular T (λ) =
∑n

i=0 Tiλ
i ∈ F[λ]p×p

, with Tn 6= 0, if and only

if there exist matri
es BR(λ) =
∑n−1

i=0 BR,iλ
i ∈ F[λ]np×p

, with degBR(λ) = n − 1,

and KR ∈ Fnp×p
su
h that

1. L(λ)BR(λ) = KRT (λ),

2. V =
[

BR,0 BR,1 · · · BR,n−1

]

∈ Fnp×np
is invertible, and

3. L(λ) is regular.

Proof. (⇒) Let L(λ) be a strong linearization of T (λ). This implies (see [17℄)

that there exist invertible matri
es U, V su
h that

UL(λ)V = C1(λ), (3.1)

where C1(λ) is the �rst 
ompanion form whi
h is also a strong linearization of T (λ).

Now, in view of the spe
ial form of C1(λ), it is easy to verify that

C1(λ)Λn−1(λ) = EnT (λ) (3.2)

holds. Substituting (3.1) into (3.2), we get

UL(λ)V Λn−1(λ) = EnT (λ). (3.3)

Setting BR(λ) = V Λn−1(λ) and KR = U−1En, it is easy to verify that the matrix V


oin
ides with the one in 
ondition 2 and it is invertible, while 
ondition 1 is a dire
t


onsequen
e of (3.3). Finally, to verify that L(λ) is indeed regular, it su�
es to note

that due to (3.1), L(λ) is regular if and only if C1(λ) is regular, whi
h in turn is true

if and only if T (λ) is regular.

(⇐) Assume that there exist matri
esBR(λ),KR des
ribed in the statement of the

theorem satisfying 
onditions 1 - 3. Noti
e that BR(λ) = V Λn−1(λ), thus 
ondition

1 may be written in the form

L(λ)V Λn−1(λ) = KRT (λ). (3.4)

De�ne now the matri
es

NR(λ) =







λIp −Ip · · · 0
.

.

.

.

.

.

.

.

. 0

0 · · · λIp −Ip






= NR,0 + λNR,1 ∈ F[λ](n−1)p×np, (3.5)

T̄R(λ) =
[

T0, · · · Tn−2, Tn−1 + λTn

]

= T̄R,0 + λT̄R,1 ∈ F[λ]p×np, (3.6)
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and note that

C1(λ) =

[

NR(λ)

T̄R(λ)

]

, (3.7)

T (λ) = T̄R(λ)Λn−1(λ). (3.8)

Taking into a

ount (3.8), equation (3.4) be
omes

L(λ)V Λn−1(λ) = KRT̄R(λ)Λn−1(λ), (3.9)

or

(

L(λ)V −KRT̄R(λ)
)

Λn−1(λ) = 0, (3.10)

whi
h 
an be expanded to

[

L0V −KRT̄R,0, L1V −KRT̄R,1

]

[

E1 E2 · · · En 0

0 E1 E2 · · · En

]

= 0. (3.11)

It is easy to verify that the rows of the the matrix

[

NR,0, NR,1

]

form a basis for

the left null spa
e of

[

E1 E2 · · · En 0

0 E1 E2 · · · En

]

, and thus,

[

L0V −KRT̄R,0, L1V −KRT̄R,1

]

= XR

[

NR,0 NR,1

]

(3.12)

for some XR ∈ Fnp×(n−1)p
. Rewriting the above equation in pen
il form, reads

L(λ)V = XRNR(λ) +KRT̄R(λ), (3.13)

or

L(λ)V =
[

XR, KR

]

[

NR(λ)

T̄R(λ)

]

. (3.14)

Setting U =
[

XR KR

]

while taking into a

ount (3.7), we may write (3.14) in the

form

L(λ)V = UC1(λ). (3.15)

We show now that U is invertible. Indeed, if x ∈ Fnp
su
h that xTU = 0, then

premultiplying both sides of (3.15) would give xTL(λ)V = 0, for all λ ∈ C, whi
h

in turn due to the invertibilty of V (Condition 2), would give xTL(λ) = 0, for all

λ ∈ C. This last assertion 
ontradi
ts the regularity assumption of L(λ) (Condition

3). Hen
e, x = 0, or equivalently, U is invertible.
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Thus, in view of (3.15), L(λ) is stri
tly equivalent to C1(λ) and hen
e a strong

linearization of T (λ).

A dual version of Theorem 3.1 also holds. Its statement is as follows.

Theorem 3.2. The matrix pen
il L(λ) = λL1 + L0, where Li ∈ Fnp×np
, is

a strong linearization of a regular T (λ) =
∑n

i=0 Tiλ
i
, with Tn 6= 0, if and only if

there exist matri
es BL(λ) =
∑n−1

i=0 BL,iλ
i ∈ F[λ]p×np

, with degBL(λ) = n− 1, and

KL ∈ Fp×np
su
h that

1. BL(λ)L(λ) = T (λ)KL,

2. U =
[

BT
L,0 BT

L,1 · · · BT
L,n−1

]T

∈ Fnp×np
is invertible, and

3. L(λ) is regular.

Proof. The proof is similar to that of Theorem 3.1.

We explore now the relation between the parametrization of linearizations derived

from Theorems 3.1 and 3.2 and the ve
tor spa
es of linearizations proposed in [15℄.

The ve
tor spa
es L1(T ), L2(T ) asso
iated to the polynomial matrix T (λ), de�ned

in [15℄ (with slightly modi�ed notation in order to 
onform to the 
urrent setup), as

follows:

L1(T ) = {L(λ) : L(λ)Λ̄n−1(λ) = v ⊗ T (λ), v ∈ R
n}, (3.16)

L2(T ) = {L(λ) : Λ̄T
n−1(λ)L(λ) = wT ⊗ T (λ), w ∈ R

n}, (3.17)

where Λ̄k(λ) = revΛk(λ). The ve
tors v, w are referred to as �right ansatz� and �left

ansatz� ve
tors. Provided that T (λ) is regular, it is shown in [15℄ that almost all

pen
ils L(λ), in L1(T ) and L2(T ) are linearizations. Parti
ularly, it has been shown

that if T (λ) is regular, a pen
il L(λ) ∈ Li(T ), i = 1, 2, is a strong linearization if and

only if L(λ) is regular as well.

The ve
tor spa
es of linearizations introdu
ed in [15℄ 
an be derived as spe
ial


ases from Theorems 3.1 and 3.2 presented above. It is easy to see that L(λ) ∈ L1(T )

if and only if 
onditions 1 and 2 of Theorem 3.1 are met by setting BR(λ) = Λ̄n−1(λ)

and KR = v ⊗ Ip. Moreover, if a parti
ular L(λ) ∈ L1(T ) is regular, that is, if it

satis�es 
ondition 3 of Theorem 3.1 as well, then it is a strong linearization of T (λ),

a result that is in full a

ordan
e with the 
hara
terization given in [15℄. Similar

observations 
an be made about the derivation of the members of L2(T ) through the

use of Theorem 3.2.

Another interesting family of strong linearizations is the one of generalized Fiedler

linearizations introdu
ed in [1℄ as an extension of the 
onstru
tion of 
ompanion
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matri
es for s
alar polynomials, presented by M. Fiedler in [5℄, to the polynomial

matrix 
ase. Generalized Fiedler linearizations 
an be derived using the te
hnique

proposed above as shown in the following example.

Example 3.3. Let T (λ) be a regular polynomial matrix for n = 5. The strong

Fiedler linearization 
orresponding to the index permutation I = (3, 4, 1, 2, 0) (see

[1℄)

LI(λ) =















λIp 0 −Ip 0 0

T0 λIp T1 0 0

0 0 λIp 0 −Ip

0 −Ip T2 λIp T3

0 0 0 −Ip T4 + λT5















, (3.18)

whi
h is regular, 
an be re
overed using Theorem 3.1, by setting

BR(λ) =















(µ− λ2)Ip
µ(T2λ+ T3λ

2 + T4λ
3 + T5λ

4) + T0λ+ T1λ
2

(λµ− λ3)Ip
µ(T4λ

2 + T5λ
3) + T0 + T1λ+ T2λ

2 + T3λ
3

(λ2µ− λ4)Ip















, (3.19)

for some µ ∈ F and KR =
[

0 µIp 0 0 −Ip
]T
. The matrix V 
orresponding

to the above 
hoi
e of BR(λ) in 
ondition 2 of Theorem 3.1, 
an be shown to be

invertible for almost every

1 µ ∈ F.

Many other 
hoi
es of BR(λ), beyond the ones shown above are possible. We

shall only illustrate this possibility by providing an indi
ative example. However, a

more systemati
 approa
h for the derivation of more families of matrix pen
ils would

be desirable. Su
h a perspe
tive is 
urrently under investigation by the authors.

Example 3.4. Let T (λ) be a regular polynomial matrix for n = 5, and assume

further that T2 is invertible. Now let

BR(λ) =
[

Ip λIp λ2T T
2 λ3Ip λ4Ip

]T
, (3.20)

KR =
[

0 0 0 0 Ip
]T

. (3.21)

1

It 
an be shown that V = −V1(
√
µ)V2(−

√
µ), where

V1(λ) =













λIp 0 −Ip 0 0

T0 λIp T1 0 0

0 0 λIp −Ip 0

0 −Ip T2 λT4 + T3 λT5
0 0 0 λIp −Ip













, V2(λ) =













λIp −Ip 0 0 0

T0 T1 + λT2 λT3 λT4 λT5
0 λIp −Ip 0 0

0 0 λIp −Ip 0

0 0 0 λIp −Ip













are themselves Fiedler linearizations of T (λ) (see [1℄). As long as µ is 
hosen su
h that ±√
µ avoid

the eigenvalues of T (λ), V is nonsingular.
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The matrix V 
orresponding to the above 
hoi
e of BR(λ), in 
ondition 2 of Theorem

3.1, is 
learly invertible. With this setup, Theorem 3.1 implies that the matrix pen
il

L(λ) =















λIp −Ip 0 0 0

0 λT2 −Ip 0 0

0 0 λIp −T2 0

0 0 0 λIp −Ip

T0 T1 Ip T3 T4 + λT5















(3.22)

is a strong linearization of T (λ).

Applying 
olumn or row shifted sums (see [15℄) on the 
oe�
ient matri
es of the

pen
il in the above example, it is easy to verify the latter is neither a member of

L1(T ) nor L2(T ). Furthermore, it 
an be easily 
he
ked that the above pen
il is not

a member of the families introdu
ed in [1℄ and [19℄.

4. Con
lusions. A uni�ed approa
h to the problem of 
hara
terizing and pa-

rameterizing all strong linearizations of a given polynomial matrix has been proposed.

Sin
e the question of �nding strong linearizations of a polynomial matrix involves the

preservation of both �nite and in�nite eigenstru
tures, a set of ne
essary and su�-


ient 
onditions has been derived to a

omplish this task. This type of 
onditions, is

shown to provide a framework wide enough to 
hara
terize and parametrize all strong

linearizations of a given regular polynomial matrix.

Existing families of strong linearizations su
h as those presented in [15℄ �t natu-

rally in the proposed framework. However, as shown in Example 3.3 the derivation

of the matri
es involved in the parametrization of generalized Fielder pen
ils [1℄ is

rather 
ompli
ated. A systemati
 method for the derivation of all types of generalized

Fiedler pen
ils (see [1, 2, 19℄) is under investigation by the authors.

A
knowledgment. The authors would like to thank the anonymous referee for

his/her 
onstru
tive 
omments and re
ommendations in the formulation of the results.

REFERENCES

[1℄ E.N. Antoniou and S. Vologiannidis. A new family of 
ompanion forms of polynomial matri
es.

Ele
troni
 Journal of Linear Algebra, 11:78�87, 2004.

[2℄ E.N. Antoniou and S. Vologiannidis. Linearizations of polynomial matri
es with symmetries

and their appli
ations. Ele
troni
 Journal of Linear Algebra, 15:107�114, 2006.

[3℄ E.N. Antoniou and S. Vologiannidis. On the parametrization of linearizations of polynomial ma-

tri
es. Pro
eedings of the 22nd Mediterranean Conferen
e on Control Automation (MED),

Palermo, Italy, 316�321, 2014.

[4℄ P.J. Antsaklis and A.N. Mi
hel. Linear Systems, 
orre
ted edition. Birkhäuser, Boston, 2005.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 610-619, September 2016

http:/repository.uwyo.edu/ela



ELA

On the Chara
terization of Strong Linearizations of Regular Polynomial Matri
es 619

[5℄ M. Fiedler. A note on 
ompanion matri
es. Linear Algebra and its Appli
ations, 372:325�331,

2003, doi:10.1016/S0024-3795(03)00548-2.

[6℄ F.R. Gantma
her. The Theory of Matri
es. Chelsea Publishing Company, New York, 1959.

[7℄ I. Gohberg, P. Lan
aster, and L. Rodman.Matrix Polynomials. A
ademi
 Press In
, New York,

1982.

[8℄ T. Kailath. Linear Systems. Prenti
e Hall, Englewood Cli�s, 1980.

[9℄ N.P. Karampetakis and S. Vologiannidis. In�nite elementary divisor stru
ture-preserving trans-

formations for polynomial matri
es. International Journal of Applied Mathemati
s and

Computer S
ien
e, 13:493�504, 2003.

[10℄ N.P. Karampetakis, S. Vologiannidis, and A.I.G. Vardulakis. A new notion of equivalen
e

for dis
rete time AR representations. International Journal of Control, 77:584�597, 2004,

doi:10.1080/002071709410001703223.

[11℄ P. Lan
aster. Linearization of regular matrix polynomials. Ele
troni
 Journal of Linear Algebra,

17:21�27, 2008.

[12℄ P. Lan
aster. Lambda-Matri
es and Vibrating Systems. Courier Corporation, 2011.

[13℄ P. Lan
aster and U. Prells. Isospe
tral families of high-order systems. Zeits
hrift fur Ange-

wandte Mathematik und Me
hanik (ZAMM), 87:219�234, 2007.

[14℄ P. Lan
aster and P. Psarrakos. A note on weak and strong linearizations of regular matrix

polynomials, MIMS EPrint 2006.72, Man
hester Institute for Mathemati
al S
ien
es, Uni-

versity of Man
hester, Man
hester, UK, 2006.

[15℄ D.S. Ma
key, N. Ma
key, C. Mehl, and V. Mehrmann. Ve
tor spa
es of linearizations for matrix

polynomials. SIAM Journal on Matrix Analysis and Appli
ations, 28:971�1004, 2006.

[16℄ H.H. Rosenbro
k. State Spa
e and Multivariable Theory. Nelson, London, 1970.

[17℄ A. Vardulakis and E.N. Antoniou. Fundamental equivalen
e of dis
rete-time AR representa-

tions. International Journal of Control, 76:1078�1088, 2003.

[18℄ A.I.G. Vardulakis. Linear Multivariable Control: Algebrai
 Analysis and Synthesis Methods.

John Wiley & Sons, Chi
hester, 1991.

[19℄ S. Vologiannidis and E.N. Antoniou. A permuted fa
tors approa
h for the linearization of

polynomial matri
es. Mathemati
s of Control, Signals, and Systems, 22:317�342, 2011,

doi:10.1007/s00498-011-0059-6.

[20℄ S. Vologiannidis, E.N. Antoniou, and M. Kasidiaris. Zero 
oprime equivalent matrix pen
ils of

a 2-D polynomial matrix. Pro
eedings of the 7th International Workshop on Multidimen-

sional (nD) Systems, Poitiers, Fran
e, 1�5, 2011, doi:10.1109/nDS.2011.6076868.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 610-619, September 2016

http:/repository.uwyo.edu/ela


