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ON THE CHARACTERIZATION OF STRONG LINEARIZATIONS
OF REGULAR POLYNOMIAL MATRICES*

E. ANTONIOUT AND S. VOLOGIANNIDIS!

Abstract. In the present note, a new characterization of strong linearizations, corresponding
to a given regular polynomial matrix, is presented. A linearization of a regular polynomial matrix
is a matrix pencil which captures the finite spectral structure of the original matrix, while a strong
linearization is one incorporating its structure at infinity along with the finite one. In this respect,
linearizations serve as a tool for the study of spectral problems where polynomial matrices are
involved. In view of their applications, many linearization techniques have been developed by several
authors in the recent years. In this note, a unifying approach is proposed for the construction of
strong linearizations aiming to serve as a bridge between approaches already known in the literature.

Key words. Polynomial matrices, Matrix pencils, Strong linearizations, Parametrization of
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AMS subject classifications. 15A21, 15A22, 15A54, 93B18.

1. Introduction. Linearizations of polynomial matrices play an important role
in the study of problems involving polynomial matrices, which arise naturally in
several fields of engineering. For instance, in control theory, analysis and synthesis
of a variety of control problems can be addressed and solved using the polynomial
matrix framework (see for instance [4} [8 (16 18]). Mechanical systems are also a good
example of a topic where polynomial matrices are involved (see e.g. [12]) and the study
of the associated polynomial eigenvalue problem plays a central role. Despite the wide
development of polynomial matrix theory, most of the reliable numerical techniques
for the solution of such problems are available only for first order polynomial matrices,
known in the literature as matrix pencils. A very common workaround to avoid this
difficulty, is the reduction of a higher order problem to an equivalent first order one.
This essentially involves the reduction of a given polynomial matrix to an “equivalent”
matrix pencil, known as a linearization of the original one. The key property of a
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linearization is that it preserves certain aspects of the structural invariants of the
original matrix, allowing this way its spectral structure to be recovered using well
established matrix pencil techniques.

Having as a starting point a generalized, block version of the well known Frobenius
companion forms (see [7]), a variety of linearizations of a polynomial matrix can be
derived using linearization techniques, a field having received the attention of many
authors in the recent years (see [I, 11l 13, A5, 9] and the references therein). In
general, a linearization of a polynomial matrix, is a matrix pencil which can be usually
constructed by inspection from the coefficients of the polynomial matrix. Particularly,
the standalone term “linearization”, refers to a matrix pencil preserving only the
finite eigenstructure of the the original matrix. However, polynomial matrices possess
the unique feature of incorporating eigenstructure at infinity. In many applications,
the structure at infinity models important aspects of the systems in which they are
involved. It is thus desired this type of structure, to be present in the linearized
model. This justifies the requirement for linearizations to preserve both the finite and
infinite eigenstructure of the polynomial matrix. Such linearizations are known in the
literature as strong linearizations. In the present paper, we attempt a unification of
existing strong linearization techniques, by generalizing the results presented in [3],20]
for the 2 — D case.

2. Mathematical background. In what follows R, C denote the fields of real
and complex numbers respectively, while F will be used to denote either of them. The
ring of polynomials in the indeterminate A with coefficients from the field F, will be
denoted by F[A] and the corresponding set of polynomial matrices of dimensions p x ¢,
by F[A]P*4. The following definitions can be found in [I8].

DEFINITION 2.1. The degree of a polynomial matrix T'()\) € F[A\JP*9, denoted by
deg T'()), is the highest among the degrees of the polynomial entries of T'(\).

DEFINITION 2.2. A square polynomial matrix T'(\) € F[A]P*P, is regular if there
exists A\g € C such that det T'(\g) # 0.

Moreover, if T'()) is regular then T'()) is invertible for almost all A € C. The finite
eigenvalues or zeros of a regular T'(\) are the points A; € C, for which det T'(\;) = 0.

DEFINITION 2.3. A square polynomial matrix T'(\) € F[A\JP*?, is unimodular if
det T'(A) # 0, for all A € C.

DEFINITION 2.4. The reverse or dual of a polynomial matrix T(\) = > i T;\" €
F[A]P*1, with T, # 0, is given by

revI'(A) = A"T(A\7 1) = zn:Tn,ix'. (2.1)
=0
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It can be shown that if A\g # 0 is a finite eigenvalue of revT'()\), then \;' is
a finite eigenvalue of T'(\). In case revT'(\) has a zero eigenvalue, the polynomial
matrix T'(A) is said to have an infinite eigenvalue. The algebraic, geometric, and
partial multiplicities of the infinite eigenvalue of T'(\) are defined to be those of the
zero eigenvalue of revT'(A).

We recall now some facts related to the concept of linearization of a regular
polynomial matrix. A linearization is essentially a matrix pencil, that is a first order
polynomial matrix, capturing the finite eigenstructure of the polynomial matrix being
linearized. Its definition is given below.

DEFINITION 2.5 (Linearization, [7]). Let T(\) = Y"1 T;\" € F[AJP*P, T,, # 0,
be a regular polynomial matrix. A matrix pencil of the form L(\) = AL; + Lo, where
L; e F"P*"P 4 = 0,1, is a linearization of T()), if there exist unimodular matrices
U(X), V()N), of appropriate dimensions such that

ULV () = [IW(—)W T?AJ . (2.2)

It is worth noting that under certain assumptions, namely when non-trivial infi-
nite eigenstructure is present in T'(\), it is possible to obtain matrix pencils L(\) of
dimensions smaller than np x np, satisfying (22).

We now focus our attention on the block versions of the well known first and
second Frobenius companion forms, given by

I, 0 - 0 0 I, - 0
Ci(A) =\ 0 1 + ' : (2.3)
: 0 0 0 -1,
0 0o T, To T - Th
and
I, 0 - 0 0O --- 0 T
I —1I
oy =a| 0 I +| . (24
. Ry . 0 . 0 Th_o
0 --- 0o T, 0 s =D, Thy

respectively. These matrix pencils are known [7] to be linearizations of T'(\).

A linearization L(\) and the original polynomial matrix 7'(\) have identical (up
to trivial expansion) finite eigenstructures. In the process of seeking linearizations of
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a polynomial matrix, it is often desired to obtain matrix pencils preserving both the
finite and infinite eigenstructures of the original matrix. This is the main feature of
strong linearizations introduced below.

DEFINITION 2.6 (Strong linearization, [14]). A linearization L(A) of T'(\) is a
strong linearization, if the matrix pencil revL()\) = L1 + ALy is a linearization of the
polynomial matrix revl'(A) = Y7 T, \'.

Both the first and second Frobenius companion forms are known to be strong
linearizations of the polynomial matrix T'(\) (see for instance [I7]). Furthermore,
as a direct consequence of the results in [I7], every strong linearization is strictly
equivalent [6] to the first Frobenius companion form, that is, there exist constant
invertible matrices U, V' such that

ULV = Ci (V). (2.5)

Clearly, since a strong linearization L()) is an ordinary linearization as well, it
will preserve the finite eigenstructure of the original polynomial matrix T(A). The
preservation of the infinite eigenstructure, is evident from the fact that revL()) is a
linearization of revl’(\) and the zero eigenvalue of revT'(\), gives rise to the infinite
eigenvalue of T'(\).

A serious drawback of Definition is that in order to check whether a matrix
pencil is a strong linearization of a given polynomial matrix, one has to verify that two
distinct ordinary linearization definitions are satisfied. A more compact characteriza-
tion of pairs of polynomial matrices sharing isomorphic finite and infinite elementary
divisors structures can be found in [9] and [I0], where the notion of divisor equiva-
lence is introduced. However, in the next section we propose a new set of conditions,
which turn out to be more convenient for the purpose of characterizing the strong
linearizations of a regular polynomial matrix.

We conclude this section by introducing the notation

M) =[1 A - )T e, (2.6)

for k=0,1,2,..., and
Er = e @ I, (2.7)
where e, k = 1,2,...,n, is the k-th column vector of the identity matrix I,, and ®

denotes the Kronecker product.

3. Parametrization of strong linearizations. Our aim is to obtain a charac-
terization of all strong linearizations corresponding to a regular polynomial matrix. In
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order to accomplish this task, we introduce conditions relating a given regular poly-
nomial matrix 7'(\) € F[A]P*P with degT'(\) = n to a potential strong linearization,
that is a matrix pencil L(\) € F[A]"P*"P,

THEOREM 3.1. The matriz pencil L(A) = ALy + Lo, where L; € F"P*"P_ s q
strong linearization of a reqular T(X) = Y7 T;\" € F[NP*P, with T,, # 0, if and only
if there exist matrices Br(\) = S.1—) Bri\' € FN"*P, with deg Br(\) = n — 1,
and Kg € F"PXP gych that

1. L(A)Bgr(\) = KrT(N),
2.V =[ Bro Bri -+ Bpran-1 | €F"*" is invertible, and
3. L(\) is regular.

Proof. (=) Let L(\) be a strong linearization of T(A). This implies (see [17])
that there exist invertible matrices U, V such that

ULV = O (V) (3.1)

where Cy () is the first companion form which is also a strong linearization of T'(A).
Now, in view of the special form of C;()), it is easy to verify that

Ci(MAn—1(N) = E,T(N) (3.2)
holds. Substituting (B1) into ([B.2), we get
ULM\VA,_1(\) = E,T(N). (3.3)

Setting Br(\) = VA, _1(\) and Kg = U'E,, it is easy to verify that the matrix V
coincides with the one in condition 2 and it is invertible, while condition 1 is a direct
consequence of (33). Finally, to verify that L()) is indeed regular, it suffices to note
that due to (31)), L(\) is regular if and only if C;()) is regular, which in turn is true
if and only if T'(\) is regular.

(«<=) Assume that there exist matrices Br(\), K described in the statement of the
theorem satisfying conditions 1 - 3. Notice that Br(\) = VA,,_1()\), thus condition
1 may be written in the form

LNVA,—1(X) = KgT()). (3.4)
Define now the matrices
A, —-I, --- 0
NeN)=| : . . o | =Ngo+ANg1eF\r-Dpxnr (3.5)
0 A, —I,

TrN) = To, -+ Ta-2, Tho1+ AT, | =Tro+ ATr1 € FINP*"2, (3.6)
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and note that

_ | Nr(Y)
T(A) = Tr(NAn-1(N). (3-8)
Taking into account ([B.8), equation (B:4]) becomes
LNVA,_1(A) = KpTr(A\)An—1(N), (3.9)
or
(LYW = KrTr(N) A1 (V) = 0, (3.10)
which can be expanded to
N B E, Ey, --- E, 0 .
[ LoV — KgTro, L1V — KpTgr1 | { 0 B, By - E, =0. (3.11)

It is easy to verify that the rows of the the matrix [ Ngo, Ng; | form a basis for

the left null space of E(;)l gj E2 En Eon ], and thus,
[ LoV — KgTro, L1V —KgTr1 | =Xr[ Nro Nr1 | (3.12)

for some X € F"»*(»=1P_ Rewriting the above equation in pencil form, reads

or
LV =[ Xg, Kgr | [ Jz\fg((:)) } : (3.14)

Setting U = [ Xr Kp | while taking into account (3.7), we may write .I4) in the
form

LV =UC(N). (3.15)

We show now that U is invertible. Indeed, if z € F™ such that 27U = 0, then
premultiplying both sides of (3I5) would give 7 L(A\)V = 0, for all A\ € C, which
in turn due to the invertibilty of V' (Condition 2), would give 27 L()\) = 0, for all
A € C. This last assertion contradicts the regularity assumption of L(A) (Condition
3). Hence, = 0, or equivalently, U is invertible.
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Thus, in view of BI3), L(A) is strictly equivalent to C1(\) and hence a strong
linearization of T'(A). O

A dual version of Theorem [B.1] also holds. Its statement is as follows.

THEOREM 3.2. The matriz pencil L(A\) = AL, + Lo, where L; € F"PX"P g
a strong linearization of a reqular T(\) = Y_» (T;\', with T, # 0, if and only if
there exist matrices Br(\) = Z?;OI B i\t € FINP*™P | with deg BL(\) = n — 1, and
K € FPX"P gych that

1. BL(O)L(\) = TWKy,

T
2. U= [ Bg70 Bg’l Bg,nfl € F"PX"P js jnvertible, and

3. L(X) is regular.
Proof. The proof is similar to that of Theorem 3.1l O

We explore now the relation between the parametrization of linearizations derived
from Theorems [3.1] and and the vector spaces of linearizations proposed in [15].
The vector spaces Ly (T), Lo(T) associated to the polynomial matrix T()), defined
in [I5] (with slightly modified notation in order to conform to the current setup), as
follows:

Ly(T) = {L(\) : L) An_1(\) = v® T(\),v € R"}, (3.16)

Ly(T) = {L(\) : AT_ (ML) = w? @ T(\),w € R"}, (3.17)

where Ag()\) = revAi()\). The vectors v, w are referred to as “right ansatz” and “left
ansatz” vectors. Provided that T'()) is regular, it is shown in [15] that almost all
pencils L(A), in Ly (T) and Lo(T) are linearizations. Particularly, it has been shown
that if T'(\) is regular, a pencil L(\) € L;(T), ¢ = 1,2, is a strong linearization if and
only if L(\) is regular as well.

The vector spaces of linearizations introduced in [I5] can be derived as special
cases from Theorems [3.I] and [3:2] presented above. It is easy to see that L(\) € L, (T)
if and only if conditions 1 and 2 of Theorem .1l are met by setting Br(\) = A,_1(\)
and Kr = v ® I,. Moreover, if a particular L(\) € L;(T) is regular, that is, if it
satisfies condition 3 of Theorem Bl as well, then it is a strong linearization of T'()),
a result that is in full accordance with the characterization given in [I5]. Similar
observations can be made about the derivation of the members of L»(T") through the
use of Theorem

Another interesting family of strong linearizations is the one of generalized Fiedler
linearizations introduced in [I] as an extension of the construction of companion
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matrices for scalar polynomials, presented by M. Fiedler in [5], to the polynomial
matrix case. Generalized Fiedler linearizations can be derived using the technique
proposed above as shown in the following example.

EXAMPLE 3.3. Let T'(A\) be a regular polynomial matrix for n = 5. The strong
Fiedler linearization corresponding to the index permutation Z = (3,4,1,2,0) (see

)

M, 0 —I, 0 0
T, M, T, 0 0
Lr(\) = 0 M, 0 -1, |, (3.18)

0
0 I, T, M, Ty
0 0 0 —I, Tyi+ATs

which is regular, can be recovered using Theorem [B.1] by setting

(n = N)I
(T 4 T3 4 TyA3 + Ts M) + To\ + T1 M2
Br()) = (A= N, . (319)
/L(T4)\2 + T5)\3) + TO + Tl)\ + TQ)\2 + 1—‘3)\3
(A2 — AN,
for some p € F and Kg = [ 0 wl, 0 0 —I, }T. The matrix V corresponding
to the above choice of Br(\) in condition 2 of Theorem Bl can be shown to be
invertible for almost ever wel.

Many other choices of Bg()), beyond the ones shown above are possible. We
shall only illustrate this possibility by providing an indicative example. However, a
more systematic approach for the derivation of more families of matrix pencils would
be desirable. Such a perspective is currently under investigation by the authors.

EXAMPLE 3.4. Let T'(\) be a regular polynomial matrix for n = 5, and assume
further that 7% is invertible. Now let

T
Br(\) =[ I, M, XTI NI, X1, ], (3.20)
T
Kr=[0 0 0 0 I, ] . (3.21)
1t can be shown that V = —Vi (/i) Va(—+/R), where
Ap 0 —Ip 0 0 Ap —Ip 0 0 0
Ty p Ty 0 0 Tg Ti+ATo AT3 ATy ATs
vi(n) = 0 0 Xp —Ip 0 Vo) = 0 Ap —Ip 0 0
0 —Ip Ty ATy +T3 ATs 0 0 Np  —Ip 0
0 0 0 p —1Ip 0 0 0 Xp  —Ip

are themselves Fiedler linearizations of T'(\) (see [I]). As long as  is chosen such that 4.,/;z avoid
the eigenvalues of T'(\), V' is nonsingular.
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The matrix V corresponding to the above choice of Br()), in condition 2 of Theorem
311 is clearly invertible. With this setup, Theorem [3.I]implies that the matrix pencil

A, —I, 0 0 0
0 AN —I, 0 0
LN=1] 0 0 A, -Tp 0 (3.22)
0o 0 0 A, —I,

is a strong linearization of T'(\).

Applying column or row shifted sums (see [I5]) on the coefficient matrices of the
pencil in the above example, it is easy to verify the latter is neither a member of
Li1(T) nor Lo(T). Furthermore, it can be easily checked that the above pencil is not
a member of the families introduced in [I] and [I9)].

4. Conclusions. A unified approach to the problem of characterizing and pa-
rameterizing all strong linearizations of a given polynomial matrix has been proposed.
Since the question of finding strong linearizations of a polynomial matrix involves the
preservation of both finite and infinite eigenstructures, a set of necessary and suffi-
cient conditions has been derived to accomplish this task. This type of conditions, is
shown to provide a framework wide enough to characterize and parametrize all strong
linearizations of a given regular polynomial matrix.

Existing families of strong linearizations such as those presented in [I5] fit natu-
rally in the proposed framework. However, as shown in Example [3.3] the derivation
of the matrices involved in the parametrization of generalized Fielder pencils [I] is
rather complicated. A systematic method for the derivation of all types of generalized
Fiedler pencils (see [1, [2, 19]) is under investigation by the authors.
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