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Abstrat. In the present note, a new haraterization of strong linearizations, orresponding

to a given regular polynomial matrix, is presented. A linearization of a regular polynomial matrix

is a matrix penil whih aptures the �nite spetral struture of the original matrix, while a strong

linearization is one inorporating its struture at in�nity along with the �nite one. In this respet,

linearizations serve as a tool for the study of spetral problems where polynomial matries are

involved. In view of their appliations, many linearization tehniques have been developed by several

authors in the reent years. In this note, a unifying approah is proposed for the onstrution of

strong linearizations aiming to serve as a bridge between approahes already known in the literature.

Key words. Polynomial matries, Matrix penils, Strong linearizations, Parametrization of

linearizations.
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1. Introdution. Linearizations of polynomial matries play an important role

in the study of problems involving polynomial matries, whih arise naturally in

several �elds of engineering. For instane, in ontrol theory, analysis and synthesis

of a variety of ontrol problems an be addressed and solved using the polynomial

matrix framework (see for instane [4, 8, 16, 18℄). Mehanial systems are also a good

example of a topi where polynomial matries are involved (see e.g. [12℄) and the study

of the assoiated polynomial eigenvalue problem plays a entral role. Despite the wide

development of polynomial matrix theory, most of the reliable numerial tehniques

for the solution of suh problems are available only for �rst order polynomial matries,

known in the literature as matrix penils. A very ommon workaround to avoid this

di�ulty, is the redution of a higher order problem to an equivalent �rst order one.

This essentially involves the redution of a given polynomial matrix to an �equivalent�

matrix penil, known as a linearization of the original one. The key property of a

∗
Reeived by the editors on Marh 24, 2015. Aepted for publiation on September 9, 2016.

Handling Editor: Joao Filipe Queiro. This researh has been o-�naned by the European Union

(European Soial Fund ESF) and Greek national funds through the Operational Program Eduation

and Lifelong Learning of the National Strategi Referene Framework (NSRF) � Researh Funding

Program: ARCHIMEDES III. Investing in knowledge soiety through the European Soial Fund.

†
Department of Information Tehnology, Alexander Tehnologial Eduation Institute of Thessa-

loniki, 57400, Thessaloniki, Greee (antoniou�it.teithe.gr).

‡
Department of Informatis Engineering, Tehnologial Eduation Institute of Central Maedonia,

Terma Magnisias, 62124, Serres, Greee (svol�teiser.gr).

610

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 610-619, September 2016

http:/repository.uwyo.edu/ela



ELA

On the Charaterization of Strong Linearizations of Regular Polynomial Matries 611

linearization is that it preserves ertain aspets of the strutural invariants of the

original matrix, allowing this way its spetral struture to be reovered using well

established matrix penil tehniques.

Having as a starting point a generalized, blok version of the well known Frobenius

ompanion forms (see [7℄), a variety of linearizations of a polynomial matrix an be

derived using linearization tehniques, a �eld having reeived the attention of many

authors in the reent years (see [1, 11, 13, 15, 19℄ and the referenes therein). In

general, a linearization of a polynomial matrix, is a matrix penil whih an be usually

onstruted by inspetion from the oe�ients of the polynomial matrix. Partiularly,

the standalone term �linearization�, refers to a matrix penil preserving only the

�nite eigenstruture of the the original matrix. However, polynomial matries possess

the unique feature of inorporating eigenstruture at in�nity. In many appliations,

the struture at in�nity models important aspets of the systems in whih they are

involved. It is thus desired this type of struture, to be present in the linearized

model. This justi�es the requirement for linearizations to preserve both the �nite and

in�nite eigenstruture of the polynomial matrix. Suh linearizations are known in the

literature as strong linearizations. In the present paper, we attempt a uni�ation of

existing strong linearization tehniques, by generalizing the results presented in [3, 20℄

for the 2−D ase.

2. Mathematial bakground. In what follows R,C denote the �elds of real

and omplex numbers respetively, while F will be used to denote either of them. The

ring of polynomials in the indeterminate λ with oe�ients from the �eld F, will be

denoted by F[λ] and the orresponding set of polynomial matries of dimensions p×q,

by F[λ]p×q
. The following de�nitions an be found in [18℄.

Definition 2.1. The degree of a polynomial matrix T (λ) ∈ F[λ]p×q
, denoted by

deg T (λ), is the highest among the degrees of the polynomial entries of T (λ).

Definition 2.2. A square polynomial matrix T (λ) ∈ F[λ]p×p
, is regular if there

exists λ0 ∈ C suh that detT (λ0) 6= 0.

Moreover, if T (λ) is regular then T (λ) is invertible for almost all λ ∈ C. The �nite

eigenvalues or zeros of a regular T (λ) are the points λi ∈ C, for whih detT (λi) = 0.

Definition 2.3. A square polynomial matrix T (λ) ∈ F[λ]p×p
, is unimodular if

detT (λ) 6= 0, for all λ ∈ C.

Definition 2.4. The reverse or dual of a polynomial matrix T (λ) =
∑n

i=0 Tiλ
i ∈

F[λ]p×q
, with Tn 6= 0, is given by

revT (λ) = λnT (λ−1) =

n
∑

i=0

Tn−iλ
i. (2.1)
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It an be shown that if λ0 6= 0 is a �nite eigenvalue of revT (λ), then λ−1
0 is

a �nite eigenvalue of T (λ). In ase revT (λ) has a zero eigenvalue, the polynomial

matrix T (λ) is said to have an in�nite eigenvalue. The algebrai, geometri, and

partial multipliities of the in�nite eigenvalue of T (λ) are de�ned to be those of the

zero eigenvalue of revT (λ).

We reall now some fats related to the onept of linearization of a regular

polynomial matrix. A linearization is essentially a matrix penil, that is a �rst order

polynomial matrix, apturing the �nite eigenstruture of the polynomial matrix being

linearized. Its de�nition is given below.

Definition 2.5 (Linearization, [7℄). Let T (λ) =
∑n

i=0 Tiλ
i ∈ F[λ]p×p

, Tn 6= 0,

be a regular polynomial matrix. A matrix penil of the form L(λ) = λL1+L0, where

Li ∈ F
np×np

, i = 0, 1, is a linearization of T (λ), if there exist unimodular matries

U(λ), V (λ), of appropriate dimensions suh that

U(λ)L(λ)V (λ) =

[

I(n−1)p 0

0 T (λ)

]

. (2.2)

It is worth noting that under ertain assumptions, namely when non-trivial in�-

nite eigenstruture is present in T (λ), it is possible to obtain matrix penils L(λ) of

dimensions smaller than np× np, satisfying (2.2).

We now fous our attention on the blok versions of the well known �rst and

seond Frobenius ompanion forms, given by

C1(λ) = λ













Ip 0 · · · 0

0 Ip
.
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.
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0 · · · 0 Tn
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0 · · · 0 −Ip

T0 T1 · · · Tn−1











, (2.3)

and

C2(λ) = λ
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0 · · · 0 Tn













+













0 · · · 0 T0

−Ip
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.

.
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.

. 0 Tn−2

0 · · · −Ip Tn−1













, (2.4)

respetively. These matrix penils are known [7℄ to be linearizations of T (λ).

A linearization L(λ) and the original polynomial matrix T (λ) have idential (up

to trivial expansion) �nite eigenstrutures. In the proess of seeking linearizations of
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a polynomial matrix, it is often desired to obtain matrix penils preserving both the

�nite and in�nite eigenstrutures of the original matrix. This is the main feature of

strong linearizations introdued below.

Definition 2.6 (Strong linearization, [14℄). A linearization L(λ) of T (λ) is a

strong linearization, if the matrix penil revL(λ) = L1 + λL0 is a linearization of the

polynomial matrix revT (λ) =
∑n

i=0 Tn−iλ
i
.

Both the �rst and seond Frobenius ompanion forms are known to be strong

linearizations of the polynomial matrix T (λ) (see for instane [17℄). Furthermore,

as a diret onsequene of the results in [17℄, every strong linearization is stritly

equivalent [6℄ to the �rst Frobenius ompanion form, that is, there exist onstant

invertible matries U, V suh that

UL(λ)V = C1(λ). (2.5)

Clearly, sine a strong linearization L(λ) is an ordinary linearization as well, it

will preserve the �nite eigenstruture of the original polynomial matrix T (λ). The

preservation of the in�nite eigenstruture, is evident from the fat that revL(λ) is a

linearization of revT (λ) and the zero eigenvalue of revT (λ), gives rise to the in�nite

eigenvalue of T (λ).

A serious drawbak of De�nition 2.6 is that in order to hek whether a matrix

penil is a strong linearization of a given polynomial matrix, one has to verify that two

distint ordinary linearization de�nitions are satis�ed. A more ompat harateriza-

tion of pairs of polynomial matries sharing isomorphi �nite and in�nite elementary

divisors strutures an be found in [9℄ and [10℄, where the notion of divisor equiva-

lene is introdued. However, in the next setion we propose a new set of onditions,

whih turn out to be more onvenient for the purpose of haraterizing the strong

linearizations of a regular polynomial matrix.

We onlude this setion by introduing the notation

Λk(λ) =
[

1 λ · · · λk
]T

⊗ Ip, (2.6)

for k = 0, 1, 2, . . . , and

Ek = ek ⊗ Ip, (2.7)

where ek, k = 1, 2, . . . , n, is the k-th olumn vetor of the identity matrix In and ⊗

denotes the Kroneker produt.

3. Parametrization of strong linearizations. Our aim is to obtain a hara-

terization of all strong linearizations orresponding to a regular polynomial matrix. In
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order to aomplish this task, we introdue onditions relating a given regular poly-

nomial matrix T (λ) ∈ F[λ]p×p
with degT (λ) = n to a potential strong linearization,

that is a matrix penil L(λ) ∈ F[λ]np×np
.

Theorem 3.1. The matrix penil L(λ) = λL1 + L0, where Li ∈ Fnp×np
, is a

strong linearization of a regular T (λ) =
∑n

i=0 Tiλ
i ∈ F[λ]p×p

, with Tn 6= 0, if and only

if there exist matries BR(λ) =
∑n−1

i=0 BR,iλ
i ∈ F[λ]np×p

, with degBR(λ) = n − 1,

and KR ∈ Fnp×p
suh that

1. L(λ)BR(λ) = KRT (λ),

2. V =
[

BR,0 BR,1 · · · BR,n−1

]

∈ Fnp×np
is invertible, and

3. L(λ) is regular.

Proof. (⇒) Let L(λ) be a strong linearization of T (λ). This implies (see [17℄)

that there exist invertible matries U, V suh that

UL(λ)V = C1(λ), (3.1)

where C1(λ) is the �rst ompanion form whih is also a strong linearization of T (λ).

Now, in view of the speial form of C1(λ), it is easy to verify that

C1(λ)Λn−1(λ) = EnT (λ) (3.2)

holds. Substituting (3.1) into (3.2), we get

UL(λ)V Λn−1(λ) = EnT (λ). (3.3)

Setting BR(λ) = V Λn−1(λ) and KR = U−1En, it is easy to verify that the matrix V

oinides with the one in ondition 2 and it is invertible, while ondition 1 is a diret

onsequene of (3.3). Finally, to verify that L(λ) is indeed regular, it su�es to note

that due to (3.1), L(λ) is regular if and only if C1(λ) is regular, whih in turn is true

if and only if T (λ) is regular.

(⇐) Assume that there exist matriesBR(λ),KR desribed in the statement of the

theorem satisfying onditions 1 - 3. Notie that BR(λ) = V Λn−1(λ), thus ondition

1 may be written in the form

L(λ)V Λn−1(λ) = KRT (λ). (3.4)

De�ne now the matries

NR(λ) =







λIp −Ip · · · 0
.

.

.

.

.

.

.

.

. 0

0 · · · λIp −Ip






= NR,0 + λNR,1 ∈ F[λ](n−1)p×np, (3.5)

T̄R(λ) =
[

T0, · · · Tn−2, Tn−1 + λTn

]

= T̄R,0 + λT̄R,1 ∈ F[λ]p×np, (3.6)
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and note that

C1(λ) =

[

NR(λ)

T̄R(λ)

]

, (3.7)

T (λ) = T̄R(λ)Λn−1(λ). (3.8)

Taking into aount (3.8), equation (3.4) beomes

L(λ)V Λn−1(λ) = KRT̄R(λ)Λn−1(λ), (3.9)

or

(

L(λ)V −KRT̄R(λ)
)

Λn−1(λ) = 0, (3.10)

whih an be expanded to

[

L0V −KRT̄R,0, L1V −KRT̄R,1

]

[

E1 E2 · · · En 0

0 E1 E2 · · · En

]

= 0. (3.11)

It is easy to verify that the rows of the the matrix

[

NR,0, NR,1

]

form a basis for

the left null spae of

[

E1 E2 · · · En 0

0 E1 E2 · · · En

]

, and thus,

[

L0V −KRT̄R,0, L1V −KRT̄R,1

]

= XR

[

NR,0 NR,1

]

(3.12)

for some XR ∈ Fnp×(n−1)p
. Rewriting the above equation in penil form, reads

L(λ)V = XRNR(λ) +KRT̄R(λ), (3.13)

or

L(λ)V =
[

XR, KR

]

[

NR(λ)

T̄R(λ)

]

. (3.14)

Setting U =
[

XR KR

]

while taking into aount (3.7), we may write (3.14) in the

form

L(λ)V = UC1(λ). (3.15)

We show now that U is invertible. Indeed, if x ∈ Fnp
suh that xTU = 0, then

premultiplying both sides of (3.15) would give xTL(λ)V = 0, for all λ ∈ C, whih

in turn due to the invertibilty of V (Condition 2), would give xTL(λ) = 0, for all

λ ∈ C. This last assertion ontradits the regularity assumption of L(λ) (Condition

3). Hene, x = 0, or equivalently, U is invertible.
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Thus, in view of (3.15), L(λ) is stritly equivalent to C1(λ) and hene a strong

linearization of T (λ).

A dual version of Theorem 3.1 also holds. Its statement is as follows.

Theorem 3.2. The matrix penil L(λ) = λL1 + L0, where Li ∈ Fnp×np
, is

a strong linearization of a regular T (λ) =
∑n

i=0 Tiλ
i
, with Tn 6= 0, if and only if

there exist matries BL(λ) =
∑n−1

i=0 BL,iλ
i ∈ F[λ]p×np

, with degBL(λ) = n− 1, and

KL ∈ Fp×np
suh that

1. BL(λ)L(λ) = T (λ)KL,

2. U =
[

BT
L,0 BT

L,1 · · · BT
L,n−1

]T

∈ Fnp×np
is invertible, and

3. L(λ) is regular.

Proof. The proof is similar to that of Theorem 3.1.

We explore now the relation between the parametrization of linearizations derived

from Theorems 3.1 and 3.2 and the vetor spaes of linearizations proposed in [15℄.

The vetor spaes L1(T ), L2(T ) assoiated to the polynomial matrix T (λ), de�ned

in [15℄ (with slightly modi�ed notation in order to onform to the urrent setup), as

follows:

L1(T ) = {L(λ) : L(λ)Λ̄n−1(λ) = v ⊗ T (λ), v ∈ R
n}, (3.16)

L2(T ) = {L(λ) : Λ̄T
n−1(λ)L(λ) = wT ⊗ T (λ), w ∈ R

n}, (3.17)

where Λ̄k(λ) = revΛk(λ). The vetors v, w are referred to as �right ansatz� and �left

ansatz� vetors. Provided that T (λ) is regular, it is shown in [15℄ that almost all

penils L(λ), in L1(T ) and L2(T ) are linearizations. Partiularly, it has been shown

that if T (λ) is regular, a penil L(λ) ∈ Li(T ), i = 1, 2, is a strong linearization if and

only if L(λ) is regular as well.

The vetor spaes of linearizations introdued in [15℄ an be derived as speial

ases from Theorems 3.1 and 3.2 presented above. It is easy to see that L(λ) ∈ L1(T )

if and only if onditions 1 and 2 of Theorem 3.1 are met by setting BR(λ) = Λ̄n−1(λ)

and KR = v ⊗ Ip. Moreover, if a partiular L(λ) ∈ L1(T ) is regular, that is, if it

satis�es ondition 3 of Theorem 3.1 as well, then it is a strong linearization of T (λ),

a result that is in full aordane with the haraterization given in [15℄. Similar

observations an be made about the derivation of the members of L2(T ) through the

use of Theorem 3.2.

Another interesting family of strong linearizations is the one of generalized Fiedler

linearizations introdued in [1℄ as an extension of the onstrution of ompanion
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matries for salar polynomials, presented by M. Fiedler in [5℄, to the polynomial

matrix ase. Generalized Fiedler linearizations an be derived using the tehnique

proposed above as shown in the following example.

Example 3.3. Let T (λ) be a regular polynomial matrix for n = 5. The strong

Fiedler linearization orresponding to the index permutation I = (3, 4, 1, 2, 0) (see

[1℄)

LI(λ) =















λIp 0 −Ip 0 0

T0 λIp T1 0 0

0 0 λIp 0 −Ip

0 −Ip T2 λIp T3

0 0 0 −Ip T4 + λT5















, (3.18)

whih is regular, an be reovered using Theorem 3.1, by setting

BR(λ) =















(µ− λ2)Ip
µ(T2λ+ T3λ

2 + T4λ
3 + T5λ

4) + T0λ+ T1λ
2

(λµ− λ3)Ip
µ(T4λ

2 + T5λ
3) + T0 + T1λ+ T2λ

2 + T3λ
3

(λ2µ− λ4)Ip















, (3.19)

for some µ ∈ F and KR =
[

0 µIp 0 0 −Ip
]T
. The matrix V orresponding

to the above hoie of BR(λ) in ondition 2 of Theorem 3.1, an be shown to be

invertible for almost every

1 µ ∈ F.

Many other hoies of BR(λ), beyond the ones shown above are possible. We

shall only illustrate this possibility by providing an indiative example. However, a

more systemati approah for the derivation of more families of matrix penils would

be desirable. Suh a perspetive is urrently under investigation by the authors.

Example 3.4. Let T (λ) be a regular polynomial matrix for n = 5, and assume

further that T2 is invertible. Now let

BR(λ) =
[

Ip λIp λ2T T
2 λ3Ip λ4Ip

]T
, (3.20)

KR =
[

0 0 0 0 Ip
]T

. (3.21)

1

It an be shown that V = −V1(
√
µ)V2(−

√
µ), where

V1(λ) =













λIp 0 −Ip 0 0

T0 λIp T1 0 0

0 0 λIp −Ip 0

0 −Ip T2 λT4 + T3 λT5
0 0 0 λIp −Ip













, V2(λ) =













λIp −Ip 0 0 0

T0 T1 + λT2 λT3 λT4 λT5
0 λIp −Ip 0 0

0 0 λIp −Ip 0

0 0 0 λIp −Ip













are themselves Fiedler linearizations of T (λ) (see [1℄). As long as µ is hosen suh that ±√
µ avoid

the eigenvalues of T (λ), V is nonsingular.
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The matrix V orresponding to the above hoie of BR(λ), in ondition 2 of Theorem

3.1, is learly invertible. With this setup, Theorem 3.1 implies that the matrix penil

L(λ) =















λIp −Ip 0 0 0

0 λT2 −Ip 0 0

0 0 λIp −T2 0

0 0 0 λIp −Ip

T0 T1 Ip T3 T4 + λT5















(3.22)

is a strong linearization of T (λ).

Applying olumn or row shifted sums (see [15℄) on the oe�ient matries of the

penil in the above example, it is easy to verify the latter is neither a member of

L1(T ) nor L2(T ). Furthermore, it an be easily heked that the above penil is not

a member of the families introdued in [1℄ and [19℄.

4. Conlusions. A uni�ed approah to the problem of haraterizing and pa-

rameterizing all strong linearizations of a given polynomial matrix has been proposed.

Sine the question of �nding strong linearizations of a polynomial matrix involves the

preservation of both �nite and in�nite eigenstrutures, a set of neessary and su�-

ient onditions has been derived to aomplish this task. This type of onditions, is

shown to provide a framework wide enough to haraterize and parametrize all strong

linearizations of a given regular polynomial matrix.

Existing families of strong linearizations suh as those presented in [15℄ �t natu-

rally in the proposed framework. However, as shown in Example 3.3 the derivation

of the matries involved in the parametrization of generalized Fielder penils [1℄ is

rather ompliated. A systemati method for the derivation of all types of generalized

Fiedler penils (see [1, 2, 19℄) is under investigation by the authors.
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