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LINEAR PRESERVERS OF HADAMARD MAJORIZATION∗

SARA M. MOTLAGHIAN† , ALI ARMANDNEJAD†, AND FRANK J. HALL‡

Abstract. Let Mn be the set of all n × n real matrices. A matrix D = [dij ] ∈ Mn with

nonnegative entries is called doubly stochastic if
∑n

k=1
dik =

∑n
k=1

dkj = 1 for all 1 ≤ i, j ≤ n. For

X, Y ∈ Mn, it is said that X is Hadamard-majorized by Y , denoted by X ≺H Y , if there exists an

n × n doubly stochastic matrix D such that X = D ◦ Y . In this paper, some properties of ≺H on

Mn are first obtained, and then, the (strong) linear preservers of ≺H on Mn are characterized. For

n ≥ 3, it is shown that the strong linear preservers of Hadamard majorization on Mn are precisely

the invertible linear maps on Mn which preserve the set of matrices of term rank 1. An interesting

graph theoretic connection to the linear preservers of Hadamard majorization is exhibited. A number

of examples are also provided in the paper.
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1. Introduction and preliminaries. Majorization is one of the vital topics in

mathematics and statistics. It plays a basic role in matrix theory. For instance, the

classical majorization relation involving eigenvalues and singular values of matrices

produces many norm inequalities, see for example [1], [6] and [11]. For X,Y ∈ Mn,m

(the set of n ×m real matrices), it is said that X is multivariate majorized by Y , if

there exists a doubly stochastic matrix D ∈ Mn such that X = DY . In [9] and [10],

the authors obtained the following interesting theorems regarding the multivariate

majorization. In these results, J denotes the matrix of order n all of whose entries

are 1.

Theorem 1.1. Let T : Mn,m → Mn,m be a linear map. Then T preserves

multivariate majorization if and only if one of the following statements holds.

(i) There exist A1, . . . , Am ∈ Mn,m, such that T (X) =
∑m

j=1 tr(xj)Aj, where xj is

jth column of X and tr(xj) is the summation of all components of xj.

(ii) There exist R,S ∈ Mm and permutation matrix P ∈ Mn such that T (X) =

PXR+ JXS.
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We remark that an equivalent version of Theorem 1.1 was given in Theorem 2.5

of [2]. We also mention that in [3] the authors characterize (considering only row

stochastic matrices) the linear operators that strongly preserve matrix majorization,

a generalization of multivariate majorization.

Theorem 1.2. Let T : Mn,m → Mn,m be a linear map. Then T strongly pre-

serves multivariate majorization if and only if there exist R,S ∈ Mm and permutation

matrix P ∈ Mn such that R(R+ nS) is invertible and T (X) = PXR+ JXS .

Due to the important role of the Hadamard product in the space of matrices, in

this paper, we define a new kind of majorization which is obtained by the Hadamard

product and we find its linear preservers.

The following conventions will be fixed throughout the paper:

Mn is the set of all n×n real matrices; Eij is the n×n matrix whose (i, j) entry

is one and all other entries are zero; Nk is the set {1, . . . , k}; For index sets α, β ⊆ Nk,

A[α, β] is the submatrix that lies in the rows of A indexed by α and the columns

indexed by β; |α| is the cardinal number of a set α; X⊤ is the transpose of a given

matrix X .

For X = [xij ], Y = [yij ] ∈ Mn, the Hadamard product (entry-wise product) of X

and Y is defined by:

X ◦ Y = Z = [zij ], where zij = xijyij for all 1 ≤ i, j ≤ n.

It is an interesting fact that Mn via the Euclidean norm and the Hadamard product

forms a commutative Banach algebra.

Definition 1.3. For X,Y ∈ Mn, we say that X is Hadamard-majorized by Y ,

denoted by X ≺H Y , if there exists a doubly stochastic matrix D ∈ Mn such that

X = D ◦ Y .

Definition 1.4. Let T : Mn → Mn be a linear map. We say that T preserves

(resp., strongly preserves) Hadamard majorization if T (X) ≺H T (Y ) whenever X ≺H

Y (resp., T (X) ≺H T (Y ) if and only if X ≺H Y ).

Some recent works on linear preservers of majorization can be found in [8] and

[12]. Notice that when n = 1 the relation ≺H is simply the equality relation. So

we may suppose that n ≥ 2. Since the case n = 2 is different from the other cases

where n ≥ 3, in this paper, first we find the (strong) linear preservers of ≺H on M2

and then we find the strong linear preservers of ≺H on Mn with n ≥ 3. Comparing

with a result of Beasley and Pullman [4], we also show the surprising result that for

n ≥ 3, the strong linear preservers of Hadamard majorization on Mn are precisely

the invertible linear maps on Mn which preserve the set of matrices of term rank

1. For n ≥ 3, we find conditions equivalent to a linear map preserving Hadamard
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majorization. Utilizing this result, we obtain a simplification for the strong linear

preservers. In addition, we exhibit an interesting graph theoretic connection to the

linear preservers of Hadamard majorization.

2. General properties and strong linear preservers of ≺H . In this section,

we first obtain some properties of Hadamard majorization and we present some linear

maps on Mn which preserve ≺H . For a matrix A ∈ Mn and a permutation matrix

P ∈ Mn, it is said that A is dominated by P if P ◦A = A.

The following proposition gives some properties of Hadamard majorization on

Mn.

Proposition 2.1. If A,B,C,D ∈ Mn, then the following statements hold:

(i) A ≺H A if and only if A is dominated by a permutation matrix.

(ii) A ≺H B and B ≺H A if and only if A = B and A is dominated by a permutation

matrix.

(iii) A ≺H B and B ≺H C do not always imply that A ≺H C when n ≥ 2.

(iv) A(B ◦ C)D may not be equal to (ABD) ◦ (ACD), but for permutation matrices

P,Q we have P (B ◦ C)Q = (PBQ) ◦ (PCQ).

Proof. (i) If A ≺H A, then there exists a doubly stochastic matrix D such that

A = D ◦ A. This implies that dij = 1 whenever aij 6= 0, and hence, A is dominated

by a permutation matrix.

(ii) If A ≺H B and B ≺H A, then aij 6= 0 if and only if bij 6= 0, and in this case,

dij = 1. Therefore, A = B is dominated by a permutation matrix. By using (i), the

converse is clear.

(iii) For n ≥ 2, with A = 1
n2J , B = 1

n
J and C = J , we have A ≺H B and

B ≺H C but A ⊀H C.

(iv) It is easy to see.

The following examples give some kinds of linear maps on Mn that preserve

Hadamard majorization.

Example 2.2. The linear map T : Mn → Mn defined by T (X) = X⊤ for all

X ∈ Mn, strongly preserves Hadamard majorization.

Example 2.3. Let P,Q ∈ Mn be permutation matrices. The linear map T :

Mn → Mn defined by T (X) = PXQ for all X ∈ Mn, strongly preserves Hadamard

majorization.

Example 2.4. Let A ∈ Mn. The linear map T : Mn → Mn defined by

T (X) = X ◦ A for all X ∈ Mn, preserves Hadamard majorization. Furthermore, T
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strongly preserves Hadamard majorization if and only of A has no zero entries (see

Theorem 2.10).

Later we show that every T : Mn → Mn which strongly preserves Hadamard

majorization is a composition of linear maps appearing in the three previous examples

(where A has no zero entries), but the following example shows that not every linear

map preserving Hadamard majorization is necessarily such a composition.

Example 2.5. Let n ≥ 2. The linear map T : Mn → Mn defined by

T







x11 · · · x1n
...

. . .
...

xn1 · · · xnn






=







x11 0
. . .

0 x11






, ∀X ∈ Mn,

preserves Hadamard majorization but it is not a composition of linear maps appearing

in the three previous examples.

Theorem 2.6. Let T : Mn → Mn be a linear map. Then the following conditions

are equivalent:

(i) T (Epq) ◦ T (Ers) = 0 for every 1 ≤ p, q, r, s ≤ n with (p, q) 6= (r, s).

(ii) There exist a function f : Nn × Nn → Nn × Nn and a matrix A ∈ Mn such that

for every X = [xi,j ] ∈ Mn,

T (X) =







xf(1,1) · · · xf(1,n)
...

. . .
...

xf(n,1) · · · xf(n,n)






◦A,

where xf(i,j) means xpq if f(i, j) = (p, q).

Proof. For every 1 ≤ p, q ≤ n, let Ipq = {(i, j) : (T (Epq))ij 6= 0}.

(i) ⇒ (ii). From the assumption (i), it is clear that Ipq ∩ Irs = ∅, for all 1 ≤

p, q, r, s ≤ n with (p, q) 6= (r, s). Let A = T (J) where J ∈ Mn is as before the matrix

whose all entries are 1. Define the function f : Nn × Nn → Nn × Nn by

f(i, j) =

{

(p, q), if (i, j) ∈ Ipq ;

(i, j), otherwise.

For every 1 ≤ p, q ≤ n, let Jpq ∈ Mn be the matrix whose (i, j) entry is 1 if (i, j) ∈ Ipq

and 0 otherwise. It is easy to see that T (Eij) = Jij ◦ T (J), and hence, for X = [xij ],
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we have

T (X) =
∑

i,j

xijT (Eij) =
∑

i,j

xij(Jij ◦ T (J))

=





∑

i,j

xijJij



 ◦A =







xf(1,1) · · · xf(1,n)
...

. . .
...

xf(m,1) · · · xf(m,n)






◦A,

as desired.

(ii) ⇒ (i). Assuming (ii), observe that for every 1 ≤ i, j, k, l ≤ n, (T (Ekl))ij 6= 0

if and only if f(i, j) = (k, l) and aij 6= 0. Therefore, T (Epq) ◦ T (Ers) = 0 for every

1 ≤ p, q, r, s ≤ n with (p, q) 6= (r, s).

For X = [xij ], Y = [yij ] ∈ Mn, by < X, Y > we mean the usual inner product on

Mn, i.e., < X, Y >=
∑n

i,j=1 xijyij .

Theorem 2.7. Let n ≥ 3 and let T : Mn → Mn be a linear map. If T preserves

Hadamard majorization then there exist a function f : Nn × Nn → Nn × Nn and a

matrix A ∈ Mn such that for every X = [xi,j ] ∈ Mn,

T (X) =







xf(1,1) · · · xf(1,n)
...

. . .
...

xf(n,1) · · · xf(n,n)






◦A, (2.1)

where xf(i,j) means xpq if f(i, j) = (p, q). Furthermore, T is invertible if and only if

f is bijective and A has no zero entry.

Proof. By Theorem 2.6, it is enough to show that T (Epq) ◦ T (Ers) = 0 for

every 1 ≤ p, q, r, s ≤ n with (p, q) 6= (r, s). Assume if possible that there exist some

(p, q) 6= (r, s) such that T (Epq)◦T (Ers) 6= 0. By the use of Example 2.3, without loss

of generality, we may assume that < T (Epq), E11 >= λ and < T (Ers), E11 >= µ for

some nonzero scalars λ, µ ∈ R. Since n ≥ 3, there exists a doubly stochastic matrix

D ∈ Mn such that the (p, q) and the (r, s) entries of D are 1
3 and 2

3 respectively. Let

Y = 1
λ
Epq −

1
µ
Ers and X = D ◦ Y . Therefore, X ≺H Y but T (X) ⊀H T (Y ) which is

a contradiction. Moreover, it is clear that T is invertible if and only if f is bijective

and A has no zero entry.

The following example shows that the condition n ≥ 3 is necessary in the previous

theorem.

Example 2.8. The linear map T : M2 → M2 defined by T

(

x11 x12

x21 x22

)

=

(

x11 + x22 x12 + x21

x21 + x12 x22 + x11

)

, for all X ∈ M2, preserves Hadamard majorization but is
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not of the form (2.1).

Lemma 2.9. Let T : Mn → Mn be a linear map that preserves Hadamard

majorization. Then the following statements hold:

(i) For every 1 ≤ p, q ≤ n, T (Epq) is dominated by a permutation matrix.

(ii) If n ≥ 3, for every 1 ≤ p, q, r, s ≤ n with p 6= r and q 6= s, T (Epq) and T (Ers)

do not simultaneously have a nonzero entry in any row and in any column.

Proof. (i) For every 1 ≤ p, q ≤ n, Epq ≺H Epq, and hence, T (Epq) ≺H T (Epq).

This implies that T (Epq) is dominated by a permutation matrix by Proposition 2.1.

(ii) For arbitrary but fixed 1 ≤ p, q, r, s ≤ n with p 6= r and q 6= s, let A = [aij ] =

T (Epq) and B = [bij ] = T (Ers). We show that A and B do not simultaneously have

a nonzero entry in any row and in any column. If A = 0 or B = 0 there is nothing

to prove. Let A 6= 0. By the use of Example 2.3, without loss of generality, we may

assume that a11 6= 0. We show that the first row and the first column of B are zero.

Assume if possible that b1j 6= 0 for some 1 ≤ j ≤ n. So a1j = 0 by Theorem 2.6

and Theorem 2.7. Let E = Epq + Ers. Since p 6= r and q 6= s, E is dominated by

a permutation matrix, and hence, E ≺H E. So T (E) = A + B ≺H T (E) = A + B,

and hence, A + B is dominated by a permutation matrix which is a contradiction.

Consequently the first row of B is a zero row. Similarly, we can show that the first

column of B is a zero column.

Theorem 2.10. Let T : Mn → Mn be a linear map. If T strongly preserves

Hadamard majorization, then T is invertible

Proof. Assume that there exists a matrix X ∈ Mn such that T (X) = 0. So

T (X) = T (0) = 0 = I ◦ T (0), and hence, T (X) ≺H T (0). Since T strongly preserves

Hadamard majorization, X ≺H 0, and hence, X = 0.

The linear maps preserving or strongly preserving Hadamard majorization on M2

are characterized in the following theorem.

Theorem 2.11. Let T : M2 → M2 be a linear map. Then T preserves Hadamard

majorization if and only if there exist α1, . . . , α8 ∈ R and permutation matrix P ∈ M2

such that

T (X) = P

(

α1x11 + α2x22 α3x12 + α4x21

α5x12 + α6x21 α7x11 + α8x22

)

, ∀X ∈ M2. (2.2)

Moreover, T strongly preserves Hadamard majorization if and only if

α1α8 − α2α7 6= 0 6= α3α6 − α4α5. (2.3)
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Proof. First observe that for any 2×2 doubly stochastic matrix D, d11 = d22 and

d12 = d21. If T is of the form (2.2), for every doubly stochastic matrix D ∈ M2 and

for every X ∈ M2 it is then easy to see that T (D ◦X) = (PD) ◦ T (X), and hence, T

preserves Hadamard majorization.

Conversely, assume that T preserves Hadamard majorization. We show that

T (E11) ◦ T (E12) = 0. Assume if possible that T (E11) ◦ T (E12) 6= 0. Without loss

of generality, we may assume that < T (E11), E11 >= λ and < T (E12), E11 >= µ

for some nonzero scalars λ, µ ∈ R. Consider the doubly stochastic matrix D =
(

1/3 2/3

2/3 1/3

)

. Let Y = 1
λ
E11 − 1

µ
E12 and X = D ◦ Y . Therefore X ≺H Y but

T (X) ⊀H T (Y ) which is a contradiction. Similarly, we can show that T (E11) ◦

T (E21) = T (E22) ◦ T (E12) = T (E22) ◦ T (E21) = 0. By Lemma 2.9, for every 1 ≤

i, j ≤ 2, T (Eij) is dominated by a permutation matrix. Since E11+E22 ≺H E11+E22

and E12 +E21 ≺H E12 +E21, T (E11) + T (E22) and T (E12) + T (E21) are dominated

by some permutation matrices. Also it is easy to see that the linear maps X 7→
(

x11 0

0 x12

)

, X 7→

(

x11 0

0 x21

)

, X 7→

(

x22 0

0 x12

)

and X 7→

(

x22 0

0 x21

)

do not preserve

Hadamard majorization. By the above restrictions on T we reach (2.2). Furthermore,

by Theorem 2.10, if T strongly preserves Hadamard majorization, then T is invertible.

Also observe that T is invertible if and only if (2.3) holds. In this latter case, we have

T−1(X) = P

(

β1x11 + β2x22 β3x12 + β4x21

β5x12 + β6x21 β7x11 + β8x22

)

, ∀X ∈ M2,

where β1 = α8

γ
, β2 = −α2

γ
, β7 = −α7

γ
, β8 = α1

γ
, β3 = α6

δ
, β4 = −α4

δ
, β5 = −α5

δ
,

β6 = α3

δ
, with γ = α1α8 − α2α7 and δ = α3α6 − α4α5. Hence, T−1 has the form

(2.2), so that T−1 preserves Hadamard majorization. Therefore, T strongly preserves

Hadamard majorization.

The following theorem characterizes the linear maps on Mn which strongly pre-

serve Hadamard majorization. In fact we show that these maps are compositions of

maps appearing in the three examples earlier in this section.

Theorem 2.12. Let n ≥ 3 and let T : Mn → Mn be a linear map. Then T

strongly preserves Hadamard majorization if and only if there exist A ∈ Mn with no

zero entry and permutation matrices P,Q ∈ Mn such that one of the following holds:

(i) T (X) = (PXQ) ◦A, for all X ∈ Mn.

(ii) T (X) = (PX⊤Q) ◦A, for all X ∈ Mn.

Proof. First assume that T strongly preserves Hadamard majorization. By Theo-

rem 2.10, T is invertible and then by Theorem 2.7 there exist a bijection f : Nn×Nn →
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Nn×Nn, and a matrixA ∈ Mn with no zero entry such that for everyX = [xi,j ] ∈ Mn,

T (X) =







xf(1,1) · · · xf(1,n)
...

. . .
...

xf(n,1) · · · xf(n,n)






◦A.

First we show that for every 1 ≤ k ≤ n there exists 1 ≤ ik ≤ n such that

{f(k, 1), . . . , f(k, n)} = {(ik, 1), . . . , (ik, n)}, or (2.4)

{f(k, 1), . . . , f(k, n)} = {(1, ik), . . . , (n, ik)}, (2.5)

and also there exists 1 ≤ jk ≤ n such that

{f(1, k), . . . , f(n, k)} = {(1, jk), . . . , (n, jk)}, or (2.6)

{f(1, k), . . . , f(n, k)} = {(jk, 1), . . . , (jk, n)}. (2.7)

Let 1 ≤ p, q, r, s ≤ n. Since T and T−1 preserve Hadamard majorization, Lemma

2.9 (ii) implies that the first or the second components of (p, q) and (r, s) are equal

if and only if the first or the second components of f(p, q) and f(r, s) are equal. So

the first or the second components of f(k, 1) and f(k, 2) are equal. Without loss of

generality, say that their first components are equal (so that their second components

are different since f is a bijection). We also know that for 3 ≤ m ≤ n, f(k,m) has a

common component with each of f(k, 1) and f(k, 2), which then clearly must be the

first component. So for every 1 ≤ m ≤ n, the first components of f(k, 1) and f(k,m)

are the same, and we obtain (2.4). On the other hand, if the second components of

f(k, 1) and f(k, 2) are equal, we similarly obtain (2.5). In a corresponding way, by

considering the pairs (1, k) and (2, k) we reach (2.6) or (2.7).

Now, we consider two cases.

Case 1. Assume that (2.4) holds for k = 1. We show that in this case, for

all 1 ≤ k ≤ n, (2.4) and (2.6) hold. For every 2 ≤ k ≤ n, {(1, 1), . . . , (1, n)} ∩

{(k, 1), . . . , (k, n)} = ∅ and hence {(i1, 1), . . . , (i1, n)} ∩ {f(k, 1), . . . , f(k, n)} = ∅.

Then the only possibility for {f(k, 1), . . . , f(k, n)} is (2.4), and hence there exists

1 ≤ ik ≤ n such that {f(k, 1), . . . , f(k, n)} = {(ik, 1), . . . , (ik, n)}.

Also, {(1, 1), . . . , (1, n)}∩{(1, k), . . . , (n, k)} = {(1, k)} which implies that {(i1, 1),

. . . , (i1, n)} ∩ {f(1, k), . . . , f(n, k)} has one element. Then the only possibility for

{f(1, k), . . . , f(n, k)} is (2.6), and hence there exists 1 ≤ jk ≤ n such that {f(1, k), . . . ,
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f(n, k)} = {(1, jk), . . . , (n, jk)}. Let P and Q be the permutation matrices corre-

sponding to the maps k 7→ ik and k 7→ jk respectively. It is easy to see that (i)

holds.

Case 2. Assume that (2.5) holds for k = 1. With a similar argument as for Case

1, we may obtain (ii).

Conversely, if T satisfies (i) or (ii), it is easy to see that T strongly preserves

Hadamard majorization.

The term rank of a matrix A is the smallest number of lines (a line is either a

row or a column) which contain all the nonzero entries of A. The following result is

due to Beasley and Pullman.

Proposition 2.13. [4, Corollary 3.1.2] Suppose that T is an invertible operator

on Mn. Then T preserves the set of matrices of term rank 1 if and only if T is one

of or a composition of some of the following operators.

(i) X 7→ X⊤.

(ii) X 7→ PXQ for some fixed but arbitrary permutation matrices in Mn.

(iii) X 7→ X ◦A for some fixed but arbitrary matrix A ∈ Mn with all nonzero entries.

In view of Theorem 2.12 and Proposition 2.13 we obtain the following surprising

connection.

Theorem 2.14. Let n ≥ 3 and let T : Mn → Mn be a linear map. Then

T strongly preserves Hadamard majorization if and only if T is invertible and T

preserves the set of matrices of term rank 1.

Remark 2.15. In [5], the authors investigated the so-called PO, PSO, PSRO,

and PSCO properties of matrices. They proved that if T strongly preserves PO,

PSO, PSRO or PSCO then T preserves the set of matrices of term rank 1, [5,

Lemma 2.4]. Consequently, if T strongly preserves PO, PSO, PSRO, or PSCO,

then T strongly preserves Hadamard majorization.

3. Linear preservers of Hadamard majorization . In this section, we find

the linear maps on Mn preserving Hadamard majorization.

Lemma 3.1. Let n ≥ 3 and let T : Mn → Mn be a linear map. If T satisfies the

conditions

1. T (Ekl) ◦ T (Epq) = 0 for every 1 ≤ k, l, p, q ≤ n with (k, l) 6= (p, q),

2. T (J) is a (0, 1)-matrix,

then T (X ◦ Y ) = T (X) ◦ T (Y ) for all X,Y ∈ Mn.
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Proof. Since T (J) is a (0, 1)-matrix, by using (1), it is clear that T (Eij) is a

(0, 1)-matrix, and hence, T (Eij) ◦ T (Eij) = T (Eij) for all 1 ≤ i, j ≤ n. Then,

T (X ◦ Y ) = T (
∑

i,j xijEij ◦
∑

i,j yijEij) = T (
∑

i,j xijyijEij) =
∑

i,j xijyijT (Eij) =
∑

i,j xijT (Eij) ◦
∑

i,j yijT (Eij) = T (X) ◦ T (Y ).

With the use of Lemma 3.1 we obtain the following result, which is of the inde-

pendent interest.

Theorem 3.2. Let n ≥ 3 and let T : Mn → Mn be a linear map. If T preserves

Hadamard majorization, then T (X ◦ Y )oT (J) = T (X) ◦ T (Y ) for all X,Y ∈ Mn.

Proof. Let A = [aij ] = T (J) and B = [bij ], where bij = 1
aij

if aij 6= 0, and 0

otherwise. Consider the linear map S : Mn → Mn defined by S(X) = T (X) ◦ B.

Note that by the use of (2.1), T (X) = S(X) ◦ A for all X ∈ Mn. Also it is clear

that S(J) is a (0, 1)-matrix. Since T preserves Hadamard majorization, S preserves

Hadamard majorization. By Theorem 2.6 and Theorem 2.7, S satisfies condition (1)

of Lemma 3.1, and hence, S(X ◦ Y ) = S(X) ◦ S(Y ) for all X,Y ∈ Mn. Therefore

S(X◦Y )◦A◦A = S(X)◦A◦S(Y )◦A, which implies that T (X◦Y )◦A = T (X)◦T (Y ).

Lemma 3.3. For every r, s ∈ Nn, let mrs be the smallest integer such that every

r× s submatrix of every doubly stochastic matrix D ∈ Mn is an r× s submatrix of a

doubly stochastic matrix D′ ∈ Mmrs
. Then

mrs =

{

r + s, if r + s ≤ n;

n, if r + s ≥ n.

Proof. From the definition of mrs, it is clear that mrs ≤ n. Without loss of

generality, we may consider the upper left r× s submatrices of n× n doubly stochas-

tic matrices. Put m = mrs and let the doubly stochastic matrices D and D′ be

partitioned as

D =

(

A B1

B2 B3

)

∈ Mn, D′ =

(

A C1

C2 C3

)

∈ Mm,

where A is r × s. Let λ be the sum of the entries of A. So, the sum of the entries of

C1 and the sum of the entries of C2 are r−λ and s−λ, respectively. Hence, the sum

of entries of C3 is m − r − s + λ. Since C3 is a block of a doubly stochastic matrix,

m+ λ ≥ r + s. Now, we consider two cases:

Case 1. Let r ≤ n − s. Here we consider the doubly stochastic matrix D

where A = 0 and B1 = [Ir 0], i.e., D =

(

0 ( Ir 0 )

B2 B3

)

. So, in this case, λ

can be taken to be 0, and hence, m ≥ r + s. But for every r × s submatrix A

of an n × n doubly stochastic matrix D, we can form the doubly stochastic matrix
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(

A diag(α1, . . . , αr)

diag(β1, . . . , βs) A⊤

)

∈ Mr+s, where each αi = 1 −
∑s

j=1 aij and

each βj = 1−
∑r

i=1 aij . So, m ≤ r + s, and thus, m = r + s.

Case 2. Let r ≥ n − s. Here we consider the doubly stochastic matrix D where

B1 = [In−s 0]⊤, i.e., D =





(

0

∗

) (

In−s

0

)

B2 B3



 . So, in this case, λ can be taken

to be r − (n− s), and hence, m+ r − n+ s ≥ r + s or m ≥ n. Thus, m = n.

The following examples give some kinds of linear maps T : Mn → Mm that

preserve Hadamard majorization where m ≤ n. In each of these examples, it is

easy to see that the conditions (1) and (2) of Lemma 3.1 hold, so that we have

T (X ◦ Y ) = T (X) ◦ T (Y ) for all X,Y ∈ Mn.

Example 3.4. Let P1, . . . , Pn be permutation matrices such that P1+ · · ·+Pn =

J . For every 1 ≤ i ≤ n the linear map S : Mn → Mn defined by

S(X) = xi1P1 + · · ·+ xinPn, ∀X ∈ Mn, or

S(X) = x1iP1 + · · ·+ xniPn, ∀X ∈ Mn,

preserves Hadamard majorization. Here, if D is doubly stochastic, then S(D) is

doubly stochastic and we have S(D ◦X) = S(D) ◦ S(X).

Example 3.5. Let α, β ⊆ Nn and |α| = r, |β| = s. The linear map T : Mn → Mn

defined by T (X) =

(

X [α, β] 0

0 0

)

for all X ∈ Mn, preserves Hadamard majoriza-

tion. Here, if D is doubly stochastic, then D[α, β] can be extended to a doubly

stochastic D′ ∈ Mn and hence T (D) ◦ T (X) = D′ ◦ T (X).

Example 3.6. Let α, β ⊆ Nn, |α| = r, |β| = s and m < n. Then the linear

map T : Mn → Mm defined by T (X) =

(

X [α, β] 0

0 0

)

for all X ∈ Mn, preserves

Hadamard majorization if and only if r + s ≤ m. If r + s ≤ m, by Case 1 in the

proof of Lemma 3.3, if D is doubly stochastic, then D[α, β] can be extended to a

doubly stochastic D′ ∈ Mm and hence T (D) ◦ T (X) = D′ ◦ T (X). Then T preserves

Hadamard majorization. Lemma 3.3 also can be used to show that if T preserves

Hadamard majorization, then r + s ≤ m.

Example 3.7. Let α, β ⊆ Nn and |α| = r, |β| = s. If (r + s) ≤ m ≤ n, the

linear map T : Mn → Mm defined by T (X) =

(

S(X)[α, β] 0

0 0

)

for all X ∈ Mn,

preserves Hadamard majorization where S is the linear map introducing in Example
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3.4. Note that T is the composition of the linear maps in Examples 3.4 and 3.6.

Example 3.8. Let m, n and k be positive integers such that mk ≤ n. Let

P1, . . . , Pk ∈ Mm be permutation matrices such that Pi ◦ Pj = 0, for every 1 ≤ i <

j ≤ n. The linear map T : Mn → Mmk defined by

T (X) =











xij1P1 xij2P2 . . . xijkPk

xijkPk xij1P1 . . . xijk−1
Pk−1

...
...

. . .
...

xij2P2 xij3P3 . . . xij1P1











, ∀X ∈ Mn,

where 1 ≤ i ≤ n and 1 ≤ j1 < · · · < jk ≤ n, preserves Hadamard majorization.

Here, if D is doubly stochastic, then T (D) can be extended to a doubly stochastic

D′ ∈ Mmk and hence T (D)◦T (X) = D′◦T (X). In fact for every permutation matrix

P ∈ Mn, there exists permutation matrix Q ∈ Mmk such that T (P ◦X) = Q◦T (X).

In the following theorem we exhibit a large class of linear maps which preserve

Hadamard majorization.

Theorem 3.9. Let m1, . . . ,mk be some positive integers. Put n = m1+ · · ·+mk

and for every 1 ≤ j ≤ k, let Tj : Mn → Mmj
be a linear map appearing in Examples

3.6, 3.7 or 3.8. Let P,Q ∈ Mn be permutation matrices and A ∈ Mn. Then the

linear map T : Mn → Mn defined by

T (X) = (P











T1(X) 0

T2(X)
. . .

0 Tk(X)











Q) ◦A, ∀X ∈ Mn,

preserves Hadamard majorization.

Proof. Let X ≺H Y . Then there exist doubly stochastic matrices Dj ∈ Mmj

such that Tj(X) = Dj ◦ Tj(Y ), for every 1 ≤ j ≤ k. With D′ = D1 ⊕ · · · ⊕Dk, we

have

T (X) = [P (D1 ◦ T1(Y )⊕ · · · ⊕Dk ◦ Tk(Y ))Q] ◦A

= [P (D′ ◦ [T1(Y )⊕ · · · ⊕ Tk(Y )])Q] ◦A

= (PD′Q) ◦ T (Y ).

Therefore, T (X) ≺H T (Y ), and hence, T preserves Hadamard majorization.

Theorem 3.10. (Birkhoff’s theorem) The set of the n × n doubly stochastic

matrices is a convex set with its extreme points the set of n×n permutation matrices.
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By a generalized permutation matrix we mean a square matrix with exactly one

nonzero entry in every row and in every column.

Theorem 3.11. Let n ≥ 3 and let T : Mn → Mn be a linear map. Then T

preserves Hadamard majorization if and only if T satisfies the following conditions:

1. T (Ekl) ◦ T (Epq) = 0 for every 1 ≤ k, l, p, q ≤ n with (k, l) 6= (p, q),

2. For every permutation matrix P ∈ Mn there exists a (0, 1)-matrix Z ∈ Mn

such that Z ◦ T (J) = 0 and T (P ) + Z is a generalized permutation matrix.

Proof. Let A = [aij ] = T (J) and B = [bij ], where bij = 1
aij

, if aij 6= 0 and 0

otherwise. As in the proof of Theorem 3.2, we consider the linear map S : Mn → Mn

defined by S(X) = T (X) ◦B. As before we have that S(J) is a (0, 1)-matrix.

First assume that T preserves Hadamard majorization, and hence, S preserves

Hadamard majorization. Then by Theorem 2.6 and Theorem 2.7, (1) holds for both

T and S. To prove (2), let P ∈ Mn be a permutation matrix. Since P ◦ J ≺H J ,

S(P ◦ J) ≺H S(J) and then S(P ◦ J) = D ◦ S(J) for some doubly stochastic matrix

D. By Lemma 3.1, S(P ) ◦ S(J) = D ◦ S(J). Now, S(P ) is a (0, 1)-matrix, which by

Proposition 2.1 is dominated by a permutation matrix, and hence, up to permutation

equivalence, S(P ) = Ik⊕0 for some 0 ≤ k ≤ n. Therefore, (Ik⊕0)◦S(J) = D ◦S(J),

and this implies that D = Ik⊕D
′ and (0⊕D′)◦S(J) = 0, for some doubly stochastic

matrix D′ ∈ Mn−k. So there exists a permutation matrix Q ∈ Mn−k such that

(0⊕Q) ◦ S(J) = 0. Now, we have [S(P )− (Ik ⊕Q)] ◦ S(J) = 0. Put Z = (Ik ⊕Q)−

S(P ) = (0⊕Q), and then Z+S(P ) is a permutation matrix and Z◦S(J) = 0. We have

Z◦T (J) = Z◦S(J)◦A = 0 and Z+T (P ) = (0⊕Q)+S(P )◦A = diag(a11, . . . , akk)⊕Q.

Conversely, assume that T satisfies (1) and (2). It is clear that S satisfies (1), and

hence, by Theorem 2.6, T (X) = S(X) ◦ A for all X ∈ Mn and then it is enough to

show that S preserves Hadamard majorization. By (2), for every permutation matrix

P ∈ Mn there exists a (0, 1)-matrix Z ∈ Mn such that Z ◦T (J) = 0 and T (P )+Z is

a generalized permutation matrix. By the use of (1) we have Z ◦T (P ) = 0, and hence,

S(P )+Z is a permutation matrix. By Lemma 3.1, we have S(X ◦ Y ) = S(X) ◦S(Y )

for all X,Y ∈ Mn. Let X ≺H Y . Then there exists a doubly stochastic matrix D

such that X = D ◦ Y , and hence, S(X) = S(D) ◦ S(Y ). By Birkhoff’s theorem,

D =
∑k

i=1 λiPi for some permutation matrices P1, . . . , Pk ∈ Mn and some positive

numbers λ1, . . . , λk ∈ R such that
∑k

i=1 λi = 1. For every 1 ≤ i ≤ k, there exists

Zi ∈ Mn such that Zi ◦ A = 0 and S(Pi) + Zi is a permutation matrix. So D′ =
∑k

i=1 λi(S(Pi)+Zi) is a doubly stochastic matrix. Therefore, S(X) = S(D)◦S(Y ) =

S(
∑k

i=1 λiPi) ◦ S(Y ) = (
∑k

i=1 λi(S(Pi) + Zi)) ◦ S(Y ) = D′ ◦ S(Y ), and hence, S

preserves Hadamard majorization.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 593-609, September 2016

http:/repository.uwyo.edu/ela



ELA

606 S.M. Motlaghian, A. Armandnejad, and F.J. Hall

In the following result, P(n) is the set of all n× n permutation matrices.

Corollary 3.12. Let n ≥ 3 and let T : Mn → Mn be a linear map. Then T

strongly preserves Hadamard majorization if and only if T is invertible and T satisfies

the following conditions:

1. T (Ekl) ◦ T (Epq) = 0 for every 1 ≤ k, l, p, q ≤ n with (k, l) 6= (p, q).

2. For every permutation matrix P ∈ Mn, T (P ) is a generalized permutation

matrix.

Proof. If T strongly preserves Hadamard majorization, then by Theorem 2.10,

T is invertible and by Theorem 3.11, (1) holds, and for every permutation matrix

P ∈ Mn there exists a (0, 1)-matrix Y ∈ Mn such that Y ◦T (J) = 0 and T (P )+Y is

a generalized permutation matrix. But by Theorem 2.7, T (J) has no zero entry, and

hence, Y = 0 as desired.

Conversely, assume that T is invertible and (1) and (2) hold. Then by Theorem

3.11, T preserves Hadamard majorization. As in the proof of Theorem 3.2, we consider

the linear map S : Mn → Mn defined by S(X) = T (X) ◦ B. Then S satisfies (1)

and for every permutation matrix P ∈ Mn, S(P ) is a permutation matrix. Since S is

invertible, S(P(n)) = P(n), and hence, S−1 satisfies (2). For every 1 ≤ k, l, p, q ≤ n

with (k, l) 6= (p, q), let A = S−1(Ekl) and B = S−1(Epq). So, by Lemma 3.1,

S(A ◦ B) = S(A) ◦ S(B) = Ekl ◦ Epq = 0. This implies that A ◦ B = 0, and hence,

S−1 satisfies (1). Thus, by Theorem 3.11, S−1 preserves Hadamard majorization, and

hence, S strongly preserves Hadamard majorization. Therefore, T strongly preserves

Hadamard majorization.

Note that a (directed) graphD is a pair (V, E), consisting of the set V of nodes and

the set E of edges, which are ordered pairs of elements of V . If |V | = n, the adjacency

matrix of D is the square n × n matrix A such that aij is one when (i, j) ∈ E , and

zero otherwise. The reader can see [7] for these notions.

For our purpose we make the following definition. We say that a directed graph

D is a permutation graph if its adjacency matrix is a permutation matrix. This means

that D is the union of distinct simple circles including all the nodes of D.

In the remaining part of the paper, when we say “graph” we mean directed graph.

Remark 3.13. Let n ≥ 3 and let T : Mn → Mn be a linear map preserving

Hadamard majorization. By the use of Theorem 2.7, it can be seen that there exist

a subset E of Nn ×Nn, a function ϕ : E → Nn ×Nn, and nonzero scalars λij ∈ R such

that for every 1 ≤ i, j ≤ n, and for all X ∈ Mn,

(T (X))ij =

{

λijxϕ(i,j), if (i, j) ∈ E ;

0, otherwise,
(3.1)
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where xϕ(i,j) means xpq if ϕ(i, j) = (p, q). If λij = 1 for all 1 ≤ i, j ≤ n, then T (Ers)

is the adjacency matrix of the graph (Nn, ϕ
−1{(r, s)}) for every 1 ≤ r, s ≤ n. By the

use of previous remark we may state and prove the following theorem that gives a

necessary and sufficient condition for linear maps to preserve Hadamard majorization.

Theorem 3.14. Let n ≥ 3 and let T : Mn → Mn be a linear map. Then T

preserves Hadamard majorization if and only if there exist a directed graph (Nn, E),

nonzero scalars λij ∈ R, and a function ϕ : E → Nn × Nn such that (3.1) holds,

and for every permutation graph (Nn,P) there exists a subset F of Ec such that

(Nn, ϕ
−1(P) ∪ F) is a permutation graph.

Proof. First assume that T preserves Hadamard majorization. Then by Remark

3.13, there exist a subset E of Nn × Nn, a function ϕ : E → Nn × Nn, and nonzero

scalars λij ∈ R such that (3.1) holds. Without loss of generality (as in the proof of

Theorem 3.2, we can consider the linear map S(X) = T (X) ◦ B) we may assume

that λij = 1 for all 1 ≤ i, j ≤ n. Hence, for every permutation graph (Nn,P) with

adjacency matrix P , it is easy to see that T (P ) is the adjacency matrix of the graph

(Nn, ϕ
−1(P)). By the condition (ii) of Theorem 3.11, there exists a (0, 1)-matrix

Y ∈ Mn such that Y ◦ T (J) = 0 and T (P ) + Y is a permutation matrix. Now, let

(Nn,F) be the graph with adjacency matrix Y . Since Y ◦ T (J) = 0, F ⊂ Ec and

T (P ) + Y is the adjacency matrix of the graph (Nn, ϕ
−1(P) ∪ F), as desired.

Conversely, to prove the sufficiency, it is enough to show that T satisfies the

conditions (1) and (2) of Theorem 3.11. Without loss of generality, we may assume

that λij = 1 for all 1 ≤ i, j ≤ n. Since T (Ers) is the adjacency matrix of the

graph (Nn, ϕ
−1{(r, s)}), if (k, l) 6= (p, q) then ϕ−1{(k, l)} ∩ ϕ−1{(p, q)}) = ∅ and

hence T (Ekl)◦T (Epq) = 0. Now, let P ∈ Mn be a permutation matrix. Consider the

permutation graph (Nn,P) with matrix adjacency P . By the assumption, there exists

a subset F of Ec such that (Nn, ϕ
−1(P) ∪ F) is a permutation graph. Let Y be the

adjacency matrix of the graph (Nn,F). It is easy to see that Y is a (0, 1)-matrix such

that Y ◦ T (J) = 0 and T (P ) + Y is a permutation matrix, in fact it is the adjacency

matrix of (Nn, ϕ
−1(P) ∪ F).

Corollary 3.15. Let n ≥ 3 and let T : Mn → Mn be a linear map. Then T

strongly preserves Hadamard majorization if and only if there exist nonzero scalars

λij ∈ R, and a bijection ϕ : Nn ×Nn → Nn ×Nn such that (3.1) holds, and for every

permutation graph (Nn,P), (Nn, ϕ
−1(P)) is a permutation graph.

Proof. If T strongly preserves Hadamard majorization then by Theorem 2.10,

T is invertible, and hence, the function ϕ in Theorem 3.14 is bijective and Ec = ∅.

Therefore, for every permutation graph (Nn,P), (Nn, ϕ
−1(P)) is a permutation graph.

Conversely, assume that there exist nonzero scalars λij ∈ R, and a bijection
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ϕ : Nn × Nn → Nn × Nn such that (3.1) holds, and for every permutation graph

(Nn,P), (Nn, ϕ
−1(P)) is a permutation graph. So by Theorem 3.14, T preserves

Hadamard majorization. Since ϕ is bijective, for every permutation graph (Nn,P),

(Nn, ψ
−1(P)) is a permutation graph where ψ = ϕ−1 is the inverse of ϕ. Therefore, by

Theorem 3.14, T−1 preserves Hadamard majorization, and hence, T strongly preserves

Hadamard majorization.

Example 3.16. Consider the linear map T : M3 → M3 defined by T (X) =




x11 x21 0

0 x11 0

x21 0 0



 , for all X ∈ M3. Then E = {(1, 1), (1, 2), (2, 2), (3, 1)} and

ϕ(1, 1) = (1, 1), ϕ(1, 2) = (2, 1), ϕ(2, 2) = (1, 1), ϕ(3, 1) = (2, 1). Let P1, . . . ,P6 be

all permutation graphes of order 3. We have

where the blue edges and the red edges belong to the graphs (N3, E) and (N3, Ec),

respectively. Hence, by Theorem 3.14, T preserves Hadamard majorization.
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