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Abstract. Several properties of the inverse along an element are studied in the context of

unitary rings. New characterizations of the existence of this inverse are proved. Moreover, the set

of all invertible elements along a fixed element is fully described. Furthermore, commuting inverses

along an element are characterized. The special cases of the group inverse, the (generalized) Drazin

inverse and the Moore-Penrose inverse (in rings with involutions) are also considered.
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1. Introduction. In [5], the notion of an inverse along an element was intro-

duced. This inverse has the advantage that it encompasses several well known gener-

alized inverses such as the group inverse, the Drazin inverse and the Moore-Penrose

inverse. The aforementioned inverse was studied by several authors (see for example

[1, 3, 5, 6, 7, 9]).

The main objective of this article is to study several properties of the inverse

along an element in unitary rings. In Section 3, after having recalled some preliminary

definitions and facts in Section 2, more equivalent conditions that assure the existence

of the inverse under consideration will be given. In addition, in Section 4, more

characterizations of this inverse will be proved. In Section 5, the set of all invertible

elements along a fixed element will be fully described. Furthermore, the special cases

of the group inverse, the (generalized) Drazin inverse and the Moore-Penrose inverse

(in the presence of an involution) will be considered. In Section 6, the reverse order

law will be studied. In Section 7, the commuting inverse along an element will be

characterized. In particular, a characterization of group invertible elements through

the inverse along an element will be presented. Finally, in Section 8, inverses along

elements that are also inner inverses will be considered.
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2. Preliminary definitions and facts. The symbol N will denote the natural

numbers, in particular, if n ∈ N, then n ≥ 1. From now onR will denote a unitary ring

with unit 1. Let R−1 be the set of invertible elements of R and denote by R• the set

of idempotents of R, i.e., R• = {p ∈ R : p2 = p}. Given a ∈ R, the following notation

will be used: aR = {ax : x ∈ R}, Ra = {xa : x ∈ R}, a−1(0) = {x ∈ R : ax = 0},

a−1(0) = {x ∈ R : xa = 0}.

Recall that a ∈ R is regular, if there is z ∈ R such that a = aza. Such an element

z is called an inner or a generalized inverse of a. The set of regular elements of R

will be denoted by R̂. Next follows one of the main definitions of this article.

Definition 2.1. Given a ∈ R, an element b ∈ R is an outer inverse of a if

b = bab.

Remark 2.2. Consider a, b ∈ R such that b is an outer inverse of a. Then, the

following statements can be easily proved:

(i) ab, ba ∈ R•.

(ii) bR = baR, Rab = Rb.

(iii) b−1(0) = (ab)−1(0), b−1(0) = (ba)−1(0).

(iv) When b is also an inner inverse of a, i.e., a = aba, the following statements

are equivalent:

(1) a = aba,

(2) R = bR⊕ a−1(0),

(3) R = Rb⊕ a−1(0).

Recall that when b ∈ R is an outer and an inner inverse of a ∈ R, b is said to

be a normalized generalized inverse of a. It is well known that if z is a generalized

inverse of a, then zaz is a normalized generalized inverse of a.

Next the definition of the key notion of this article will be recalled (see [5, Defi-

nition 4]).

Definition 2.3. Consider a, d ∈ R. The element a is invertible along d, if there

exists b ∈ R such that b is an outer inverse of a, bR = dR and Rb = Rd.

Recall that, in the conditions of Definition 2.3, according to [5, Theorem 6], if

such b ∈ R exists, then it is unique. Therefore, the element b satisfying Definition 2.3

will be said to be the inverse of a along d. In this case, the inverse under consideration

will be denoted by a‖d. According to [5, Theorem 7] (see also [7, Theorem 2.1]), a

necessary and sufficient condition for a ∈ R to be invertible along d ∈ R is that

ad is group invertible (see the definition below) and Rd ⊂ Rad, or equivalently,

da is group invertible and dR ⊂ daR. Moreover, a‖d = d(ad)♯ = (da)♯d, where

(ad)♯ (respectively, (da)♯) is the group inverse of ad (respectively, of da) (see the
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notation below). In addition, according to [7, Theorem 2.2], a‖d exists if and only

if dadR = dR and Rdad = Rd. These existence criteria will be used to prove more

equivalent conditions to the existence of the inverse along an element (see Theorem

4.1).

Note that if d̃ ∈ R is such that dR = d̃R and Rd = Rd̃, then a is invertible

along d if and only if a is invertible along d̃, in addition, in this case a‖d = a‖d̃.

In particular, given d ∈ R−1, a necessary and sufficient condition for a ∈ R to be

invertible along d is that a ∈ R−1; moreover, in this case a‖d = a−1. In fact, since

1R = dR and R1 = Rd, a is invertible along d if and only if a is invertible along 1,

which is equivalent to a ∈ R−1, and in this case a‖1 = a−1.

Moreover, according to [7, p. 3], if a‖d exists, then d is regular. In particular, if

d is not regular, no a ∈ R has an inverse along d. Thus, without loss of generality it

will be assumed that d ∈ R̂. However, the next remark shows that more conditions

for d can be assumed without loss of generality.

Remark 2.4. Consider d ∈ R̂. Note that if d = 0, then any a ∈ R is invertible

along 0; in fact, in this case a‖d = 0. Then suppose that d 6= 0 and that there exists

d ∈ R such that ddd = d. Thus, d(1− dd) = 0 = (1− dd)d. Therefore, if d ∈ R is not

a zero divisor (there is no z ∈ R, z 6= 0, such that zd = 0 or dz = 0), then d ∈ R−1.

Consequently, in the general case, it is possible to assume that d ∈ R̂ \ (R−1 ∪ {0}),

with d a zero divisor. However, if the ring R has no zero divisors, for example if R is

a field, an integral domain or a polynomial ring over an integral domain, an inverse

along an element d ∈ R exists if and only if d ∈ R−1∪{0}, in which case this situation

has been characterized.

Next follow the definitions of several generalized inverses such as the group inverse,

the (generalized) Drazin inverse and the Moore-Penrose inverse. These classes of

invertible elements are particular cases of the inverse studied in this article.

Consider a ∈ R. The element a ∈ R will be said to be group invertible, if there

exists a (necessarily unique) b ∈ R such that

a = aba, b = bab, ab = ba

(see for example [8]). When a ∈ R is group invertible, its group inverse will be denoted

by a♯. Clearly, a♯ is group invertible and (a♯)♯ = a. According to [5, Theorem 11],

a necessary and sufficient condition for a ∈ R to be group invertible is that a is

invertible along a, moreover, in this case a♯ = a‖a. Next some of the main properties

of group invertible elements will be recalled. To this end, let R♯ stand for the set of

all group invertible elements of the ring R. In addition, recall that if p ∈ R•, then

pRp is a subring of R with unit p.
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Remark 2.5. Consider a ∈ R♯.

(i) Note that

aR = aa♯R = a♯aR = a♯R,

Ra = Raa♯ = Ra♯a = Ra♯,

aa♯Raa♯ = a♯aRa♯a = aRa = a♯Ra♯.

(ii) Recall that according to [8, Lemma 3], a ∈ R♯ if and only if there exists

p ∈ R• such that a + p ∈ R−1, ap = pa = 0. Now, using this result, it

is not difficult to prove that a necessary and sufficient condition for a to be

group invertible is that there exists p ∈ R• such that a = (1 − p)a(1 − p)

and a ∈ ((1 − p)R(1 − p))−1. In this case, letting b be the inverse of a in

(1 − p)R(1 − p), then a♯ = b. Moreover, according to [8, Corollary 2], the

idempotent, pa, involved in the definition is unique and pa = 1 − a♯a. In

particular, pa = pa♯ .

(iii) Let a ∈ R and suppose that a has a commuting generalized inverse b, i.e.,

aba = a and ab = ba. Then, it is not difficult to prove that a ∈ R♯ and

a♯ = bab.

(iv) Let a ∈ R♯ and consider n ∈ N. Then, since n ≥ 1, an easy calculation

proves that an ∈ R♯, (an)♯ = (a♯)n and pan = pa. Note that if a ∈ R−1, then

pan = pa = 0.

Consider a ∈ R. The element a is said to be Drazin invertible, if there exists a

(necessarily unique) x ∈ R such that

amxa = am, xax = x, ax = xa,

for some m ∈ N (see for example [2, 8]). In this case, the solution of these equations

will be denoted by ad and RD will stand for the set of all Drazin invertible elements

of R. In addition, the smallest m for which the above equations hold is called the

Drazin index of a and it will be denoted by ind(a). Note that ind(a) = 1 if and only if

a is group invertible. On the other hand, it is not difficult to prove that if a ∈ RD and

ind(a) = k, then ak ∈ R♯, (ak)♯ = (ad)k and pak = 1 − aad. Furthermore, according

to [5, Theorem 11], a ∈ R is Drazin invertible if and only if a is invertible along am,

for some m ∈ N. Moreover, in this case, ad = a‖a
m

.

Next the definition of generalized Drazin invertible elements will be recalled.

However, to this end some preparation is needed.

An element a ∈ R is said to be quasinilpotent, if for every x ∈ comm(a), 1+xa ∈

R−1, where comm(a) = {x ∈ R : ax = xa} (see [4, Definition 2.1]). The set of all

quasinilpotent elements of R will be denoted by Rqnil. Note that if Rnil denotes the

set of nilpotent elements of R, then Rnil ⊂ Rqnil (see [4]).
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Recall that a ∈ R is said to be generalized Drazin invertible, if there exists b ∈ R

such that

b ∈ comm2(a), ab2 = b, a2b− b ∈ Rqnil,

where comm2(a) = {x ∈ R : xy = yx for all y ∈ comm(a)} (see [4, Definition 4.1]).

The set of all generalized Drazin invertible elements of R will be denoted by RgD.

Note that a necessary and sufficient condition for a ∈ RgD is that there exists p ∈

comm2(a) ∩R• such that ap ∈ Rqnil and a+ p ∈ R−1 ([4, Theorem 4.2]). Moreover,

this idempotent, which is unique ([4, Proposition 2.3]), is called the spectral idempotent

of a and is denoted by aπ. Furthermore, a ∈ RgD has at most one generalized Drazin

inverse ([4, Theorem 4.2]), which will be denoted by aD. In addition, in this case,

aπ = 1− aaD = 1− aDa ([4, p. 142]).

On the other hand, note that R♯ ⊂ RD ⊂ RgD. Moreover, if a ∈ RD, then

aD = ad and aπ = 1 − aad ([4, Proposition 4.9 and Remark 4.10]), In particular, if

a ∈ R♯, then pa = aπ.

Recall that according to [6, Theorem 8], if a ∈ RgD, then a is invertible along

d = 1− aπ and a‖1−aπ

= aD.

The last generalized inverse that will be recalled in this section is the Moore-

Penrose inverse.

An involution ∗ : R → R is an anti-isomorphism:

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a,

where a, b ∈ R.

An element a ∈ R is said to be Moore-Penrose invertible, if there exists a (nec-

essarily unique) b ∈ R such that

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

The Moore-Penrose inverse of a is denoted by a† and the set of all Moore-Penrose

invertible elements of R will be denoted by R† (see for example [4]). Recall that

according to [5, Theorem 11], a necessary and sufficient condition for a ∈ R† is that

a is invertible along a∗. Moreover, in this case a‖a
∗

= a†.

In addition, recall that a ∈ R† is said to be EP, if aa† = a†a (see [4]). Let REP

be the set of all EP elements in R.

3. Equivalent conditions for the inverse along an element. In this section,

new conditions equivalent to the ones in Definition 2.3 will be given.
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First of all note that if R is a ring and b, d ∈ R are such that bR = dR, then

b−1(0) = d−1(0); similarly from Rb = Rd it can be derived that b−1(0) = d−1(0).

These conditions will be used to prove the invertibility along an element. Next follows

a preliminary result.

Proposition 3.1. Consider b, d ∈ R.

(a) Let a ∈ R be such that b is an outer inverse of a. Then

(i) if b−1(0) ⊆ d−1(0), then d = dab; in particular Rd ⊆ Rb;

(ii) if b−1(0) ⊆ d−1(0), then d = bad; in particular dR ⊆ bR.

(b) Suppose that d ∈ R̂. Then

(iii) if d−1(0) ⊆ b−1(0), then Rb ⊆ Rd;

(iv) if d−1(0) ⊆ b−1(0), then bR ⊆ dR.

Proof. (i) Since b(1− ab) = 0, 1− ab ∈ b−1(0) ⊆ d−1(0). Thus, d(1 − ab) = 0.

(ii) Apply a similar argument to the one used in the proof of statement (i).

(iii) Let d ∈ R be such that ddd = d. Then d is an outer inverse of d. Therefore,

according to statement (i), Rb ⊆ Rd.

(iv) Apply a similar argument to the one used in the proof of statement (iii),

using statement (ii) instead of statement (i).

In the following theorems, equivalent conditions to the ones in Definition 2.3 will

be proved. These conditions will be presented in two different theorems to show when

it is necessary to assume the regularity of the element d ∈ R.

Theorem 3.2. Consider a, b, d ∈ R be such that b is an outer inverse of a.

Then, the following statements are equivalent.

(i) b is the inverse of a along d.

(ii) Rd = Rb, bR ⊆ dR and b−1(0) ⊆ d−1(0).

(iii) bR = dR, Rb ⊆ Rd and b−1(0) ⊆ d−1(0).

(iv) Rb ⊆ Rd, bR ⊆ dR, b−1(0) ⊆ d−1(0) and b−1(0) ⊆ d−1(0).

Proof. It is clear that statement (i) implies that each of the other statements

holds.

On the other hand, to prove that each of statements (ii)–(iv) implies that b is

the inverse of a along d, note that according to Proposition 3.1 (i) (respectively,

Proposition 3.1 (ii)), if b−1(0) ⊆ d−1(0) (respectively, if b−1(0) ⊆ d−1(0)), then

Rd ⊆ Rb (respectively, dR ⊆ bR).
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Theorem 3.3. Consider a, b, d ∈ R be such that b is an outer inverse of a and

d ∈ R̂. Then, the following statements are equivalent.

(i) b is the inverse of a along d.

(ii) Rd = Rb, dR ⊆ bR and d−1(0) ⊆ b−1(0).

(iii) bR = dR, Rd ⊆ Rb and d−1(0) ⊆ b−1(0).

(iv) Rb = Rd, b−1(0) = d−1(0).

(v) Rb ⊆ Rd, dR ⊆ bR, b−1(0) ⊆ d−1(0) and d−1(0) ⊆ b−1(0).

(vi) Rd ⊆ Rb, bR ⊆ dR, b−1(0) ⊆ d−1(0) and d−1(0) ⊆ b−1(0).

(vii) Rd ⊆ Rb, dR ⊆ bR, d−1(0) ⊆ b−1(0) and d−1(0) ⊆ b−1(0).

(viii) bR = dR, b−1(0) = d−1(0).

(ix) Rb ⊆ Rd, b−1(0) ⊆ d−1(0) and b−1(0) = d−1(0).

(x) Rd ⊆ Rb, d−1(0) ⊆ b−1(0) and b−1(0) = d−1(0).

(xi) dR ⊆ bR, d−1(0) ⊆ b−1(0) and b−1(0) = d−1(0).

(xii) bR ⊆ dR, b−1(0) ⊆ d−1(0) and b−1(0) = d−1(0).

(xiii) b−1(0) = d−1(0) and b−1(0) = d−1(0).

Proof. As in the proof of Theorem 3.2, statement (i) implies all the other state-

ments.

To prove that statements (ii)–(xiii) imply that b is the inverse of a along d, note

the following facts. According to Proposition 3.1 (i) (respectively, Proposition 3.1

(ii)), if b−1(0) ⊆ d−1(0) (respectively, if b−1(0) ⊆ d−1(0)), then Rd ⊆ Rb (respec-

tively, dR ⊆ bR). On the other hand, according to Proposition 3.1 (iii) (respectively,

Proposition 3.1 (iv)), if d−1(0) ⊆ b−1(0) (respectively, if d−1(0) ⊆ b−1(0)), then

Rb ⊆ Rd (respectively, bR ⊆ dR).

4. Further invertible elements. In this section, using ideas similar to the

ones in [5, Theorem 7] (see also [7, Theorem 2.1]), more equivalent conditions to the

existence of an inverse along an element will be given. Moreover, thanks to these

characterizations, given a ∈ R and d ∈ R̂ such that a is invertible along d, more

elements invertible along d will be constructed.

First of all, note that if d ∈ R̂ and d is a generalized inverse of d, then ddRdd

(respectively, ddRdd) is a subring of R with identity dd (respectively, dd).

Theorem 4.1. Consider a ∈ R and d ∈ R̂ with generalized inverse d. Then, the

following conditions are equivalent.

(i) The element a is invertible along d.

(ii) dadd ∈ (ddRdd)−1.
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(iii) ddad ∈ (ddRdd)−1.

(iv) dadd is group invertible and pdadd = 1− dd.

(v) ddad is group invertible and pddad = 1− dd.

Furthermore, if any of these statements holds, then given x ∈ ddRdd (respectively, y ∈

ddRdd) the inverse of dadd (respectively, of ddad) in the subring ddRdd (respectively,

in the subring ddRdd), xd = a‖d (respectively, dy = a‖d).

Proof. Suppose that a‖d exists. To prove statement (ii), first note that dadd =

dddadd ∈ ddRdd. Moreover, according to [5, Theorem 7], ddR = dR = daR. In

particular, there is u ∈ R such that dd = dau. Furthermore, da is group invertible

([5, Theorem 7]). As a result,

dd = dau = da(da(da)♯udd).

Thus, z = da(da)♯udd = ddda(da)♯udd ∈ ddRdd and dd = daz = daddz.

On the other hand, according again to [5, Theorem 7], Rd = Rad and ad is group

invertible. In particular, there is v ∈ R such that d = vad. Thus,

dd = vadd = (ddv(ad)♯ada)dadd = (ddv(ad)♯adadd)dadd.

Then, w = ddv(ad)♯adadd ∈ ddRdd and dd = wdadd. Consequently, dadd ∈

(ddRdd)−1.

Suppose that statement (ii) holds. Let x ∈ ddRdd such that

daddx = dd = xdadd.

Then, it will be proved that xd = a‖d. First of all, note that

xdaxd = xdaddxd = ddxd = xd.

In addition, clearly Rxd ⊆ Rd and since x = ddx, xdR ⊆ dR. Moreover, since

xdadd = dd, xdad = d, which implies that dR ⊆ xdR. Similarly, since daddx = dd,

daddxd = d, which implies that Rd ⊆ Rxd.

To prove the equivalence between statements (ii) and (iv), apply Remark 2.5 (ii).

The equivalence among the statements (i), (iii) and (v) can be proved using similar

arguments.

Remark 4.2. Under the same hypotheses in Theorem 4.1 and using the same

notation in this theorem, note that since xd = a‖d, (dadd)−1

ddRdd
= (dadd)♯ = x =

a‖dd. Similarly, since dy = a‖d, (ddad)−1

ddRdd
= (ddad)♯ = y = da‖d.
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Given a ∈ R and d ∈ R̂ such that a is invertible along d, applying Theorem 4.1

new elements invertible along d can be created.

Corollary 4.3. Consider a ∈ R and d ∈ R̂ with generalized inverse d. Then,

the following statements are equivalent.

(i) a is invertible along d.

(ii) add is invertible along d.

(iii) dda is invertible along d.

Furthermore, if any of these statements hold, then

a‖d = (add)‖d = (dda)‖d.

Proof. Note that dadddd = dadd. Therefore, according to Theorem 4.1, state-

ments (i) and (ii) are equivalent.

A similar argument proves the equivalence between statements (i) and (iii).

According to Theorem 4.1, if x ∈ ddRdd is an inverse of dadd, then a‖d = xd.

In particular, since dadddd = dadd, a‖d = (add)‖d. A similar argument, using the

inverse of ddad ∈ ddRdd, proves that a‖d = (dda)‖d.

Corollary 4.4. Consider a ∈ R and d ∈ R̂ with generalized inverse d. Then,

if a‖d exists and x, y ∈ R, the following statements hold.

(i) a+ x(1 − dd) is invertible along d.

(ii) a+ (1 − dd)y is invertible along d.

(iii) a+ x(1 − dd) + (1− dd)y is invertible along d.

Moreover, a‖d = (a+x(1−dd))‖d = (a+(1−dd)y)‖d = (a+x(1−dd)+(1−dd)y)‖d.

Proof. Since add = (a+x(1−dd))dd, according to Corollary 4.3, (a+x(1−dd))‖d

exists and a‖d = (a+ x(1 − dd))‖d. A similar argument proves that a + (1 − dd)y is

invertible along d and a‖d = (a + (1 − dd)y)‖d . Statement (iii) and the remaining

identity can be derived applying statements (i) and (ii).

Given a ∈ R−1, (a−1)−1 = a. The following proposition will show how this

property can be reformulated for the inverse along an element.

Proposition 4.5. Consider a ∈ R and d, d ∈ R̂ such that a is invertible along

d and d is a normalized generalized inverse of d. Let x, y ∈ R. Then, the following

statements hold.

(i) a‖d + x(1 − dd) + (1− dd)y is invertible along d.
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(ii) (a‖d + x(1 − dd) + (1 − dd)y)‖d = (a‖d)‖d = ddadd.

Proof. Since a is invertible along d, according to Theorem 4.1, v = dadd ∈

(ddRdd)−1, and if w is the inverse of v in (ddRdd)−1, then a‖d = wd.

Note that since d is a normalized generalized inverse of d, both da‖ddd = dwd

and dvd belong to ddRdd. Furthermore, two direct calculations prove that da‖ddd

is invertible in ddRdd with inverse dvd. Therefore, according to Theorem 4.1, a‖d

is invertible along d and (a‖d)‖d = dvdd = ddadd. To conclude the proof, apply

statement (iii) of Corollary 4.4.

To end this section, the case d ∈ R• is considered.

Corollary 4.6. Consider a ∈ R, p ∈ R•, x, y ∈ R and m = x(1−p)+(1−p)y.

Then, the following statements are equivalent.

(i) a is invertible along p.

(ii) ap is invertible along p.

(iii) pa is invertible along p.

(iv) pap ∈ (pRp)−1.

(v) pap is group invertible and ppap = 1− p.

Moreover, in this case, a+m, ap+m, and pa+m are invertible along p and

(a+m)‖p = (ap+m)‖p = (pa+m)‖p = (pap)♯.

Furthermore, if a is invertible along p, then (pap)♯ + m is invertible along p and

((pap)♯ +m)‖p = ((pap)♯)‖p = pap.

Proof. Apply Theorem 4.1, Corollary 4.3, Corollary 4.4 and Proposition 4.5.

5. The set of invertible elements along a fixed d ∈ R̂. In this section,

given a regular element d ∈ R, the set of all invertible elements along d will be fully

characterized. Moreover, some special cases will be also considered. To this end,

the set under consideration will be denoted by R‖d, i.e., R‖d = {a ∈ R : a‖d exists}.

Note that if d̃ ∈ R̂ is such that dR = d̃R and Rd = Rd̃, then R‖d = R‖d̃. In

addition, recall that any p ∈ R• \ {0, 1} leads to the Pierce decomposition R =

pRp ⊕ pR(1 − p) ⊕ (1 − p)Rp ⊕ (1 − p)R(1 − p). Next follows the main theorem of

this section.

Theorem 5.1. Consider d and d ∈ R such that d ∈ R̂ and d is a generalized

inverse of d.

(i) Then, the following identity holds:

R‖d = d(ddRdd)−1 + (1 − dd)Rdd ⊕R(1− dd).
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Moreover, given x, y ∈ R and v ∈ (ddRdd)−1 with inverse w, then

(dv)‖d = (dv + (1 − dd)xdd + y(1− dd))‖d = wd.

(ii) In addition,

R‖d = (ddRdd)−1d+ ddR(1− dd)⊕ (1− dd)R.

Furthermore, given s, t ∈ R and z ∈ (ddRdd)−1 with inverse u, then

(zd)‖d = (zd+ dds(1− dd) + (1 − dd)t)‖d = du.

(iii) In particular, if p ∈ R• \ {0, 1}, then

R‖p = (pRp)−1 + pR(1− p)⊕ (1− p)Rp⊕ (1− p)R(1 − p),

and if r ∈ (pRp)−1 with inverse l and m ∈ pR(1 − p) ⊕ (1 − p)Rp ⊕ (1 −

p)R(1 − p), then

r‖p = (r +m)‖p = l.

Proof. (i) Let v ∈ (ddRdd)−1 and consider a = dv. Thus, dadd = ddvdd =

v. Consequently, according to Theorem 4.1, a‖d exists and a‖d = wd. Moreover,

according to Corollary 4.4, (a+(1− dd)xdd+ y(1− dd))‖d exists and a‖d = (a+(1−

dd)xdd + y(1− dd))‖d.

To prove the converse, let a ∈ R such that a‖d exists. Then

a = ddadd+ (1 − dd)add+ a(1− dd).

However, ddadd = d(dadd) and, according to Theorem 4.1, dadd ∈ (ddRdd)−1.

(ii) Apply a similar argument to the one used in the proof of statement (a).

(iii) Given d = p ∈ R• \ {0, 1}, consider d = p. Then apply what has been proven.

Remark 5.2. Under the same hypotheses in Theorem 5.1 and using the same

notation in this Theorem, note the following facts.

(i)

(1− dd)Rdd ⊕R(1 − dd) = ddR(1 − dd)⊕ (1− dd)R

= (1 − dd)Rdd⊕ ddR(1 − dd)⊕ (1− dd)R(1 − dd).

(ii) d(ddRdd)−1 ⊆ ddRdd. In addition,

d(ddRdd)−1 ∩ (1− dd)Rdd ⊕R(1 − dd) = ∅.
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(iii) In particular, given p ∈ R• \ {0, 1},

(pRp)−1 ∩ (pR(1− p)⊕ (1− p)Rp⊕ (1− p)R(1 − p)) = ∅.

(iv) The elements w, u and l in Theorem 5.1 can be presented as in Remark 4.2

(w and u) and Corollary 4.6 (l). For example, w = (dv)‖dd, u = d(zd)‖d and

l = r♯.

Applying Theorem 5.1 it is possible to give another characterization of the inverse

along an element.

Theorem 5.3. Consider a ∈ R and d ∈ R̂ with generalized inverse d. Then, the

following statements are equivalent.

(i) The element a is invertible along d.

(ii) There exist (necessarily unique) s, t ∈ R such that a = ds + t, s ∈ R♯,

ps = 1− dd and ddtdd = 0. In addition, in this case a‖d = s♯d.

(iii) There exist (necessarily unique) u, v ∈ R such that a = ud + v, u ∈ R♯,

pu = 1− dd and ddvdd = 0. Moreover, in this case a‖d = du♯.

In particular, if p ∈ R•, a necessary and sufficient condition for a ∈ Rp is that there

exist (necessarily unique) s, t ∈ R such that a = s+t, s ∈ R♯, ps = 1−p and ptp = 0.

Furthermore, in this case a‖p = s♯.

Proof. If a is invertible along d, then according to Theorem 5.1 (i), there exist

s ∈ (ddRdd)−1 and t ∈ (1 − dd)Rdd ⊕ R(1 − dd) such that a = ds + t. Note that

according to Remark 2.5 (ii) and Theorem 5.1 (i), s ∈ R♯, ps = 1− dd and a‖d = s♯d.

Moreover, ddtdd = 0.

On the other hand, if statement (ii) holds, then according to Remark 2.5 (ii),

s ∈ (ddRdd)−1 and t ∈ (1 − dd)Rdd ⊕ R(1 − dd). Thus, according to Theorem 5.1

(i), a ∈ R‖d.

Let s1, s2 and t1 and t2 be such that a = ds1 + t1 = ds2 + t2, s1, s2 ∈ (ddRdd)−1

and t1, t2 ∈ (1 − dd)Rdd ⊕ R(1 − dd). Then, t1 = t2 and ds1 = ds2. However,

multiplying by d on the left side gives s1 = s2.

Similar arguments prove the equivalence between statements (i) and (iii), applying

Theorem 5.1 (ii) instead of Theorem 5.1 (i).

The last statement can be proved using similar arguments and applying in par-

ticular Theorem 5.1 (iii).

Example 5.4. Under the same hypotheses in Theorem 5.3, let a be invertible

along d. Then, according to [5, Lemma 3] and [5, Theorem 7] (other references are

[7, Definition 1.3] and [7, Theorem 2.1]), d = a(da)♯ is a generalized inverse of d, and
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a can be decomposed in the following way: a = a(da)♯da+ (1− a(da)♯d)a. Note that

s = da ∈ R♯ and t = (1− a(da)♯d)a is such that ddtdd = 0, as dt = (d− daa‖d)a = 0.

Using a similar argument, it is not difficult to prove that d = (ad)♯a is a general-

ized inverse of d, a = ad(ad)♯a+ (1− ad(ad)♯)a, u = ad ∈ R♯ and v = (1− ad(ad)♯)a

is such that ddvdd = 0.

Next the particular cases of group, (generalized) Drazin and commuting Moore-

Penrose invertible elements will be considered.

Theorem 5.5.

(a) Consider a ∈ R.

(i) If a ∈ R♯ and n ∈ N, then

R‖an

= R‖(a♯)n = R‖1−pa .

In addition, if x belongs to one of these sets, then x‖an

= x‖(a♯)n =

x‖1−pa .

(ii) If a ∈ RD, ind(a) = k, n ∈ N, 1 ≤ j ≤ k − 1 and m ≥ k, then

R‖(ad)n = R‖am

= R‖ajada = R‖1−aπ

.

Moreover, if x belongs to one of these sets, then x‖(ad)n = x‖am

=

x‖ajada = x‖1−aπ

.

(iii) If a ∈ RgD and n ∈ N, then

R‖(aD)n = R‖anada = R‖1−aπ

.

Furthermore, if x belongs to one of these sets, then x‖(ad)n = x‖anada =

x‖1−aπ

.

(b) Suppose that R has an involution.

(iv) If a ∈ R is EP and n ∈ N, then

R‖an

= R‖(a†)n = R‖(a∗)n = R‖((a†)∗)n = R‖aa†

.

If x belongs to one of these sets, then x‖an

= x‖(a†)n = x‖(a∗)n =

x‖((a†)∗)n = x‖aa†

.

Proof. (i) According to Theorem 5.1,

R‖a = a♯((1− pa)R(1 − pa))
−1 + paR(1 − pa)⊕Rpa,

R‖a♯

= a((1− pa)R(1 − pa))
−1 + paR(1 − pa)⊕Rpa,

R‖1−pa = ((1− pa)R(1 − pa))
−1 + paR(1 − pa)⊕Rpa.
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However, since a and a♯ ∈ ((1 − pa)R(1 − pa))
−1 (Remark 2.5 (ii)),

a♯((1 − pa)R(1 − pa))
−1 = a((1− pa)R(1 − pa))

−1 = ((1− pa)R(1 − pa))
−1.

Thus, R‖a = R‖a♯

= R‖1−pa . In addition, since according to Remark 2.5 (iv),

an ∈ R♯, (an)♯ = (a♯)n and pan = pa, applying what has been proved to an, R‖an

=

R‖(a♯)n = R‖1−pa (n ∈ N).

Note that to prove the remaining statement, it is enough to consider the case

n = 1. Let a ∈ R♯ and x ∈ R‖a. According to Theorem 5.1 (i) applied to d = a♯,

x‖a = wa, where w ∈ (aa♯Raa♯)−1 is such that waxaa♯ = axaa♯w = aa♯. On

the other hand, according to Theorem 5.1 (iii) applied to aa♯, x‖aa♯

= v, where

v ∈ (aa♯Raa♯)−1 is such that vaa♯xaa♯ = aa♯xaa♯v = aa♯. Now well, since a = aaa♯

waaa♯xaa♯ = vaa♯xaa♯.

However, since aa♯xaa♯ ∈ (aa♯Raa♯)−1,

x‖a = wa = v = x‖aa♯

.

(ii) Recall that according to Remark 2.5 (iii). ad ∈ R♯, (ad)♯ = aada and pad = aπ.

In addition, if 1 ≤ j ≤ k − 1 and m ≥ k (k = ind(a)), then it is not difficult to prove

that ((ad)♯)j = ajada and ((ad)♯)m = am. To prove statement (ii), apply statement

(i) to ad.

(iii) As in the proof of statement (ii), according to Remark 2.5 (iii). aD ∈ R♯,

(aD)♯ = aaDa and paD = aπ. Moreover, if n ∈ N, then ((aD)♯)n = anaDa. Then,

apply statement (i) to aD.

(iv) If a ∈ R is EP, then a, a†, a∗ and (a†)∗ ∈ R♯. Note that a♯ = a† and

(a∗)♯ = (a†)∗. Moreover, pa = pa† = pa∗ = p(a†)∗ = 1 − aa†. Then, apply statement

(i).

Next a characterization of invertible elements along a group invertible element

will be considered.

Corollary 5.6. Consider d ∈ R♯ and a ∈ R. Then, the following are equivalent.

(i) The element a is invertible along d.

(ii) There exist (necessarily unique) s, t ∈ R such that a = s+ t, s ∈ R♯, ps = pd

and (1− pd)t(1 − pd) = 0. Moreover, a‖d = s♯.

Proof. Apply Theorem 5.5 (i) and Theorem 5.3.

Remark 5.7. Clearly, if d ∈ R−1 ∪ R•, then Corollary 5.6 applies to d. In

addition, according to the proof of Theorem 5.5, Corollary 5.6 applies to d = xn
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(x ∈ R♯, n ∈ N), to d = xnxDx (x ∈ RgD, n ∈ N) or to d = yj (y ∈ RD, j ∈ N,

j ≥ ind(y)). Moreover, if R is a unital ring with an involution, according again to

Theorem 5.5, Corollary 5.6 applies to d = xn, d = (x†)n, d = (x∗)n or d = ((x∗)†)n

(x ∈ R an EP element, n ∈ N).

In the following theorem, given d ∈ R̂, the invertibility along elements related to

d will be studied.

Theorem 5.8. Consider d ∈ R̂. Then, if a ∈ R and u ∈ R−1, the following

statements are equivalent.

(i) a ∈ R‖d.

(ii) au−1 ∈ R‖ud.

(iii) u−1a ∈ R‖du.

Moreover, R‖ud = R‖du−1, R‖du = u−1R‖d and if one of the statements holds, then

(au−1)‖ud = ua‖d and (u−1a)‖du = a‖du.

Proof. In first place, note that if d ∈ R̂, then ud ∈ R̂. In fact, if d ∈ R

is such that d = ddd, then ud = ud(du−1)ud. In addition, since du−1ud = dd,

(du−1udRdu−1ud)−1 = (ddRdd)−1 and du−1udau−1ud = ddad. Consequently, ac-

cording to Theorem 4.1, statements (i) and (ii) are equivalent. Furthermore, applying

Theorem 5.1 (ii), a direct calculation proves that Rud = R‖du−1.

Let a ∈ R‖d. Then, according to Theorem 5.1 (ii), there exist z ∈ (ddRdd)−1 and

m ∈ ddR(1 − dd) ⊕ (1 − dd)R such that a = zd +m and a‖d = (zd)‖d = dw, where

w ∈ ddRdd is such that zw = wz = dd. Thus, au−1 = zdu−1 +mu−1 and according

to Theorem 5.1 (ii), (au−1)‖ud = (zdu−1)‖ud = udw = ua‖d.

The equivalence between statements (i) and (iii) and the remaining identities can

be proved using similar arguments.

6. The reverse order law. In this section, the reverse order law for the inverse

along an element will be studied. In the first place, the definition of the notion under

consideration will be given.

Given d ∈ R̂, a, b ∈ R‖d will be said to satisfy the reverse order law, if ab ∈ R‖d

and (ab)‖d = b‖da‖d. Recall thatR‖0 = R and a‖0 = 0, a ∈ R; in addition, if d ∈ R−1,

then R‖d = R−1 and if a ∈ R‖d, then a‖d = a−1. In particular, if d ∈ R−1 ∪ 0, then

any pair of elements a, b ∈ R‖d satisfy the reverse order law. In what follows, the

elements d ∈ R̂ that have this property will be characterized.

Theorem 6.1. Consider d ∈ R̂ and suppose that the reverse order law holds for

any pair of elements a, b ∈ R‖d. Then, d is group invertible.
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Proof. Let d ∈ R be such that d = ddd. According to Theorem 5.1 (i), ddd ∈ R‖d.

Moreover, (ddd)‖d = d.

Consider a = ddd = b. Since the reverse order law holds for ab, ab ∈ R‖d

and (ab)‖d = b‖da‖d = d2. In addition, Definition 2.3 implies that d2R = dR and

Rd2 = Rd. Therefore, according to [2, Theorem 4], d ∈ R♯.

In order to prove the main result of this section, a particular case will be studied

first.

Proposition 6.2. Consider p ∈ R• \ {0, 1} and a, b ∈ R‖p. Then, the following

statements are equivalent.

(i) The reverse order law holds for a and b.

(ii) pa(1− p)bp = 0.

In particular, the reverse order law holds for any pair of elements a, b ∈ R‖p if and

only if pR(1− p) · (1 − p)Rp = 0.

Proof. According to the statement (iii) of Theorem 5.1, applying the Pierce

decomposition to a and b, these elements have the following properties: a = pap+m,

b = pbp + n, pap, pbp ∈ (pRp)−1, m = pa(1 − p) + (1 − p)ap + (1 − p)a(1 − p),

n = pb(1 − p) + (1 − p)bp+ (1 − p)b(1 − p), a‖d = r and b‖d = s, where r and s are

the inverse of pap and pbp in (pRp)−1, respectively.

Now, a direct calculation proves that ab = papbp+ z, where z ∈ R. In addition,

it is not difficult to prove that z ∈ pR(1 − p) ⊕ (1 − p)Rp ⊕ (1 − p)R(1 − p) if and

only if pa(1 − p)bp = 0. According to the statement (iii) of Theorem 5.1, statement

(i) implies statement (ii).

On the other hand, if statement (ii) holds, ab = papbp + z, with z ∈ pR(1 −

p) ⊕ (1 − p)Rp ⊕ (1 − p)R(1 − p). However, papbp ∈ (pRp)−1, with inverse sr in

pRp. Therefore, according again to the statement (iii) of Theorem 5.1, ab ∈ Rp and

(ab)‖d = b‖da‖d.

For example, if p ∈ R\{0, 1} is a central idempotent, then p satisfies the hypoth-

esis of Proposition 6.2. In fact, in this case pR(1− p) = (1− p)Rp = 0. Next follows

the main result of this section.

Theorem 6.3. Let d ∈ R♯ and consider a, b ∈ R‖d. Then, the following

statements are equivalent.

(i) The reverse order law for a and b holds.

(ii) (1− pd)apdb(1− pd) = 0.
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In particular, the reverse order law holds for any pair of elements a, b ∈ R‖d if and

only if (1− pd)Rpd · pdR(1 − pd) = 0.

Proof. Apply statement (i) of Theorem 5.5 and Proposition 6.2.

Note that when d = 0, p0 = 1 and when d ∈ R−1, pd = 0, so that the conditions

in statements (ii) of Proposition 6.2 and Theorem 6.3 are trivially satisfied.

7. Commutative inverses along an element. In this section, given d ∈ R̂

and a ∈ R‖d, it will be characterized when aa‖d = a‖da. Note that in this case, since

a‖daa‖d = a‖d, a‖d ∈ R♯ and (a‖d)♯ = a2a‖d (see Remark 2.5 (iii)). Next follows the

first characterization of this section.

Theorem 7.1. Consider d ∈ R̂ and a ∈ R‖d. Then, the following are equivalent.

(i) aa‖d = a‖da.

(ii) d ∈ R♯ and apd = pda.

(iii) d ∈ R♯ and a = x+m, where x ∈ ((1− pd)R(1 − pd))
−1 and m ∈ pdRpd.

Proof. Note that according to Corollary 5.6, statements (ii) and (iii) are equiva-

lent.

Assume that aa‖d = a‖da. Recall that, according to [5, Lemma 3], a‖dad = d =

daa‖d. In addition, since a‖d ∈ dR, there is x ∈ R such that a‖d = dx. Now, using

the hypothesis, d = daa‖d = da‖da = d2xa ∈ d2R. Similarly, since a‖dad = d and

a‖d = yd, for some y ∈ R (a‖d ∈ Rd), d = ayd2 ∈ Rd2. Therefore, according to [2,

Theorem 4], d ∈ R#.

Next consider d♯. Note that according to the structure of a‖d presented in Theo-

rem 5.1 (i) (using d = d♯), it is easy to prove that

a‖ddd♯ = a‖d = dd♯a‖d,

equivalently,

a‖dpd = 0 = pda
‖d.

Consequently, pdaa
‖d = 0 = a‖dapd and since a‖dad = d,

aa‖d = a‖da = a‖dadd♯ + a‖da(1− dd♯) = dd♯ + a‖dapd = dd♯ = d♯d.

As a result,

add♯ = aa‖da = dd♯a,

which implies that apd = pda.
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To prove the converse, recall that according to Theorem 5.5 (i), R‖d = R‖1−pd .

Moreover, since apd = pda, according to Theorem 5.1 (iii), there exist x ∈ (dd♯Rdd♯)−1

and m ∈ pdRpd such that a = x + m. Moreover, according to Theorem 5.1 (iii),

a‖d = w, where w ∈ dd♯Rdd♯ is such that xw = wx = dd♯. However, a straightfor-

ward calculation proves that

aa‖d = xw = wx = a‖da = dd♯.

Thanks to Theorem 7.1, a characterization of group invertible elements in terms

of commuting inverse along an element can be derived.

Corollary 7.2. Consider d ∈ R̂. Then, the following statements are equivalent.

(i) d ∈ R♯.

(ii) There exists a ∈ R‖d such that aa‖d = a‖da.

Proof. If d ∈ R♯, then consider a = d. In fact, according to [5, Theorem 11], a‖d

exists, moreover, a‖d = d♯.

On the other hand, if statements (ii) holds, then apply Theorem 7.1.

Next follows the second characterization of this section.

Theorem 7.3. Consider a ∈ R and d ∈ R̂ such that a is invertible along d.

Then, the following statements are equivalent.

(i) a‖da = aa‖d.

(ii) da ∈ Rd and ad ∈ dR.

Proof. Let d ∈ R be such that d = ddd. Recall that according to [7, Theorem

3.2], da + 1 − dd and ad + 1 − dd are invertible in R and a‖d = (da + 1 − dd)−1d =

d(ad+ 1− dd)−1. Hence,

a‖da = aa‖d ⇔ (da+ 1− dd)−1da = ad(ad+ 1− dd)−1

⇔ da(ad+ 1− dd) = (da+ 1− dd)ad

⇔ da(1− dd) = (1 − dd)ad.

Assume that a‖da = aa‖d. If the last equality is multiplied on the left by dd,

then da(1 − d−d) = 0. Thus, (1 − dd−)ad = 0. Therefore, da = dadd ∈ Rd and

ad = ddad ∈ dR.

To prove the converse, suppose that da ∈ Rd. Then there exists u ∈ R such

that da = ud. Consequently, dadd = uddd = ud = da. Similarly, ad ∈ dR implies
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that ddad = ad. As a result, da(1 − dd) = 0 = (1 − dd)ad, which is equivalent to

a‖da = aa‖d.

Remark 7.4. Suppose that R has an involution and consider a ∈ R a Moore-

Penrose invertible element. From Theorem 7.3, it follows that a necessary and suffi-

cient condition for a to be EP is that aa∗ ∈ a∗R and a∗a ∈ Ra∗.

8. Inner inverse. In this section, inverses along an element that are also inner

inverses will be studied. Next follows a characterization of this object.

Theorem 8.1. Consider a ∈ R and d ∈ R̂ such that a is invertible along d. The

following statements are equivalent:

(i) a‖d is an inner inverse of a.

(ii) R = dR⊕ a−1(0).

(iii) R = Rd⊕ a−1(0).

Proof. Since a is invertible along d, a‖dR = dR and Ra‖d = Rd. Apply then

Remark 2.2 (iv).

In the following theorem, some special cases will be considered.

Theorem 8.2. Consider a ∈ R and d ∈ R̂ such that a is invertible along d and

a‖d is an inner inverse of a. The following statements hold.

(i) If d is an inner inverse of d, then a‖d is an inner and outer inverse of ddadd.

(ii) If d is group invertible, then a‖d = (d#dadd#)#.

(iii) If the ring R has an involution and d is Moore-Penrose invertible, then a‖d =

(d†dadd†)†.

Proof. Note that according to Definition 2.3, a‖ddd = a‖d = dda‖d.

(i) From the previous observation,

a‖d(ddadd)a‖d = (a‖ddd)a(dda‖d) = a‖daa‖d = a‖d

and

(ddadd)a‖d(ddadd) = dda(dda‖ddd)add = ddaa‖dadd = ddadd.

(ii) It remains to prove that a‖d(d♯dadd♯) = (d♯dadd♯)a‖d. This follows from

a‖d(d♯dadd♯) = (a‖dd♯d)add♯ = a‖dadd♯ = dd♯ and (d♯dadd♯)a‖d = d♯daa‖d = d♯d

(Theorem 5.1 (i)–(ii)).

(iii) It is enough to prove that a‖d(d†dadd†) and (d†dadd†)a‖d are Hermitian. In

fact, a‖d(d†dadd†) = dd† and (d†dadd†)a‖d = d†d.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 572-592, September 2016

http:/repository.uwyo.edu/ela



ELA

The Inverse Along an Element in Rings 591

In particular, when EP elements are considered, new expressions of the group and

Moore-Penrose inverse can be obtained.

Corollary 8.3. Suppose that R has an involution and let a ∈ R be EP. The

following statements hold.

(i) a† = ((aa♯)∗a(a♯a)∗)♯.

(ii) a♯ = (a†a3a†)†.

Proof. Recall that a♯ = a†, a† = a‖a
∗

and a♯ = a‖a ([5, Theorem 11]). In addition,

recall that a∗ is group invertible and (a∗)♯ = (a♯)∗. Apply then Theorem 8.2.

To present more expressions of the group and the Moore-Penrose inverse, the

following theorem will be useful.

Theorem 8.4. Consider a ∈ R and d ∈ R̂ such that a invertible along d. If x is

an inner inverse of dad, then a‖d = dxd.

Proof. Since dadxdad = dad, d(adxdad − ad) = 0. According to Theorem 3.3

(xiii), a‖a(adxdad − ad) = 0, i.e., a‖aadxdad = a‖aad. According again to Theorem

3.3 (xiii), a‖aadxdaa‖a = a‖aaa‖a = a‖a. However, according to [5, Lemma 3],

a‖aad = d = daa‖a. Therefore, dxd = a‖a.

Corollary 8.5. Consider a ∈ R. The following statements hold.

(i) If a is group invertible and a is an inner inverse of a, then aaa♯ = a♯ = a♯aa.

(ii) If a is group invertible and x is an inner inverse of a3, then a♯ = axa.

If in addition R has an involution, then the following statements hold.

(iii) If a is Moore-Penrose invertible and a is an inner inverse of a, then a†(aa)∗ =

a† = (aa)∗a†.

(iv) If a is Moore-Penrose invertible and x is an inner inverse of a∗aa∗, then

a† = a∗xa∗.

Proof. To prove statement (i) (respectively, statement (iii)) recall that according

to [5, Theorem 11] a♯ = a‖a (respectively, a† = a‖a
∗

). Then apply a‖ddd = a‖d =

dda‖d (see the proof of Theorem 8.2) to d = a and d = a (respectively, d = a∗ and

d = (a)∗).

To prove statement (iii) (respectively, statement (iv)), use that a♯ = a‖a (re-

spectively, a† = a‖a
∗

) ([5, Theorem 11]) and then apply Theorem 8.4 with d = a

(respectively, d = a∗).
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