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FOR PRODUCTS OF ZEROS OF A POLYNOMIAL∗
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Abstract. The Cauchy bound is one of the best known upper bounds for the modulus of the

zeros of a polynomial. The Fujiwara bound is another useful upper bound for the modulus of the

zeros of a polynomial. In this paper, compound matrices are used to derive a generalization of both

the Cauchy bound and the Fujiwara bound. This generalization yields upper bounds for the modulus

of the product of m zeros of the polynomial.
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1. Introduction. We follow [5, Chapter 8] in our introduction to the Cauchy

bound.

Definition 1.1. Let p(z) = zn + an−1z
n−1 + · · · + a1z + a0 be an n-th degree

monic polynomial with complex coefficients. Then the Cauchy bound of p, denoted

as ρ(p) is the unique positive root of the polynomial zn −
∑n−1

k=0 |ak|z
k.

Theorem 1.2. [1] Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be an n-th degree

polynomial with complex coefficients. Then all zeros of p have modulus less than or

equal to ρ(p).

We note that among monic polynomials, the Cauchy bound is a monotone in-

creasing function of the moduli of the coefficients.

Lemma 1.3. Let p(z) = zn+an−1z
n−1+· · ·+a1z+a0 and q(z) = zn+bn−1z

n−1+

· · ·+ b1z + b0 be two n-th degree polynomials with complex coefficients. If |ak| ≤ |bk|

for all 0 ≤ k ≤ n− 1, then ρ(p) ≤ ρ(q).
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Proof. Let p∗(z) = zn−|an−1|z
n−1−· · ·−|a1|z−|a0| and q∗(z) = zn−|bn−1|z

n−1−

· · · − |b1|z − |b0|, then p∗(z) ≥ q∗(z) for all positive z. Let t = ρ(p). Then q∗(t) ≤

p∗(t) = 0. Since q∗(z) > 0 when z is a sufficiently large positive number, ρ(p) ≤ ρ(q).

We wish to find a generalization of the Cauchy bound which gives an upper bound

for all products of k zeros of p. We begin by introducing companion matrices and

use them to give a proof of Theorem 1.2. This proof, while short and simple, is not

shorter than the usual proof in the literature. The main advantage of this proof is

that it can be generalized to give Cauchy-type bounds for products of zeros of p.

For any matrix denoted by a single capital letter, we follow the common conven-

tion in using the corresponding lower-case letter together with subscripts to denote

the elements of that matrix. So aij denotes the entry in the i-th row and j-th column

of A. We use diag(s1, s2, . . . , sn) to denote the diagonal matrix whose i-th row, i-th

column entry is si. We remind the reader of the definition of the l∞ vector norm

which is |v|∞ = max1≤k≤n |vk|, the induced operator norm is ‖A‖∞ = supv 6=0
|Av|∞
|v|∞

which has the convenient operator norm ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij |. It is clear

that if λ is an eigenvalue of A, we must have |λ| ≤ ‖A‖∞.

2. Companion matrices and the higher Cauchy bounds. Let p(z) = zn+

an−1z
n−1 + · · ·+ a1z + a0 be a monic polynomial. Then the matrix

Mp =

















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

















,

is the companion matrix with characteristic polynomial p.

The eigenvalues of the companion matrix are the zeros of the polynomial p(z).

Now consider the polynomial qt(z) = t−np(tz) for some fixed t > 0. The companion

matrix of qt is the following:

Mqt =

















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0

tn
− a1

tn−1 − a2

tn−2 · · · −an−1

t

















.

We note that the smallest positive value of t for which ‖Mqt‖∞ = 1 must satisfy

the equation
∑n−1

k=0
|ak|
tn−k = 1. Multiplying both sides by tn, we see that this is the
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unique positive solution to tn −
∑n−1

k=0 |ak|t
k which is ρ(p). All the zeros of qρ(p)(z)

must have absolute value less than or equal to ‖Mqρ(p)‖ = 1. Since every zero of p is

ρ(p) times a zero of qρ(p), we obtain another proof of Theorem 1.2.

As mentioned earlier, the proof is useful because it can be generalized to give new

results. The generalization uses compound matrices in place of ordinary matrices.

We begin by defining them and exploring a few of their properties. A more complete

exposition of compound matrices can be found in [3, Section 19F]. We begin by

introducing some notation. For any m,n ∈ N with m ≤ n, we define Qm,n to be the

set of all m-tuples of integers α = {αk}
m
k=1 satisfying 1 ≤ α1 < α2 < · · · < αm−1 <

αm ≤ n. The m-tuples in Qm,n are ordered lexicographically. If α, β ∈ Qm,n, then

A[α|β] is the m×m matrix whose (i, j)-th entry is the (αi, βj)-th entry of A.

Definition 2.1. Let A be an n × n matrix and m be an integer between one

and n. Then the m-th compound matrix of A, Cm(A) is an
(

n
m

)

×
(

n
m

)

matrix whose

rows and columns are indexed by the elements of Qm,n and whose (α, β) entry is the

determinant of A[α|β] for all α, β ∈ Qm,n.

We note that C1(A) = A and Cn(A) = det(A). The most important property of

the compound mapping is that it is multiplicative.

Lemma 2.2. [3, Theorem 19.F.2] Let A and B be n×n matrices and let 1 ≤ k ≤ n,

then Ck(AB) = Ck(A)Ck(B).

This property is equivalent to the Binet-Cauchy theorem. The main use of com-

pound matrices are their spectral properties which follow from the previous lemma

together with the Jordan Canonical Form.

Corollary 2.3. [3, Theorem 19.F.2c] Let A be an n×n matrix with eigenvalues

{λk}
n
k=1. Then Cm(A) has eigenvalues {

∏m
k=1 λαk

}α∈Qm,n
.

The compounds of companion matrices can be used to study products of roots of

polynomials. An excellent example of this can be seen in [4] where there is an extensive

description of the compounds of companion matrices as well as some applications.

We now examine the absolute values of the entries of the compounds of a companion

matrix.

Definition 2.4. Let α, β ∈ Qm,n. β is said to be a forward shift of α if whenever

αj < n for some 1 ≤ j ≤ m, there exists l : 1 ≤ l ≤ m such that βl = 1 + αj .

If αm < n, α has only one forward shift. As an example {1, 3, 4} ∈ Q3,5 has

the unique forward shift {2, 4, 5}. The αm = n case is more interesting; there are
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many forward shifts. To explore this case in more detail, we introduce the following

definition.

Definition 2.5. If αm = n and β is a forward shift of α, we call the integer s

the excluded value of (α, β) if s+1 = βk for some k but s 6= αj for all j : 1 ≤ j ≤ m.

When αm = n, each forward shift of α has a different excluded value. Since

any element other than n which is not in α may be an excluded value of a forward

shift, there are exactly n −m+ 1 forward shifts of α when αm = n. As an example

{1, 2, 5} ∈ Q3,5 has the three forward shifts: {1, 2, 3}, {2, 3, 4}, and {2, 3, 5} which

have excluded values of zero, three and four respectively. These concepts will allow us

to prove the following lemma on the absolute values of the entries of the compounds

of the companion matrices.

Lemma 2.6. Let Mp be the companion matrix of p = zn+an−1z
n−1+· · ·+a1z+a0

and let α, β ∈ Qm,n. Then the (α, β) entry of Cm(Mp) will be zero unless β is a

forward shift of α. If β is a forward shift of α and αm < n, then the (α, β) entry of

Cm(Mp) will have absolute value one. If β is a forward shift of α and αm = n, then

absolute value of the (α, β) entry of Cm(Mp) will be |as|, where s is the excluded value

of (α, β).

Proof. We now note that if β is not a forward shift of α, then Mp[α|β] has at least

one row which consists entirely of zeros; so in this case, the (α, β) entry of Cm(Mp)

will be zero. For the remainder of the proof, we consider the case where β is a forward

shift of α, then the first m− 1 rows of Mp[α|β] each consist of m− 1 zero entries and

a single one entry. Each of these one entries are in a different column. If αm < n,

the final row will also consist of m − 1 zeros and a single one which will be in a

different column from all of the other ones in the matrix. In this case, Mp[α|β] will

be a permutation matrix and the (α, β) entry of Cm(Mp) will have absolute value

one. Finally if αm = n, the final row will also consist of m− 1 zeros and a single −as

where s is the excluded value. Since the −as entry is in a different column from the

ones in the rows above, the absolute value of the (α, β) entry of Cm(Mp) is equal to

|as|.

We can now use this lemma to calculate the sums of the absolute entries in each

row. Note that for any row α, we need only sum over the entries whose column indices

are forward shifts of α since these are the only entries in row α that can be nonzero.

Corollary 2.7. Let Mp be the companion matrix of p(z) = zn + an−1z
n−1 +

· · ·+a1z+a0 and let α ∈ Qm,n. Let rα be the sum of the absolute values of the entries

in the α row of Cm(Mp). Then rα = 1 if αm < n, otherwise rα =
∑

|as| where the s
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is summed over all whole numbers between zero and n− 1 which are not equal to αk

for some k. (Note that in this case, the s = 0 term is always in the summation).

Definition 2.8. Let p(z) = zn+an−1z
n−1+· · ·+a1z+a0 be a polynomial. Then

a polynomial q(z) = zn + bn−1z
n−1 + · · ·+ b1z + b0 is called an m-partial polynomial

of p if there exists S ⊆ {1, 2, . . . , n− 1} of cardinality m− 1 such that bk = 0 if k ∈ S

and bk = ak if k ∈ {0, 1, 2, . . . , n− 1}\S.

In other words, an m-partial polynomial of an n-th degree polynomial p(z) is

any n-th degree polynomial that can be formed from p(z) by changing m − 1 of its

non-constant terms of the polynomial to zero. There are
(

n−1
m−1

)

m-partial polynomials

of an n-th degree polynomial; these are all distinct if the original polynomial has no

zero terms. The sole first partial polynomial of p is p itself. We can now define the

higher Cauchy bound. For any polynomial p, let Sm(p) be the set of all m-partial

polynomials of p.

Example 2.9. Let p(z) = z4 + az3 + bz2 + cz + d. Then S1(p) = {p}, S2(p) =

{z4 + bz2 + cz + d, z4 + az3 + cz + d, z4 + az3 + bz2 + d}, S3(p) = {z4 + az3 + d, z4 +

bz2 + d, z4 + cz + d} and S4(p) = {z4 + d}.

Definition 2.10. Let p(z) = zn+an−1z
n−1+ · · ·+a1z+a0 be a polynomial and

let 1 ≤ m ≤ n. We define the m-th Cauchy bound as follows: ρm(p) = max{ρ(f) :

f ∈ Sm(p)}.

We note that ρ1(p) = ρ(p), and it follows from Lemma 1.3 that |a0|
1
n = ρn(p) ≤

ρn−1(p) ≤ · · · ≤ ρ2(p) ≤ ρ1(p).

We can now prove our main theorem of the paper. Note that the m = 1 case is

the ordinary Cauchy bound (i.e., Theorem 1.2).

Theorem 2.11. Let p(z) be a complex polynomial of degree n and let z1, z2, . . . , zn
be the n not necessarily distinct zeros of p(z) listed in descending order of modulus.

Then (
∏m

k=1 |zk|)
1
m ≤ ρm(p).

Proof. We note that for any positive t, t−m
∏m

k=1 |zk| is an eigenvalue of Cm(Mqt).

If we choose t to be the smallest positive number for which ‖Cm(Mqt)‖∞ ≤ 1, then
∏m

k=1 |zk| ≤ tm. By Corollary 2.7, ‖Cm(Mqt)‖∞ ≤ 1 if and only if
∑

s∈αc |as|t
n−s ≤ 1

for all α ∈ Qm,n. (Note that here and in what follows, by αc, we mean {0, 1, . . . , n−

2, n− 1}\α). This means that ‖Cm(Mqt)‖∞ ≤ 1 if and only if tn −
∑

s∈αc |as|t
s ≥ 0

for all α ∈ Qm,n which will hold if t ≥ ρm(p). Hence, (
∏m

k=1 |zk|)
1
m ≤ ρm(p).

We may get equality in the above theorem. An example of this occurs when

p(z) = zn − a, then the only m-partial polynomial of p for any m is p itself. Hence,

ρm = |a|
1
n for all m. In general, since ρn(p) ≤ ρn−1(p) ≤ · · · ≤ ρ2(p) ≤ ρ1(p) with

strict inequalities if p has no zero coefficients, the bounds on the products of the zeros
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given by Theorem 2.11 will be better than those given by the original Cauchy bounds

in general. As an example of this, consider the polynomial p(x) = x3 − x2 − 4x + 4

which has as zeros (z1, z2, z3) = (2,−2, 1). The original Cauchy bound ρ1(p) is the

positive zero of x3 − x2 − 4x − 4 which is approximately 2.8751 which gives us the

inequality
√

|z1z2| ≤ 2.8751. We can obtain a better estimate by finding the higher

Cauchy bound ρ2(p) which is the positive zero of x3−4x−4 or approximately 2.3830;

hence, we get
√

|z1z2| ≤ 2.3830 which cuts the error by more than half.

3. A generalization of Fujiwara’s bound. Theorem 2.11 can be used to

derive a generalization of the following important root bound of Fujiwara.

Theorem 3.1. [2] Let p(z) = zn + an−1z
n−1 + · · ·+ a1z+ a0 be a polynomial all

of with complex coefficients. If z is any zero of p, then

|z| ≤ K1 max
1≤j≤n

|aj |
1

n−j ,

where K1 is the unique positive zero of the polynomial q(z) = zn −
∑n−1

k=0 z
k. (K1 is

also the unique positive zero of the polynomial (z − 1)q(z) = zn+1 − 2zn + 1).

It will be useful to calculate the higher Cauchy bounds of the polynomial q(z) =

zn −
∑n−1

k=0 z
k.

Lemma 3.2. Let q(z) = zn −
∑n−1

k=0 z
k and let 1 ≤ m ≤ n. Then ρm(q) is the

unique positive zero of qm(z) = zn −
∑n−m

k=0 zk.

Proof. Let p1 and p2 be two polynomials in Sm(q) which differ in a most two terms;

hence, there exists a polynomial r(z) such that p1(z) = r(z)+za and p2(z) = r(z)+zb.

We note that if a > b, then p1(z) − p2(z) = za − zb > 1 if z > 1. It follows that

ρ(p1) < ρ(p2). It follows that the polynomial in Sm(q) with the smallest degree

nonzero nonleading coefficients will have the largest Cauchy bound; this polynomial

is qm from which this result follows.

We also note that we can generalize Lemma 1.3 to the higher Cauchy bounds.

Lemma 3.3. Let p(z) = zn+an−1z
n−1+· · ·+a1z+a0 and q(z) = zn+bn−1z

n−1+

· · ·+ b1z + b0 be two n-th degree polynomials with complex coefficients. If |ak| ≤ |bk|

for all 0 ≤ k ≤ n− 1, then ρm(p) ≤ ρm(q) for all m such that 1 ≤ m ≤ n.

The result follows from applying Lemma 1.3 to the corresponding partial poly-

nomials of p and q.

We are now ready to prove our generalization of the Fujiwara bound,

Theorem 3.4. Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 and let z1, z2, . . . , zn

be the n not necessarily distinct zeros of p(z) listed in descending order of modulus
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and let m be an integer less than or equal to n. Then

m
∏

j=1

|zk|
1
m ≤ Km max

0≤j≤n−1
|aj |

1
n−j ,

where Km is the unique positive zero of the polynomial qm(z) = zn−
∑n−m

k=0 zk. (Km is

also the unique positive zero of the polynomial (z−1)qm(z) = zn+1−zn−zn−m+1+1).

Proof. Let t = max0≤j≤n−1 |aj |
1

n−j . Let f(z) = t−np(tz), then f(z) is a monic

polynomial all of whose coefficients have modulus less than or equal to one. Let

q(z) = zn−
∑n−1

k=0 z
k. It follows from Lemma 3.3 that ρm(f) ≤ ρm(q) = ρ(qm) = Km

for all m such that 1 ≤ m ≤ n. Since the zeros of f(z) listed in descending order of

modulus are z1
t
, z2

t
, . . . , zn

t
, it follows from Theorem 2.11 that

∏m
j=1 |zk|

1
m ≤ tKm =

Kmmax0≤j≤n−1 |aj |
1

n−j .

We note that the m = 1 special case of this result is exactly Fujiwara’s bound.
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