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Abstract. Given a real non-negative square matrix A, the problem of determining when two

distinct constructions of stochastic matrices associated to A coincide is studied. All the constructions

(or stochastic forms) that are considered are diagonal forms, i.e., the transformations act like A 7→
αD(r)AD(c), where D(r) and D(c) are diagonal matrices with positive diagonals and α > 0, all

depending on A.
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1. Introduction. There exist several distinct approaches to construct stochastic

matrices of transition probabilities of discrete time (homogeneous) Markov chains.

Usually a real non-negative square matrix A indexed by the (finite) state space is

given and then a certain normalization f yields a stochastic matrix f(A), a stochastic

form of A. For example, a common standard procedure is to divide each non-zero

entry of A by the sum of the entries in the corresponding row [1, 3, 9, 10, 11, 15,

20, 25, 30, 33, 39, 40, 41, 42, 43] (this method is used very often on random walks

on simple directed graphs, letting A be the corresponding adjacency matrix). As

another example, if a priori the Markov chain is known to be doubly stochastic,

then one may be able to apply the well known Sinkhorn-Knopp construction to A

[8, 22, 24, 27, 28, 29, 35, 37, 38]. Brualdi, Parter and Schneider [8] have studied

stochastic forms that result by multiplying the matrix A from the left and the right

by the same diagonal matrix D, A 7→ DAD. A final important example occurs when

A is irreducible [6, 12, 26, 34, 36]: If (λA,pA) is a right Perron eigenpair of A, then

λ−1
A P−1

A APA is stochastic, where PA is the diagonal matrix with pA in the main

diagonal. Our main purpose here is to study when two different stochastic forms

coincide. We will consider the four stochastic forms just mentioned and call them

standard, Sinkhorn-Knopp, Brualdi-Parter-Schneider and Perron, respectively.
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The paper is organized as follows. Section 2 starts with basic definitions and no-

tation. Section 3 presents the stochastic forms and briefly surveys each case, stating

well known results and proving basic facts that will be used later. Section 4 contains

the main results of the paper which are concerned with conditions for two distinct

stochastic forms to yield the same stochastic matrix, a property that we call stochastic

regularity. We show that stochastic regularity is preserved under tensor products (for

an account of this operation on Hilbert spaces see [31]). The proofs rely on direct

computations as well as on applications of previous results; in particular, we systemat-

ically apply the Perron-Frobenius Theorem. A non-negative square irreducible matrix

is called Perron-regular if its standard and Perron stochastic forms coincide (Theo-

rem 4.8). This case deserves special attention because if A is the adjacency matrix

of a strongly connected simple directed graph, then the Perron stochastic form yields

the unique measure of maximal entropy [34], whereas the standard stochastic form

is widely used, particularly in random walks on simple directed graphs. We give an

algebraic characterization of Perron-regularity in terms of Perron vectors (Definition

4.7). In Section 5, we identify all the (weighted) Perron-regular graphs (Theorems 5.4

and 5.5), and also introduce and study Perron-regular degrees (roughly speaking, the

Perron-regular degree measures the “degrees of freedom” imposed by the algebraic

characterization of Perron-regularity, and Theorem 5.9 shows that it always attains

its maximum possible value). We leave the following as an open problem.

Problem 1.1. Identify all the Perron-regular directed graphs.

Theorem 4.12 suggests that such an identification may be given as a decomposition

into tensor products of “elementary” Perron-regular directed graphs (e.g. regular

directed graphs). Also the colonial digraph introduced in Section 5 may be useful

in an inductive approach to Problem 1.1. Although we mainly focus on Perron-

regularity, i.e. when the standard and the Perron stochastic forms coincide, the

results presented in this paper may be seen as a basic set of tools to address this type

of “regularity” problem. Other stochastic forms can be of interest like those coming

from the Metropolis-Hastings algorithm [32] as well as transition probabilities defined

in terms of square roots of vertex degrees [17].

Observe that the standard, Brualdi-Parter-Schneider and Perron stochastic forms

admit each both row and column versions. The Sinkhorn-Knopp doubly stochastic

form results by iterating the row and column versions of the standard stochastic

form. It is therefore natural to ask what happens when iterating the row and column

versions of both the Brualdi-Parter-Schneider and the Perron stochastic forms. This

is addressed in Remarks 3.7 and 3.11.

2. Preliminaries. Let n ≥ 1 be a positive integer and let [n] = {1, . . . , n}. The
identity matrix of size n is denoted by In. The column vector of size n whose entries
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are all equal to 1 is denoted by Jn, i.e., J
T
n = (1, . . . , 1) = {1}n. Given a subset

Ω ⊂ R of the real numbers, an Ω-matrix is a matrix whose entries belong to Ω (for

example, R+-matrices correspond to matrices with real non-negative entries). Let

A = (Ai,j)
n
i,j=1 be a square R

+-matrix of size n. A is row (resp., column) stochastic

if AJn = Jn (resp., JT
n A = JT

n ). A is doubly stochastic if it is both row and column

stochastic. A diagonal of A is (A1,σ(1), . . . , An,σ(n)) where σ is a permutation of [n],

and the main diagonal is diag(A) = (A1,1, . . . , An,n). A has support if there exists

a positive diagonal. A has total support if every non-zero entry of A belongs to a

positive diagonal. A is irreducible if for every i, j ∈ [n], there exists an integer N ≥ 1

such that AN
i,j > 0. A is fully indecomposable if there exist no non-empty proper

subsets X,Y ⊆ [n] such that #X +#Y = n and Ai,j = 0 for every i ∈ X and j ∈ Y

(if the restriction is relaxed by requiring X ∩ Y = ∅, then a definition equivalent to

being irreducible is obtained). Let

Mr = {A : A is a square R
+-matrix with no zero rows}

Mc = {A : A is a square R
+-matrix with no zero columns}

M = Mr ∩Mc

Pr = {A ∈Mr : A is row stochastic}
Pc = {A ∈Mc : A is column stochastic}
P = Pr ∩Pc

Br = {A ∈Mr : A satisfies the row condition 1 in Theorem 3.4}
Bc = {A ∈Mc : A satisfies the column condition 1 in Theorem 3.4}
B = Br ∩Bc

S = {A ∈M : A has support}
TS = {A ∈ S : A has total support}
I = {A ∈M : A is irreducible}
FI = {A ∈ I : A is fully indecomposable}
D = {D ∈M : D is a diagonal matrix with a positive diagonal}.

By a row (resp., column) stochastic form, we will mean a function f : X→ Y, where

X ⊆Mr (resp., X ⊆Mc) and Y ⊆ Pr (resp., Y ⊆ Pc). If Y ⊆ P, then we say that

f is a doubly stochastic form. Unless otherwise stated, we only consider stochastic

forms f that are diagonal forms, i.e., f normalizes the matrix A by a rule

A
f7→ αD(r)AD(c) with α > 0 and D(r), D(c) ∈ D,

and here D(r), D(c) and α depend on A (and so they are actually functions of A). To

represent a diagonal form like this we will write

f ← (α;D(r), D(c)).

Diagonal forms are pattern-invariant, that is, the original matrix and its image have

the same size and the same pattern, i.e. the positions of their non-zero entries coincide,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 515-540, July 2016

http:/repository.uwyo.edu/ela



ELA

518 R. Gómez

since for every i, j ∈ [n] we have

Ai,j > 0 ⇔ f(A)i,j = αD
(r)
i,i Ai,jD

(c)
j,j > 0.

Then A will have (total) support if and only if f(A) does, and the same holds for the

properties of being irreducible and fully indecomposable. A has a doubly stochastic

pattern if it has the pattern of a a doubly stochastic matrix. Also, A has a graph (or

symmetric) pattern if it has the pattern of a symmetric matrix.

Recall the following two well known products of matrices: Let A and B be two

real matrices of sizes h× k and p× q respectively. The Kronecker (or tensor) product

of A and B is the matrix A⊗B of size hp× kq defined by

A⊗B =











A1,1B A1,2B · · · A1,kB

A2,1B A2,2B · · · A2,kB
...

...
. . .

...

Ah,1B Ah,2B · · · Ah,kB











.

If A and B have the same size (i.e., p = h and q = k), then the Hadamard product of

A and B is the matrix C = A ◦B of size h× k defined by

Ci,j = Ai,jBi,j for every i ∈ [h] and j ∈ [k].

Let
1

A
be the matrix defined by the rule1

(

1

A

)

i,j

=







1

Ai,j

if Ai,j 6= 0,

0 otherwise

for every i ∈ [h] and j ∈ [k]. We will also write A/B =
A

B
= A ◦ 1

B
.

3. Stochastic forms. Henceforth, unless otherwise stated, A and B are square

matrices of size n ≥ 1.

3.1. Standard. Let A ∈ Mr (resp., A ∈ Mc). Let S
(r)
A ∈ D (resp., S

(c)
A ∈ D)

be the diagonal matrix with the positive diagonal

diag(S
(r)
A )T = rA =

(

r
(A)
1 , . . . , r(A)

n

)T

= AJn

1Observe that if A is invertible and its inverse is A−1, then, in general, A−1 6= 1

A
, but in the

particular case when A is a diagonal matrix with no zero entries in the diagonal, then A−1 =
1

A
.
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(

resp., diag(S
(c)
A ) = cA =

(

c
(A)
1 , . . . , c(A)

n

)

= JT
n B
)

.

The standard row (resp., column) stochastic form Sr : Mr → Pr (resp., Sc : Mc →
Pc) is defined by

Sr ←
(

1;
1

S
(r)
A

, In

) (

resp., Sc ←
(

1; In,
1

S
(c)
A

))

.

Proposition 3.1. Let A ∈ Mr (resp., A ∈ Mc). Suppose that D ∈ D is

such that D−1A ∈ Pr (resp., AD−1 ∈ Pc), or in other words, that A admits a

stochastic form (1;D−1, In) (resp. (1; In, D
−1)). Then Sr ← (1;D−1, In) (resp.,

Sc ← (1; In, D
−1)), or more precisely, D = S

(r)
A (resp., D = S

(c)
A ).

Proof. It is straightforward.

Proposition 3.2. Let A,B ∈ Mr (resp., A,B ∈ Mc). Then Sr(A) = Sr(B)

(resp., Sc(A) = Sc(B)) if and only if there exists a unique diagonal matrix D ∈ D

such that A = DB (resp., A = BD). The matrix D is given by

diag(D) =
rA

rB

(

resp., diag(D) =
cA

cB

)

.

Proof. Sr(A) = Sr(B) (resp., Sc(A) = Sc(B)) if and only if the diagonal matrix

D ∈ D defined by diag(D)T =
rA

rB

(

resp., diag(D) =
cA

cB

)

yields A = DB (resp.,

A = BD). Uniqueness follows from Proposition 3.1.

The standard stochastic form is very common and occurs in a large number of

works. There are surveys with references on the subject, starting with Lovasz’s [25],

also [9], and books [15, 43]. Contributions vary among the many application models

[1]. They include many aspects like limiting distributions [10], hitting times [3, 33],

results under positive recurrence [30], entropy [41], graph reconstruction [42], cuts

[11], networks [39, 40] and applications to genomic data [20].

3.2. Sinkhorn-Knopp. The Sinkhorn-Knopp doubly stochastic form S : S→ P

is defined for a matrix A ∈ S by2

S(A) := lim
k→∞

(Sc ◦ Sr)k(A). (3.1)

In [37] Sinkhorn showed that if A is a positive matrix, then S(A) is well defined and

converges to a doubly stochastic matrix. Moreover, he showed that, in the domain

2Here ◦ denotes composition, not Hadamard product, henceforth it will be clear from context.
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of positive square matrices, S is a diagonal form, i.e. there exist D(r), D(c) ∈ D

(depending on A) so that S ← (1;D(r), D(c)). He even proved that if E(r), E(c) ∈ D

are such that E(r)AE(c) is doubly stochastic, then there exists p > 0 such that

E(r) = pD(r) and E(c) = p−1D(c), i.e., D(r) and D(c) are unique up to a scalar factor

(see Theorem 3.3 below). This setting was studied by other authors too: In [27],

Marcus and Newman proved the existence of doubly stochastic diagonal forms for

positive square and symmetric matrices, whereas Menon shows in [29] the existence

of doubly stochastic diagonal forms for positive square matrices using the Brower

fixed point theorem (Maxfield and Minc work on the problem too in [28]).

If A is only non-negative (not necessarily positive), then the limit in (3.1) may

not exist, and if it does, then it may not be a diagonal form. Sinkhorn and Knopp

studied this more general case and the following is the main result in [38].

Theorem 3.3 (Sinkhorn-Knopp [38]). Let A ∈M.

1. A ∈ S if and only if lim
k→∞

(Sc ◦ Sr)k(A) converges to an element in P.

2. A ∈ TS if and only if there exist B ∈ P and D(r), D(c) ∈ D such that

B = D(r)AD(c).

3. If A ∈ TS and B, D(r) and D(c) are as in 2, then B is unique, but it may be

that D(r) and D(c) are not unique (up to a scalar factor).

4. If A ∈ TS, then D(r) and D(c) in 2 are unique (up to a scalar factor) if and

only if A ∈ FI.

5. If A ∈ TS, then lim
k→∞

(Sc ◦ Sr)k(A) = D(r)AD(c) for some D(r), D(c) ∈ D.

6. If A ∈ S\TS, then there are no D(r), D(c) ∈ D such that lim
k→∞

(Sc◦Sr)k(A) =
D(r)AD(c).

This more general situation in which the domain is further from positive matrices

has also been studied by other authors: In [35], Perfect and Mirsky show that A ∈ TS

if and only if3 A has a doubly stochastic pattern (compare with 2 in Theorem 3.3).

London [24] as well as Letac [22] showed that A has a doubly stochastic pattern if

and only if there exists B and D(r), D(c) ∈ D as in 2 in Theorem 3.3. Based on

the nonlinear operator introduced by Menon in [29], Brualdi, Parter and Schneider

proved in [8] parts of Theorem 3.3, namely 2 and one direction of 4 (the assumption:

full indecomposability).

3.3. Brualdi-Parter-Schneider. In [8], stochastic forms (1;D,D) with D ∈ D

are introduced and studied. We refer to such stochastic forms as Brualdi-Parter-

3In particular, as pointed out in [8], if A ∈ FI, then A has a doubly stochastic pattern. This is

because A ∈ TS if and only if there exist permutation matrices P and Q such that PAQ is a direct

sum of fully indecomposable matrices, hence FI ⊂ TS (see [7, 8] for more on total support and full

indecomposability, also [13]).
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Schneider.

Theorem 3.4 (Brualdi, Parter and Schneider [8]). Let A ∈Mr (resp., A ∈Mc).

Then for any non-negative matrix B with the same pattern as A, there exists D ∈ D

such that DBD ∈ Pr (resp., DBD ∈ Pc) if and only if the following condition is

satisfied:

1. If the rows and columns of A are permuted simultaneously so that Ai,j = 0

for 1 ≤ i, j ≤ s, then there exists k and l with s < k ≤ n and 1 ≤ l ≤ s such

that Ak,j = 0 (resp., Aj,k = 0) for j = 1, . . . , s and Al,k > 0 (resp., Ak,l > 0).

In this case, the matrix D is unique.

Corollary 3.5 (Brualdi, Parter and Schneider [8]). If A ∈ M has a positive

main diagonal, then condition 1 in Theorem 3.4 holds.

Corollary 3.6 (Brualdi, Parter and Schneider [8]). If A ∈ M is symmetric,

then condition 1 in Theorem 3.4 holds if and only if the main diagonal of A is positive.

We let Br : Br → Pr (resp., Bc : Bc → Pc) denote the Brualdi-Parter-Schneider

row (resp., column) stochastic form. For A ∈ Br (resp., A ∈ Bc), letD
(r)
A (resp., D

(c)
A )

be the unique matrix in D such that Br(A) = D
(r)
A AD

(r)
A (resp., Bc(A) = D

(c)
A AD

(c)
A ).

Remark 3.7. If A ∈ B, then lim
k→∞

(Bc ◦ Br)k(A) converges to a doubly stochas-

tic matrix and there exists D ∈ D such that lim
k→∞

(Bc ◦ Br)k(A) = DAD. By the

uniqueness property in Theorem 3.4,

Br(A) = lim
k→∞

(Bc ◦ Br)k(A) = Bc(A).

(See Theorem 4.13).

Proposition 3.8. Let A,B ∈ Br (resp., A,B ∈ Bc). Then Br(A) = Br(B)

(resp., Bc(A) = Bc(B)) if and only if there exists a unique diagonal matrix D ∈ D

such that A = DBD. In this case, D is given by

diag(D) =
diag

(

D
(r)
B

)

diag
(

D
(r)
A

)



resp., diag(D) =
diag

(

D
(c)
B

)

diag
(

D
(c)
A

)



 .

Proof. Br(A) = Br(B) if and only if A =
(

D
(r)
A

)−1

D
(r)
B BD

(r)
B

(

D
(r)
A

)−1

. Then

the result follows from the fact that DE = ED for every D,E ∈ D and from the

uniqueness property in Theorem 3.4.

The rest of the proof is analogous.
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3.4. Perron. The Perron stochastic form is defined for an irreducible matrix

A ∈ I. Let λA > 0 be the Perron value of A and let pA = (p
(A)
1 , . . . , p

(A)
n )T and

qA = (q
(A)
1 , . . . , q

(A)
n ) be right and left Perron eigenvectors of A respectively (that is,

λA > 0 is the spectral radius of A, ApA = λApA, qAA = λAqA and both pA and

qA are positive). Let PA, QA ∈ D be defined by diag(PA) = pT
A and diag(QA) = qA.

The Perron row (resp., column) stochastic form Pr : I → Pr (resp., Pc : I → Pc) is

defined by

Pr ←
(

1

λA

;
1

PA

, PA

) (

resp., Pc ←
(

1

λA

;QA,
1

QA

))

. (3.2)

Proposition 3.9 ([26]). Let A ∈ I. Let D ∈ D and α > 0, and define B =

αD−1AD (resp., B = αDAD−1). If B ∈ Pr (resp., B ∈ Pc), then B = Pr(A)

(resp., B = Pc(A)), α = λ−1
A and D is equal to PA (resp., QA) modulo a positive

scalar multiple.

We include a proof for completeness.

Proof. Let d = diag(D)T and suppose that αD−1AD ∈ Pr (resp., αDAD−1 ∈
Pc). Then Ad =

1

α
d (resp. dTA =

1

α
dT ), and then the Perron-Frobenius Theorem

implies the result.

Corollary 3.10. If A ∈ Pr ∩ I, then Pr ◦Pc(A) = A and Pc ◦ Pr(AT ) = AT .

Proof. Since Pr ◦ Pc(A) = (Q−1
A PPc(A))

−1A(Q−1
A PPc(A)) is stochastic, Proposi-

tion 3.9 implies that Q−1
A PPc(A) is a scalar multiple of the identity matrix In (since

Pr(A) = A = I−1
n AIn). Then

p
(Pc(A))
i

p
(Pc(A))
j

=
q
(A)
i

q
(A)
j

for every i, j ∈ [n]

and the first claim follows. The second one is analogous.

Remark 3.11. Corollary 3.10 implies that if A ∈ I, then

lim
k→∞

(Pc ◦ Pr)k(A)

converges if and only if Pr(A) ∈ P, and in this case it converges to Pr(A). (See

Theorem 4.15.)

Proposition 3.12 ([26]). Let A,B ∈ I. Then Pr(A) = Pr(B) (resp., Pc(A) =

Pc(B)) if and only if there exists D ∈ D and a real number ρ > 0 such that

A =
D−1BD

ρ

(

resp., A =
DBD−1

ρ

)

. (3.3)
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The matrix D is, up to a scalar multiple, given by

diag(D) =
pB

pA

(

resp., diag(D) =
qB

qA

)

.

Compare with Propositions 3.2 and 3.8. We include a proof for completeness.

Proof. Suppose that Pr(A) = Pr(B) (resp., Pc(A) = Pc(A)). If D ∈ D is defined

by diag(D)T =
pB

pA

(resp., diag(D) =
qB

qA

) and ρ =
λB

λA

, then it is straightforward to

check that (3.3) holds.

Conversely, suppose that (3.3) holds. Then

Pr(A) =
(DPA)

−1B(DPA)

ρλA

(

resp., Pc(A) =
(DQA)B(DQA)

−1

ρλA

)

.

is stochastic. Therefore, λB = ρλA and pB = (DPAIn)
T (resp., qB = InDQA) (by

uniqueness, up to a positive scale factor, of Perron vectors). Then Pr(B) = Pr(A)

(resp., Pc(B) = Pc(A)).

The Perron stochastic form appears in the proof of the Perron-Frobenius Theorem

(see e.g. [6, 12, 36], or also [16] for a historical approach in relationship with continued

fractions). It has been used in symbolic dynamics (the books [21, 23] are classic

introductions to this subject): With it Marcus and Tuncel [26] study classification

problems of Markov chains presented by matrices over positive integral semirings of

exponential functions. Parry discovered that the Perron stochastic form restricted

to irreducible {0, 1}-matrices induces the unique probability measures of maximal

entropy on the (vertex) shift spaces associated to these type of matrices (see [34] for

details).

4. Intersections. In this section, we address the problem of determining when

two stochastic forms of a given matrix coincide. Observe that determining when a row

stochastic form coincides with a column stochastic form corresponds to considering

when either stochastic form coincides with the Sinkhorn-Knopp doubly stochastic

form.

4.1. Standard and Sinkhorn-Knopp. In this first case, we look at matrices

A ∈M such that Sr(A) (and Sc(A)) are doubly stochastic.

Proposition 4.1. Let A ∈M. If Sr(A) ∈ P (resp., Sc(A) ∈ P), then A ∈ TS

and Sr(A) = S(A) = Sc(A). Moreover, if A ∈ FI, then Sr(A) ∈ P (resp., Sc(A) ∈
P) if and only if Sr(A) = Sc(A).
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Proof. Suppose that Sr(A) =
(

S
(r)
A

)−1

A =
(

S
(r)
A

)−1

AIn ∈ P. Then 2 in

Theorem 3.3 implies that A ∈ TS. It follows from 5 and 3 in Theorem 3.3 that

Sr(A) = S(A). If, in addition, A ∈ FI, then 4 in Theorem 3.3 implies that there

exists a constant κ > 0 such that S
(r)
A = κS

(c)
A , but then rA · JT

n = κcA · Jn, and
hence, κ = 1. Clearly, if Sr(A) = Sc(A), then Sr(A) ∈ P.

The rest of the proof is analogous.

The following is a particular instance of Proposition 4.1.

Proposition 4.2. Let A ∈ M. Then Sr(A) = S(A) = Sc(A) if and only if

r
(A)
i = c

(A)
j for every i, j ∈ [n] such that Ai,j 6= 0.

Proof. Sr(A) = Sc(A) if and only if
(

S
(r)
A

)−1

A = A
(

S
(c)
A

)−1

and this holds if

and only if

r
(A)
i

c
(A)
j

Ai,j = Ai,j for every i, j ∈ [n].

The condition in Proposition 4.2 can be compared with that of reversible systems

(see e.g. [2, 14, 15]), i.e., with symmetric doubly stochastic matrices, in particular if

the matrix has positive entries.

Example 4.3. The matrix A =





0 1 2

0 10 5

1 0 0



 has total support but is not fully

indecomposable, Sr(A) =





0 1
3

2
3

0 2
3

1
3

1 0 0



 ∈ P but Sr(A) 6= Sc(A) (e.g. A1,2 6= 0 and

r
(A)
1 = 3 6= 11 = c

(A)
2 ), and two distinct representations (not equal modulo a positive

scalar multiple) of Sr(A) as a diagonal form are





1
3 0 0

0 1
15 0

0 0 1



A





1 0 0

0 1 0

0 0 1



 and





5 0 0

0 1 0

0 0 1



A





1 0 0

0 1
15 0

0 0 1
15



 ,

the last being the form of the limit process of iterating Sc ◦ Sr on A.

Proposition 4.4. Let A,B ∈M and suppose that Sr(A) = S(A) = Sc(A) and

Sr(B) = S(B) = Sc(B). Then Sr(A⊗B) = S(A ⊗B) = Sc(A⊗B).

Proof. Let the sizes of A and B be n ≥ 1 and m ≥ 1 respectively. If i, j ∈ [n] and
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h, k ∈ [m] are such that (A⊗B)m(i−1)+h,m(j−1)+k = Ai,jBh,k 6= 0, then

r
(A⊗B)
m(i−1)+h

=

n
∑

x=1

m
∑

y=1

Ai,xBh,y = r
(A)
i r

(B)
h = c

(A)
j c

(B)
k =

n
∑

x=1

m
∑

y=1

Ax,jBy,k = c
(A⊗B)
m(j−1)+k

.

The third equality above, and hence, the result follows from Proposition 4.2.

4.2. Standard and Brualdi-Parter-Schneider. Here we look at the case

when the standard and the Brualdi-Parter-Schneider stochastic forms coincide.

Proposition 4.5. Let A ∈ Br (resp., A ∈ Bc). Then Sr(A) = Br(A) (resp.,

Sc(A) = Bc(A)) if and only if there exists a constant α > 0 such that S
(r)
A = αIn

(resp., S
(c)
A = αIn).

Proof. Let D = D
(r)
A . Then Sr(A) = Br(A) if and only if A = S

(r)
A DAD, and

this holds if and only if for every i, j ∈ [n] we have r
(A)
i Di,iDj,j = 1. In particular

Di,i =
1

√

r
(A)
i

and then r
(A)
i = D−2

j,j for every i, j ∈ [n]. Fix j0 ∈ [n]. Then for every

i, i′ ∈ [n], r
(A)
i = D−2

j0,j0
= r

(A)
i′ .

The rest of the proof is analogous.

Proposition 4.6. Let A,B ∈ Br (resp., A,B ∈ Bc) and suppose that

Sr(A) = Br(A) and Sr(B) = Br(B)

(resp., Sc(A) = Bc(A) and Sc(B) = Bc(B)) .

Then Sr(A⊗B) = Br(A⊗B) (resp., Sc(A⊗B) = Bc(A⊗B)).

Proof. Let the sizes of A and B be n ≥ 1 and m ≥ 1 respectively. By Proposition

4.5, there exist α, β > 0 such that S
(r)
A = αIn and S

(r)
B = βIm. It is straightforward

to verify that S
(r)
A⊗B = αβInm, and hence, the result for rows follows from Proposition

4.5.

The rest of the proof is analogous.

4.3. Standard and Perron. In this case, we are considering sums of rows

(and columns) of matrices together with (Perron) eigenpairs. Similar contexts have

been previously considered, e.g. to study sums of columns of row stochastic matrices

together with their spectra as well as their stationary distributions [18, 19].

To start, we first define “locally constant” vectors and “Perron-regularity”. For

each i ∈ [n], let the row (resp., column) neighborhood of i be

N r
A(i) = {j ∈ [n] : Ai,j 6= 0} (resp., N c

A(i) = {j ∈ [n] : Aj,i 6= 0}) .
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(iii)(ii)(i)

1 2

3 4

1 2

3 4

1 2

34

(a , b , c , d)

31 2 4

(a , a , c , d)
31 2 4

(a , a , a , d)
31 2 4

Fig. 4.1. Three different examples of directed graphs on four vertices and the form of their

corresponding locally row constant vectors. (i) Any vector is locally row constant. (ii) A locally row

constant vector must have the first two entries equal. (iii) A locally row constant vector must have

the first three entries equal.

A column (resp., row) n-vector v = (v1, . . . , vn)
T

(resp., v = (v1, . . . , vn)) is locally

row (resp., column) constant with respect to A if for each i ∈ [n] we have vj = vk for

every j, k ∈ N r
A(i) (resp., N

c
A(i)). In this case, let

vr =
(

v
(r)
1 , . . . , v(r)n

)T (

resp., vc =
(

v
(c)
1 , . . . , v(c)n

))

,

where v
(r)
i = vj (resp., v

(c)
i = vj) for some (every) j ∈ N r

A(i) (resp., j ∈ N c
A(i)). If

a vector is locally row (resp., column) constant with respect to a matrix A, then it

is locally row (resp., column) constant with respect to any matrix B with the same

pattern as A. Henceforth we will simply refer to a vector as locally (row or column)

constant as long as it is clear in the context with respect to which matrix pattern.

Figure 4.1 illustrates with directed graphs examples of locally row constant vectors

(see Section 5 for more on directed graphs associated to matrices).

Definition 4.7. A ∈ I is row (resp., column) Perron-regular if its right (resp.,

left) Perron vector pA (resp., qA) is locally row (resp., column) constant (with respect

to A itself).

Theorem 4.8. An irreducible matrix A ∈ I is row (resp., column) Perron-regular

if and only if Sr(A) = Pr(A) (resp., Sc(A) = Pc(A)).

Proof. If Sr(A) = Pr(A), then

Ai,j

r
(A)
i

=
p
(A)
j

λAp
(A)
i

Ai,j for every i, j ∈ [n]. (4.1)

Then for every j ∈ N r
A(i) we have p

(A)
j =

λAp
(A)
i

r
(A)
i

, so that the value of p
(A)
j only

depends on i. Then pA is locally row constant and hence A is row Perron-regular.
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Conversely, suppose that A is row Perron-regular. If i ∈ [n] and j ∈ N r
A(i), then

λAp
(A)
i − r

(A)
i p

(A)
j =

n
∑

k=1

Ai,k

(

p
(A)
k − p

(A)
j

)

=
∑

k∈Nr

A
(i)

Ai,k

(

p
(A)
k − p

(A)
j

)

= 0

because pA is locally row constant. Therefore, (4.1) holds, and hence, Sr(A) = Pr(A).

The rest of the proof is analogous.

Proposition 4.9. If A ∈ I is row (resp., column) Perron-regular, then

λApA = rA ◦ pr
A (resp., λAqA = cA ◦ qc

A)

Proof. If A is row Perron-regular, then

λAp
(A)
i =

∑

j∈Nr

A
(i)

Ai,jp
(A)
j =

(

p
(A)
i

)(r) ∑

j∈Nr

A
(i)

Ai,j =
(

p
(A)
i

)(r)

c
(A)
i

for every i ∈ [n].

The rest of the proof is analogous.

Remark 4.10. Proposition 3.12 characterizes when two irreducible matrices

A and B yield the same Perron stochastic form. This can occur even if A is

Perron-regular whereas B is not since for any D ∈ D and ρ > 0, if B =
D−1AD

ρ
(

resp., B =
D−1AD

ρ

)

, then λB =
λA

ρ
and pB =

pA

diag(D)

(

resp., qB =
qA

diag(D)

)

.

Corollary 4.11. Let A,B ∈ I be such that Pr(A) = Pr(B) (resp., Pc(A) =

Pc(B)). If
pA

pB

(

resp.,
qA

qB

)

is locally row (resp., column) constant, then A is row

(resp., column) Perron-regular if and only if B is row (resp., column) Perron-regular.

Proof. It follows from Remark 4.10.

Theorem 4.12. Let A,B ∈ I be row (resp., column) Perron-regular matrices.

Then A⊗B is row (resp., column) Perron-regular.

Proof. Clearly, A ⊗ B ∈ I. Suppose that the sizes of A and B are n ≥ 1 and

m ≥ 1 respectively. We only prove the case for rows since the case for columns is

analogous.

Let {(λi,v
(i))}i∈[n] and {(µi,w

(j))}j∈[m] be the right eigenpairs of A and B re-

spectively. Then {(λiµj ,v
(i) ⊗w(j))}i∈[n],j∈[m] are the right eigenpairs of A⊗B. In
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particular, if (λ,v) and (µ,w) are the right Perron eigenpairs of A and B respectively,

then the Perron-Frobenius Theorem implies that (λµ,v⊗w) is the right Perron eigen-

pair of A⊗B. Given k ∈ [nm], let i, j ∈ [nm] be such that (A⊗B)k,i, (A⊗B)k,j > 0.

Let a, b, c ∈ {0, . . . , n − 1} and r, s, t ∈ [m] be such that k = an + r, i = bn+ s and

j = cn+ t. Since

(A⊗B)k,i = Aa+1,b+1Br,s > 0 and (A⊗B)k,j = Aa+1,c+1Br,t > 0,

the row Perron-regularity of A and B imply that vb+1 = vc+1 and ws = wt, hence

(v ⊗w)k,i = vb+1ws = vc+1wt = (v ⊗w)k,j .

Therefore, the result follows from Theorem 4.8.

4.4. Sinkhorn-Knopp and Brualdi-Parter-Schneider. Here we look at the

case when the Brualdi-Parter-Schneider normalization is doubly stochastic.

Theorem 4.13. Let A ∈ Br (resp., A ∈ Bc). Then Br(A) ∈ P (resp., Bc(A) ∈
P) if and only if there exists a (unique) positive solution x = (x1, . . . , xn) to the

homogeneous linear system

x(A−AT ) = 0 (4.2)

(in particular det(A−AT ) = 0) which satisfies

xj

n
∑

i=1

xiAi,j = xj

n
∑

i=1

xiAj,i = 1 for every j ∈ [n]. (4.3)

In this case, A ∈ TS and Br(A) = Bc(A) = S(A).

Proof. Let D = D
(r)
A . Then Br(D) ∈ P if and only if

n
∑

i=1

Di,iDj,jAi,j = 1 and

n
∑

i=1

Di,iDj,jAj,i = 1

for every j ∈ [n], in particular

n
∑

i=1

Di,i(Ai,j −Aj,i) = 0 for every j ∈ [n],

i.e., x = diag(D) is a positive solution to (4.2) which satisfies (4.3) for every j ∈ [n]

(with α = 1). Conversely, if x is a positive solution to (4.2) satisfying (4.3), then

it follows that D ∈ D defined by diag(D) = x is such that DAD ∈ P, and the

unicity property in Theorem 3.4 implies that Br(A) = DAD, and therefore, also

Br(A) = Bc(A).
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If Br(D) ∈ P, then 2 in Theorem 3.3 implies that A ∈ TS, and hence 5 and 3 in

Theorem 3.3 imply that Br(A) = S(A).

Theorem 4.14. Let A,B ∈ B and suppose that Br(A) = S(A) = Bc(A) and

Br(B) = S(B) = Bc(B). Then Br(A⊗B) = S(A⊗B) = Bc(A⊗B).

Proof. Let the sizes of A and B be n ≥ 1 and m ≥ 1 respectively. Let x =

(x1, . . . , xn) and y = (y1, . . . , ym) be the solutions to (4.2) that satisfy (4.3) for A and

B respectively. For every i ∈ [n] and j ∈ [m] we have

(

x⊗ y(A ⊗B − (A⊗B)T )
)

(i−1)m+j
=

n
∑

h=1

m
∑

k=1

xhyk(Ah,iBk,j −Ai,hBj,k)

=

n
∑

h=1

xhAh,i

m
∑

k=1

ykBk,j −
n
∑

h=1

xhAi,h

m
∑

k=1

ykBj,k

=

(

n
∑

h=1

(xhAh,i − xhAi,h)

)(

m
∑

k=1

(ykBk,j − ykBj,k)

)

= 0.

(the third and last equalities hold by hypothesis). Then x⊗ y is a solution to (4.2).

To finish,

xiyj

n
∑

h=1

m
∑

k=1

xhykAh,iBk,j = xi

n
∑

h=1

xhAh,i

(

yj

m
∑

k=1

ykBk,j

)

= 1.

(the last equality holds by hypothesis). Then x ⊗ y satisfies (4.3) for A ⊗ B. The

result now follows from Theorem 4.13.

4.5. Sinkhorn-Knopp and Perron. Here we look at the case when the Perron

stochastic form is doubly stochastic.

Theorem 4.15. Let A ∈ I. The following are equivalent:

1. Pr(A) ∈ P.

2. Pc(A) ∈ P.

3. Pr(A) = Pc(A).

4. (p−1
A )T is a left eigenvector of A.

5. (q−1
A )T is a right eigenvector of A.

6. Pr(A) = S(A).
7. Pc(A) = S(A).

Proof. Pr(A) ∈ P if and only if

JT
n

P−1
A APA

λA

= JT
n ,
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and this holds if and only if (p−1
A )TA = λA(p

−1
A )T . Then 1 ⇔ 4. Similarly, 2 ⇔ 5.

Clearly 3 ⇒ 1, 2. On the other hand, 4⇒ 3 since the Perron-Frobenius Theorem

implies that

Pc(A) =
P−1
A APA

λA

= Pr(A).

Similarly, 5 ⇒ 3.

Clearly 6 ⇒ 1 and 7 ⇒ 2. Conversely, if P(A) ∈ P, then 2 and 5 in Theorem 3.3

implies that A ∈ TS and Pr(A) = S(A), in particular 1 ⇒ 6, and similarly 2 ⇒ 7.

Theorem 4.16. Let A,B ∈ I and suppose that Pr(A) = S(A) = Pc(A) and

Pr(B) = S(B) = Pc(B). Then Pr(A⊗B) = S(A ⊗B) = Pc(A⊗B).

Proof. We already know that pA⊗B = pA⊗pB (from the proof of Theorem 4.12),

hence (p−1
A⊗B)

T = (p−1
A )T ⊗ (p−1

B )T is a left eigenvector of A ⊗ B (again from the

proof of Theorem 4.12). The result now follows from Theorem 4.15.

4.6. Brualdi-Parter-Schneider and Perron. Here we look at the case when

the Brualdi-Parter-Schneider and the Perron normalizations coincide.

Proposition 4.17. Let A ∈ I ∩ Br (resp., A ∈ I ∩ Bc). Let D = D
(r)
A (resp.,

D = D
(c)
A ) and let x = (x1, . . . , xn) be x = pA (resp., x = qA). Then Br(A) = Pr(A)

(resp., Br(A) = Pc(A)) if and only if

λADi,iDj,j =
xj

xi

for every i, j ∈ [n] such that Ai,j 6= 0. (4.4)

If this is the case and, in addition, A has a positive diagonal (in particular, if A

is symmetric, see Corollary 3.6), then A is a positive scalar multiple of a doubly

stochastic matrix.

Proof. Cleary Br(A) = Pr(A) (resp., Bc(A) = Pc(A)) if and only if (4.4) holds. If

in addition A has a positive diagonal, then Di,i =
1√
λA

for every i ∈ [n], in particular

xi = xj for every i, j ∈ [n] such that Ai,j 6= 0, but then irreducibility implies that

xi = xj for every i, j ∈ [n].

Proposition 4.18. Let A,B ∈ I ∩Br (resp., A,B ∈ I ∩Bc) and suppose that

Br(A) = Pr(A) and Br(B) = Pr(B)

(resp., Bc(A) = Pc(A) and Bc(B) = Pc(B)) .

Then Br(A⊗B) = Pr(A⊗B) (resp., Bc(A⊗B) = Pc(A⊗B)).
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Proof. Let the sizes of A and B be n ≥ 1 and m ≥ 1 respectively. Let D =

D
(r)
A , E = D

(r)
B , F = D

(r)
A⊗B, x = pA, y = pB and z = pA⊗B = pA ⊗ pB. It

is easy to show that F = D ⊗ E. For every i, j ∈ [n] and h, k ∈ [m] for which

(A⊗B)m(i−1)+h,m(j−1)+k = Ai,jBh,k 6= 0, we have

λA⊗BFm(i−1)+h,m(i−1)+hFm(j−1)+k,m(j−1)+k = λAλBDi,iEh,hDj,jEk,k

=
xjyk
xiyh

=
zm(j−1)+k,m(j−1)+k

zm(i−1)+h,m(i−1)+h

.

Then (4.4) holds for A⊗B, and hence, Proposition 4.17 implies the result for rows.

The rest of the proof is analogous.

5. Directed graphs and Perron-regularity. We need to give more definitions

and notation. For a complete reference to graphs and matrices see [5].

5.1. Graphs and matrices. Given a square R+-matrix A, let A# be the zero-

nonzero pattern of the matrix A, i.e., the {0, 1}-matrix defined by

A#
i,j = A0

i,j for every i, j ∈ [n], with 00 = 0

(then two matrices A and B have the same pattern if and only if A# = B#). Let G =

G(A#) be the (simple) directed graph with adjacency matrix A#, that is, G consists

of the vertex set V = V (G) = [n] and edge set E = E(G) = {(i, j) ∈ V (G) × V (G) :

A#
i,j = 1}. There is also the corresponding weight function ω = ωA : E → R

+ \ {0}
defined for every (i, j) ∈ E by ω(i, j) = Ai,j . (G,ω) is the weighted directed graph

associate with A. A and (G,ω) determine each other; in particular, A# and G do

too. Henceforth all definitions about A are translated to (G,ω) (or simply to G if the

definition depends solely on the pattern A#). For instance:

• A graph is a directed graph with symmetric adjacency matrix.

• A weighted directed graph (G,ω) is row (resp., column) Perron-regular if

its associated R
+-matrix A = A(G,ω) is row (resp., column) Perron-regular.

In particular, a directed graph G is row (resp., column) Perron-regular if its

adjacency matrix A# = A#(G) is row (resp., column) Perron-regular.

• Etc.

(We can also extend the notation given so far for matrices to directed graphs so that

we can consistently exchange symbols, e.g. N r
G(v) will denote the row neighborhood

of v ∈ V . Also, the forthcoming definitions and notation for weighted directed graphs

are henceforth translated to matrices.) The weighted row (resp., column) degree of

v ∈ V is

δrω(v) = r(A)
v

(

resp., δcω(v) = c(A)
v

)

,
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Fig. 5.1. A connected bipartite biregular graph.

and the (unweighted) row (resp., column) degree of v is

δrG(v) = r(A
#)

v = |N r
G(v)|

(

resp., δcG(v) = c(A
#)

v = |N c
G(v)|

)

.

(G,ω) is weight row (resp., column) regular if for some real number α > 0 we have

δrω(v) = α (resp., δcω(v) = α) for every v ∈ V.

In particular, G is row (resp., column) regular if for some integer d > 0 we have

δrG(v) = d (resp., δcG(v) = d) for every v ∈ V.

G is bipartite if there exists a partition of the vertex set such that if (u, v) ∈ E, then

u and v belong to distinct parts, i.e., V = V1 ∪ V2, V1 ∩ V2 = ∅ and if (u, v) ∈ E,

then u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1. If G is bipartite, then (G,ω) is

row (resp., column) weight biregular if δrω(v) = δrω(u) (resp., δ
c
ω(v) = δcω(u)) for every

v, u ∈ Vi, i = 1, 2. In particular, a directed graph G is row (resp., column) biregular

if it is weight row (column) biregular for ω : E → {1}, i.e., if δrG(v) = δrG(u) (resp.,

δcG(v) = δcG(u)) for every v, u ∈ Vi, i = 1, 2.

A path in G of length ℓ ≥ 1 is a sequence of vertices γ = (x0, x1, . . . , xℓ) ∈ V ℓ+1

such that (xi−1, xi) ∈ E for every i = 1, . . . , ℓ. In this case, we say that γ is a x0xℓ-

path. In terms of paths, G is strongly connected if for every pair of vertices u, v ∈ V ,

there exists a uv-path in G (equivalently, A#(G) is irreducible). The path γ is:

• closed if x0 = xℓ,

• a loop if it is closed and ℓ = 1 and

• reversible if γ−1 = (xℓ, . . . , x1, x0) is also a path in G.

We say that G is connected by reversible paths if for every u, v ∈ V , there exists a

reversible uv-path. Clearly, directed graphs which are connected by reversible paths

are strongly connected.

If G is actually a graph, then δrG(v) = δcG(v) for every v ∈ V , and hence, we

can define δG(v) the degree of v as its row (or column) degree. Also, the graph G is

regular if it is row (equivalently column) regular. G is a bipartite biregular graph if as

a directed graph is bipartite and row (or column) biregular (see Figure 5.1). Finally,

G is connected if as a directed graph is strongly connected.
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vx0
= a vx2

= avx1
= b vx3

= b vxℓ
=

{

a if ℓ is even

b if ℓ is odd

. . .x1x0 x2 x3 xℓ

Fig. 5.2. If v = (vi)i∈[n] is a locally row (or column) constant vector, then the entries that

correspond to the vertices of a reversible path can take at most two possible values a and b. If the

path is closed (i.e., xℓ = x0), then a = b if ℓ is odd.

5.2. Perron-regular graphs. We will identify all the Perron-regular (weighted)

graphs.

Proposition 5.1. Let G = (V,E) be a strongly connected directed graph and let

ω : E → (0,∞) be a weight function. If (G,ω) is weight row (resp., column) regular,

then it is row (resp., column) Perron-regular.

Proof. Since (d, J|V |)
(

resp., (d, JT
|V |)
)

is a right (resp., left) Perron eigenpair,

the result follows from Theorem 4.8 for a column (resp., row) vector with all its entries

equal to a given constant is always locally row (resp., column) constant (with respect

to any square R
+-matrix with the appropriate size).

Lemma 5.2. Let G = (V,E) be a directed graph which is connected by reversible

paths and let ω : E → (0,∞) be a weight function. If (G,ω) is row (resp., column)

Perron-regular, then the entries of a Perron vector of A(G,ω) take at most two distinct

possible values. If in addition there exists a cycle of odd length which is a reversible

path, then (G,ω) is weight row (resp., column) regular.

Proof. Again this is a direct consequence of Theorem 4.8 (see Figure 5.2).

Corollary 5.3. Suppose that G is a graph which is not bipartite. If G is (row

or column) Perron-regular, then it is regular.

Proof. A graph is bipartite if and only if it possesses no odd cycles (see e.g.

[4]), and then Lemma 5.2 implies the result since connected graphs are connected by

reversible paths.

Theorem 5.4. A connected graph is row (resp., column) Perron-regular if and

only if it is regular or bipartite biregular.

Proof. Connected regular graphs are both row and column Perron-regular by

Proposition 5.1. Theorem 4.8 implies that connected bipartite biregular graphs are

both row and column Perron-regular.

Conversely, suppose that a connected row (resp., column) Perron-regular graph

G = (V,E) is not regular. By Corollary 5.3, G is bipartite. Let V = V1 ∪ V2 be the
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Fig. 5.3. A row Perron-regular weighted tree. The vertices are partitioned according to height

parity (once a root is chosen, say a black vertex). It is row Perron-regular because δrω(u) = 16 and

δrω(v) = 4 for every pair of vertices u and v of even and odd heights, respectively. According to the

proof of Theorem 5.5, the corresponding Perron value is 8.

partition of the vertex set such that E ∩ V 2
i = ∅ for i = 1, 2. By Lemma 5.2, the

right (resp., left) Perron vector of A#(G) is constant on the entries corresponding to

Vi for each i = 1, 2. Hence, G is a bipartite biregular graph.

Theorem 5.5. Let G = (V,E) be a connected graph and ω : E → (0,∞) a weight

function. If G is not bipartite, then (G,ω) is row (resp., column) Perron-regular if

and only if it is weight row (resp., column) regular.

Otherwise, if V = (V1, V2) is the partition of the vertices of G as a bipartite

graph, then the weight functions ω : E → (0,∞) such that (G,ω) is Perron-regular

are precisely those that make it a row (resp., column) weight biregular, i.e., δrω(v) =

α and δrω(u) = β (resp., δcω(v) = α and δcω(u) = β) for every v ∈ V1 and u ∈ V2, for

a given pair of real numbers α, β ∈ (0,∞).

Proof. We give a proof for rows. A = A(G,ω) is row Perron-regular if and only if

the entries in the right Perron vector corresponding to each part V1 and V2 are equal.

Assume that p
(A)
v = 1 for every v ∈ V1. Let x = p

(A)
u for some (every) u ∈ V2. Then

xα = λA and β = λAx. Therefore, λA =
√
αβ and x =

√

β/α.

A row Perron-regular bipartite weighted graph is shown in Figure 5.3.

5.3. Trees. A tree is a connected graph G = (V,E) such that any cycle has

length two. A vertex v ∈ V of a tree is terminal if δG(v) = 1. Choose a distinguished

vertex R ∈ V , called the root, and refer to G together with R as a rooted tree. A vertex

which is not terminal nor the root is called internal. In a rooted tree we can define

the height of a vertex v ∈ V as the length of the shortest (unique) path between v

and the root R (the root has height zero). The height of a rooted tree is the maximum

height among the vertices. A star is a tree for which there exists a root R, called the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 515-540, July 2016

http:/repository.uwyo.edu/ela



ELA

Stochastic Forms of Non-Negative Matrices and Perron-Regularity 535

center, that makes it a rooted tree of height one.

Proposition 5.6. A tree is row (resp., column) Perron-regular if and only if it

is a single vertex or a star. Moreover, if A is the adjacency matrix of a star with

n+ 1 vertices, then

λA =
√
n and pA =

( √
n JT

n

)T (

resp., qA =
( √

n JT
n

))

. (5.1)

Proof. Single vertices and stars are the only trees which are either regular or

bipartite biregular. Therefore, the first claim follows from Theorem 5.4. (5.1) follows

from the proof of Theorem 5.5.

5.4. Perron-regular degree. Any strongly connected directed graph G =

(V,E) admits a weight function ω : E → (0,∞) such that (G,ω) is row (resp., col-

umn) Perron-regular, e.g. any weight function ω such that (G,ω) is weight row (resp.,

column) regular for in this case JT
|V|
(

resp., J|V|
)

is a right (resp., left) Perron vector.

But there may exist less trivial weight functions giving rise to Perron-regular directed

graphs, probably with Perron vectors having some entries distinct. The weighted row

(resp., column) Perron-regular degree of G is

ρr(G) = max

{

|{p(A(G,ω))
i : i ∈ V }| : ω : E → (0,∞) and A(G,ω)

is row Perron-regular

}

(

resp., ρc(G) = max

{

|{q(A(G,ω))
i : i ∈ V }| : ω : E → (0,∞) and A(G,ω)

is column Perron-regular

})

.

Also, if G is row (resp., column) Perron-regular, let the (unweighted) row (resp.,

column) Perron-regular degree of G be

ρr0(G) = |{p(A
#(G))

i : i ∈ V }|
(

resp., ρc0(G) = |{q(A
#(G))

i : i ∈ V }|
)

.

If G is a graph, then ρr(G) = ρc(G) and ρr0(G) = ρc0(G) and then we simply let

ρ(G) = ρr(G) and ρ0(G) = ρr0(G).

5.5. Colonies. Perron-regular degrees are bounded above by what we call the

“colonial order”, i.e., by the number of “colonies”. A “colony” is a set of vertices that

correspond to entries in a locally constant vector that are forced to be equal. To be

precise, let G = (V,E) be a strongly connected directed graph. For each u ∈ V let

Kr,0
G (u) = N r

G(u)
(

resp., Kc,0
G (u) = N c

G(u)
)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 31, pp. 515-540, July 2016

http:/repository.uwyo.edu/ela



ELA

536 R. Gómez

and define Kr,k
G (v) (resp., Kr,k

G (v)) inductively for every k ≥ 1 by the rule

Kr,k
G (u) = Kr,k−1

G (u) ∪
⋃

v∈V

{

N r
G(v) : Kr,k−1

G (u) ∩N r
G(v) 6= ∅

}

(

resp., Kc,k
G (u) = Kc,k−1

G (u) ∪
⋃

v∈V

{

N c
G(v) : Kc,k−1

G (u) ∩N c
G(v) 6= ∅

}

)

.

Then Kr,k
G (u) (resp., Kc,k

G (u)) eventually stabilizes as k → ∞ (because |V | < ∞),

i.e., there exists k0 ≥ 0 such that Kr,k
G (u) = Kr,k0

G (u) (resp., Kc,k
G (u) = Kc,k0

G (u)) for

every k ≥ k0 (and for every u ∈ V too, e.g. k0 ≥ n). Define Kr
G(u) = N r,k0

G (u) (resp.,

Kc
G(u) = N c,k0

G (u)) and call it the row (resp., column) colony4 of u. By definition, for

every u, v ∈ V , eitherKr
G(u) = Kr

G(v) (resp., K
c
G(u) = Kc

G(v)) orK
r
G(u)∩Kr

G(v) = ∅

(resp., Kc
G(u) ∩Kc

G(v) = ∅), that is, the colonies of two distinct vertices are either

equal or disjoint. Let V r (resp., V c) be the set of row (resp., column) colonies of all

the vertices in V , i.e.

V r = {Kr
G(u)}u∈V = {V r

1 , . . . , V
r
hr
}

(

resp., V c = {Kc
G(u)}u∈V = {V c

1 , . . . , V
c
hc
}
)

.

The row (resp., column) colonies form a partition of the vertex set. The row (resp.,

column) colonial order of G is the number of distinct row (resp., column) colonies

hr = hr(G) (resp., hc = hc(G)). For example, if G is a graph, then hr and hc are

both equal to two if G is bipartite, otherwise they are both equal to one (Theorem

5.5).

Proposition 5.7. Let (G = (V,E), ω) be a weighted directed graph and A =

A(G,ω) ∈ I. Then A is row (resp., column) Perron-regular if and only if for every

i = 1, . . . , hr (resp., i = 1, . . . , hc),

p(A)
u = p(A)

v

(

resp., q(A)
u = q(A)

v

)

for every u, v ∈ V r
i (resp., u, v ∈ V c

i ).

Proof. This is a direct consequence of Theorem 4.8 and the definition of colonies.

For any strongly connected directed graph G we have

ρr(G) ≤ hr(G) and ρc(G) ≤ hc(G).

First we observe that on graphs the bound is attained. More precisely:

Corollary 5.8. Let G = (V,E) be a connected graph. Then

ρ(G) =

{

2 if G is bipartite,

1 otherwise.

4Hence, a colony consists of sets of neighborhoods.
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Fig. 5.4. A row (non-regular) Perron-regular directed graph G. The row neighborhood structure

of the digraph implies that the form of the locally row constant vectors is (a, b, c, d, d, d, c, f, f, f)T ,

i.e., the row colonial order is five. The row colonies can be found with the following procedure:

Write a “symbolic” matrix so that the columns are distinguished symbols located according to the

pattern of G (the transpose of A#(G)). Inductively merge two columns, leaving the symbols intact if

there is no intersection, otherwise, choose one of the symbols and replace all the occurrences of the

other symbols in the intersection by the chosen symbol. At the end a row colony is a set of vertices

sharing the same symbol, and hence, the number of distinct symbols is the row colonial order. The

right Perron vector of A#(G) is (λ6, λ3, λ, 1, 1, 1, λ, 1, 1, 1)T , where λ = 4
√
6 is the corresponding

Perron value. Then ρr0(G) = 4 < 6 = hr(G).

In particular, if G is a single vertex or a star, then

ρ0(G) =

{

2 if G has at least three vertices,

1 otherwise.

Proof. It follows from Theorem 5.5 and Proposition 5.6

Hence, for any connected graph G we have ρ(G) = hr(G). Also if G is regular or

bipartite biregular, then ρ0(G) = hr(G) unless G is a single edge. An example of a

row Perron-regular directed graph G for which ρ0(G) < hr(G) is illustrated in Figure

5.4. Still the weighted Perron-regular degree always attains the upper bound for any

strongly connected directed graph.

Theorem 5.9. Let G = (V,E) be a strongly connected directed graph. Then

ρr(G) = hr(G) (resp., ρc(G) = hc(G)) .

More precisely, for any row (resp., column) Perron-regular matrix A, there exists

a row (resp., column) Perron-regular matrix B such that Pr(A) = Pr(B) (resp.,

Pc(A) = Pc(B)) and the number of distinct entries in pB (resp., qB) is hr(G(A#))

(resp., hc(G(A#))).

Proof. Let ω : E → X be a weight function such that (G,ω) is row Perron-

regular. Let A = A(G,ω). Then pA is locally row constant. For any other locally
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Fig. 5.5. A directed graph and the corresponding row and column colonial directed graphs

together with the row and column degree structure. By Proposition 5.10, the original directed graph

is not row nor column Perron-regular since the labelings of the loops are not singletons.

row constant vector v, let D ∈ D be defined by diag(D) = v. By Corollary 4.11, the

matrix B = D−1AD is row Perron-regular and yields the same Perron row stochastic

form as A. Since pB =
pA

v
, we can find v so that the claim holds.

The rest of the proof is analogous.

5.6. Colonial directed graph. By definition, there are surjective functions

σr, τr : V → {1, . . . , hr} (resp., σc, τc : V → {1, . . . , hc}) such that u ∈ Vσr(u) and

N r
G(u) ⊂ Vτr(u) (resp., u ∈ Vσc(u) and N c

G(u) ⊂ Vτc(u)) for every u ∈ V . Let

Er = {(Vσr(v), Vτr(v))}v∈V

(

resp., Ec = {(Vτc(v), Vσc(v))}v∈V

)

.

Gr = (V r, Er) (resp., Gc = (V c, Ec)) is the row (resp., column) colonial directed graph

of G. It is strongly connected since G is assumed to be strongly connected. Finally,

given a weight function ω : E → (0,∞), let the weighted row (resp., column) degree

structure be the labelling5 Lrω : Er → Pow∗((0,∞)) (resp., Lcω : Ec → Pow∗((0,∞)))

defined for every e ∈ Er (resp., e ∈ Ec) by

Lrω(e) = {δrω(v) : v ∈ V is such that (σr(v), τr(v)) = e}.

(resp., Lcω(e) = {δcω(v) : v ∈ V is such that (τc(v), σc(v)) = e}) .

The (unweighted) row (resp., column) degree structure is the labelling Lr0 = Lrω (resp.,

Lc0 = Lcω) for the weight function ω(e) = 1 for every e ∈ E. An example is depicted

in Figure 5.5.

Proposition 5.10. Let G = (V,E) be a directed graph and ω : E → (0,∞) a

weight function. If |Lrω(e)| > 1 (resp., |Lcω(e)| > 1) for some e ∈ Er (resp., e ∈ Ec),

then (G,ω) is not row (resp., column) Perron-regular.

5Pow∗(Y ) denotes the set of non-empty finite subsets of the set Y .
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Proof. It follows from Proposition 5.7.
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